JP4423052B2 - Multilayer ceramic capacitor and manufacturing method thereof - Google Patents

Multilayer ceramic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP4423052B2
JP4423052B2 JP2004019480A JP2004019480A JP4423052B2 JP 4423052 B2 JP4423052 B2 JP 4423052B2 JP 2004019480 A JP2004019480 A JP 2004019480A JP 2004019480 A JP2004019480 A JP 2004019480A JP 4423052 B2 JP4423052 B2 JP 4423052B2
Authority
JP
Japan
Prior art keywords
multilayer ceramic
ceramic capacitor
rare earth
powder
batio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004019480A
Other languages
Japanese (ja)
Other versions
JP2005217000A (en
Inventor
大輔 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004019480A priority Critical patent/JP4423052B2/en
Publication of JP2005217000A publication Critical patent/JP2005217000A/en
Application granted granted Critical
Publication of JP4423052B2 publication Critical patent/JP4423052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、積層セラミックコンデンサおよびその製法に関し、特に、携帯電話など小型、高機能の電子機器に使用され、それぞれ極めて薄い誘電体層と内部電極層とが交互に積層して構成され、容量温度特性および高温負荷寿命等の信頼性に優れた小形大容量の積層セラミックコンデンサおよびその製法に関する。   The present invention relates to a multilayer ceramic capacitor and a method for manufacturing the same, and is used in particular for small-sized and high-functional electronic devices such as mobile phones, and is configured by alternately laminating extremely thin dielectric layers and internal electrode layers, respectively. The present invention relates to a small-sized and large-capacity monolithic ceramic capacitor having excellent characteristics and reliability such as a high-temperature load life and a method for manufacturing the same.

近年、電子機器の小型化、高密度化に伴い、これに用いる積層セラミックコンデンサは小型高容量化が求められており、このため誘電体層の積層数の増加と誘電体層自体の薄層化が進められ、また、積層セラミックコンデンサとしての特性としても容量温度特性や高温負荷寿命など信頼性の向上が図られている。   In recent years, with the downsizing and higher density of electronic devices, the multilayer ceramic capacitors used for this purpose have been required to be smaller and have higher capacity. For this reason, the number of laminated dielectric layers has increased and the dielectric layers themselves have become thinner. In addition, as a characteristic of the multilayer ceramic capacitor, improvement of reliability such as a capacity-temperature characteristic and a high temperature load life is achieved.

そして、このような積層セラミックコンデンサとして、例えば、下記の特許文献1および2に開示されるようなものが知られている。   As such multilayer ceramic capacitors, for example, those disclosed in Patent Documents 1 and 2 below are known.

まず、特許文献1に開示された積層セラミックコンデンサでは、誘電体磁器を調製する場合に、BaTiOに対し添加するMg、Mnおよび希土類元素などの各種酸化物並びにガラス成分等の組成の適正化が行われている。 First, in the multilayer ceramic capacitor disclosed in Patent Document 1, when preparing a dielectric ceramic, optimization of the composition of various oxides such as Mg, Mn, and rare earth elements added to BaTiO 3 and glass components is possible. Has been done.

一方、特許文献2に開示された積層セラミックコンデンサでは、誘電体磁器の調製において、予め、BaTiOとMgOとを仮焼し、次いで、この仮焼粉末に対して希土類元素やアクセプタ型元素の各種酸化物を添加する方法を用いている。このような2段階の混合方法を採用することにより、焼成後においても、後に添加した希土類元素やアクセプタ型元素のBaTiO結晶粒子中への拡散がMgにより抑制され、結果的に、上記の特性を向上させることができると記載されている。
特開平6−84692号 特開2001−230149号
On the other hand, in the multilayer ceramic capacitor disclosed in Patent Document 2, in preparation of the dielectric ceramic, BaTiO 3 and MgO are calcined in advance, and then various kinds of rare earth elements and acceptor elements are applied to the calcined powder. A method of adding an oxide is used. By adopting such a two-stage mixing method, even after firing, diffusion of rare earth elements and acceptor-type elements added later into the BaTiO 3 crystal particles is suppressed by Mg. It is described that can be improved.
JP-A-6-84692 JP 2001-230149 A

しかしながら、上記した特許文献1に開示された積層セラミックコンデンサは、誘電体層の厚みが15μmと比較的厚い場合には、絶縁抵抗の加速寿命やX7R規格(温度範囲:−55℃〜125℃、容量変化率±15%の容量温度特性を満足するものが得られるものの、誘電体層の厚みを、例えば、2.5μm以下まで薄層化すると絶縁抵抗の加速寿命が低下し、容量温度特性がX7R規格から外れてしまうという問題があった。   However, the multilayer ceramic capacitor disclosed in Patent Document 1 described above has an accelerated life of insulation resistance and X7R standard (temperature range: −55 ° C. to 125 ° C. Although a capacitor satisfying the capacitance-temperature characteristic with a capacitance change rate of ± 15% can be obtained, if the thickness of the dielectric layer is reduced to, for example, 2.5 μm or less, the accelerated life of the insulation resistance is reduced, and the capacitance-temperature characteristic is reduced. There was a problem that it deviated from the X7R standard.

一方、上記特許文献2に開示された積層セラミックコンデンサについては、BaTiOとMgOとを予め混合し仮焼するという予備的な工程を採用していることから、誘電体磁器の比誘電率を高くでき、かつ容量温度特性としてもB特性(温度範囲:−25℃〜85℃、容量変化率±10%)を満足するものであったが、この積層セラミックコンデンサにおいても、未だ容量温度特性としてX7R規格を満たすものではなかった。 On the other hand, the multilayer ceramic capacitor disclosed in Patent Document 2 employs a preliminary process in which BaTiO 3 and MgO are mixed and calcined in advance, so that the dielectric constant of the dielectric ceramic is increased. In addition, the capacitance temperature characteristic satisfies the B characteristic (temperature range: −25 ° C. to 85 ° C., capacitance change rate ± 10%), but this multilayer ceramic capacitor still has the capacitance temperature characteristic as X7R. It did not meet the standards.

従って、本発明は、誘電体層を薄層化しても、容量温度特性および高温負荷寿命等の信頼性に優れた小形高容量の積層セラミックコンデンサおよびその製法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a small-sized and high-capacity monolithic ceramic capacitor excellent in reliability such as capacity-temperature characteristics and high-temperature load life even when the dielectric layer is thinned, and a method for manufacturing the same.

本発明の積層セラミックコンデンサは、誘電体層と内部電極層とを交互に積層してなるコンデンサ本体を備えてなる積層セラミックコンデンサであって、前記誘電体層が金属元素としてBa、Ti、希土類元素、Mg及びMnを含有するペロブスカイト型複合酸化物からなる結晶粒子と粒界相とからなり、前記結晶粒子がMg、Mnおよび希土類元素を含み、かつこれらMg、Mnおよび希土類元素は前記結晶粒子中心から粒子表面にかけて濃度が高くなる濃度勾配を有するとともに、前記Mg、Mnおよび希土類元素のうち希土類元素の濃度勾配が0.02atomic%/nm以上であることを特徴とする。   The multilayer ceramic capacitor of the present invention is a multilayer ceramic capacitor comprising a capacitor body in which dielectric layers and internal electrode layers are alternately stacked, wherein the dielectric layer is composed of Ba, Ti, rare earth elements as metal elements. , Comprising crystal grains made of a perovskite complex oxide containing Mg and Mn and a grain boundary phase, wherein the crystal grains contain Mg, Mn and rare earth elements, and these Mg, Mn and rare earth elements are centered on the crystal grains And a concentration gradient in which the concentration increases from the particle surface to the particle surface, and the concentration gradient of the rare earth element among the Mg, Mn, and rare earth elements is 0.02 atomic% / nm or more.

上記のように、誘電体磁器を構成する結晶粒子において、その中心から粒子表面にかけて濃度が高くなる濃度勾配を有するとともに、これらの元素のうち、特に、希土類元素の濃度勾配を規定することにより、比誘電率および高温負荷寿命の向上とともに、容量温度特性としてもX7R規格を満たすものを得ることができる。   As described above, the crystal particles constituting the dielectric ceramic have a concentration gradient that increases from the center to the particle surface, and among these elements, in particular, by defining the concentration gradient of rare earth elements, Along with the improvement of the relative permittivity and the high temperature load life, the capacitance temperature characteristic satisfying the X7R standard can be obtained.

また、上記積層セラミックコンデンサでは、結晶粒子中に含まれる希土類元素として高誘電率化という点でYが望ましい。   In the multilayer ceramic capacitor, Y is desirable as a rare earth element contained in the crystal particles in terms of increasing the dielectric constant.

また、上記積層セラミックコンデンサでは、誘電体層の厚みが2.5μm以下、結晶粒子の平均径が0.4μm以下であることが望ましい。結晶粒子の平均径が0.4μm以下であれば、誘電体層の厚みが2.5μm以下と薄い場合であっても高い絶縁性を得ることができ、かつX7R規格の容量温度特性についてもその規格に対する許容安定性を高めることができる。   In the multilayer ceramic capacitor, it is desirable that the dielectric layer has a thickness of 2.5 μm or less and the average diameter of crystal grains is 0.4 μm or less. If the average diameter of the crystal particles is 0.4 μm or less, high insulation can be obtained even when the thickness of the dielectric layer is as thin as 2.5 μm or less. The allowable stability with respect to the standard can be increased.

また、上記のような構成の誘電体層は耐還元性に優れたものであることから、さらには、積層セラミックコンデンサの製造コストの低減という点で、このような誘電体層とともに交互に積層される内部電極層としては卑金属を主成分とするものであることが望ましい。   In addition, since the dielectric layers having the above-described configuration have excellent reduction resistance, the dielectric layers are alternately laminated together with such dielectric layers in terms of reducing the manufacturing cost of the multilayer ceramic capacitor. The internal electrode layer is preferably composed mainly of a base metal.

本発明の積層セラミックコンデンサの製法は、(a)BaTiO粉末とMgOとの混合粉末を750℃以下の温度で仮焼して、MgOがBaTiO粉末表面に被覆形成された被覆BaTiO粉末を調製する工程と、
(b)該被覆BaTiO粉末に、希土類元素、Mnを金属元素として含む原料粉末およびSiを含む添加物粉末とを混合し、スラリーを調製する工程と、
(c)該スラリーを用いて誘電体グリーンシートを形成する工程と、
(d)該誘電体グリーンシートの主面上に内部電極パターンを形成する工程と、(e)該内部電極パターンが形成された誘電体グリーンシートを複数積層して、コンデンサ本体成形体を形成し焼成する工程とを具備することを特徴とする。
Preparation of multilayer ceramic capacitor of the present invention, the (a) BaTiO 3 powder and the mixed powder of MgO was calcined at 750 ° C. below the temperature, the coating BaTiO 3 powder MgO is coated formed on BaTiO 3 powder surface A step of preparing;
(B) mixing the raw material powder containing rare earth element, Mn as a metal element and additive powder containing Si with the coated BaTiO 3 powder, and preparing a slurry;
(C) forming a dielectric green sheet using the slurry;
(D) forming an internal electrode pattern on the main surface of the dielectric green sheet; and (e) stacking a plurality of dielectric green sheets on which the internal electrode pattern is formed to form a capacitor body molded body. And a step of firing.

本製法においては、(a)工程における被覆BaTiO粉末を調製する際のBaTiO粉末とMgOとの混合粉末の仮焼温度を800℃以下とすることにより、容量温度特性および高温負荷寿命特性に優れた積層セラミックコンデンサを容易に得ることができる。 In this production method, the calcining temperature of the mixed powder of BaTiO 3 powder and MgO when preparing the coated BaTiO 3 powder in the step (a) is set to 800 ° C. or less, so that the capacity temperature characteristic and the high temperature load life characteristic are obtained. An excellent multilayer ceramic capacitor can be easily obtained.

また、上記積層セラミックコンデンサの製法では、希土類元素としてYを選択し、また、BaTiO粉末の平均粒径を0.4μm以下とし、さらに、誘電体グリーンシートの厚みを3μm以下、内部電極層の主成分を卑金属とすることにより、小型、高容量で低コストの積層セラミックコンデンサの製造が容易となる。 In the method for manufacturing the multilayer ceramic capacitor, Y is selected as the rare earth element, the average particle diameter of the BaTiO 3 powder is 0.4 μm or less, the thickness of the dielectric green sheet is 3 μm or less, and the internal electrode layer By using a base metal as the main component, it is easy to manufacture a small-sized, high-capacity, low-cost multilayer ceramic capacitor.

本発明の積層セラミックコンデンサについて、図1の概略断面図をもとに詳細に説明する。本発明の積層セラミックコンデンサは、コンデンサ本体1の両端部に外部電極3を形成して構成されている。この外部電極3は、例えば、CuもしくはCuとNiの合金ペーストを焼き付けて形成されている。コンデンサ本体1は、誘電体層5と内部電極層7とを交互に積層してなるものである。この誘電体層5は結晶粒子11と粒界相13とからなり、その厚みは2.5μm以下が望ましく、特に、静電容量を高めるという点で2μm以下、一方、絶縁性を高く維持するという点で0.5μm以上、特に1μm以上が望ましい。さらに本発明では、静電容量のばらつきおよび容量温度特性の安定化のために、誘電体層5の厚みばらつきが10%以内であることがより望ましい。   The multilayer ceramic capacitor of the present invention will be described in detail based on the schematic sectional view of FIG. The multilayer ceramic capacitor of the present invention is configured by forming external electrodes 3 at both ends of a capacitor body 1. The external electrode 3 is formed, for example, by baking Cu or an alloy paste of Cu and Ni. The capacitor body 1 is formed by alternately laminating dielectric layers 5 and internal electrode layers 7. The dielectric layer 5 is composed of crystal grains 11 and grain boundary phases 13, and the thickness is preferably 2.5 μm or less. In particular, the dielectric layer 5 is 2 μm or less in terms of increasing capacitance, while maintaining high insulation. In terms of point, 0.5 μm or more, particularly 1 μm or more is desirable. Furthermore, in the present invention, it is more desirable that the thickness variation of the dielectric layer 5 is within 10% in order to stabilize the capacitance variation and capacitance temperature characteristics.

内部電極層7は、高積層化しても製造コストを抑制できるという点で、NiやCuなどの卑金属が望ましく、特に、本発明の誘電体層との同時焼成を図るという点でNiがより望ましい。この内部電極層7の厚みは平均1μm以下が好ましい。   The internal electrode layer 7 is preferably a base metal such as Ni or Cu from the viewpoint that the manufacturing cost can be suppressed even if the internal electrode layer 7 is made highly laminated, and particularly Ni is more preferable from the viewpoint of simultaneous firing with the dielectric layer of the present invention. . The thickness of the internal electrode layer 7 is preferably 1 μm or less on average.

そして、本発明の誘電体層5は金属元素としてBa、Ti、希土類元素、Mg及びMnを含有するペロブスカイト型複合酸化物からなる結晶粒子11と粒界相13とからなることを特徴とする。また、この誘電体層5を構成する結晶粒子11の平均粒径は容量温度特性を安定化するという点で0.4μm以下、特に0.3μm以下が望ましく、一方、絶縁性および比誘電率を高めるという点で0.1μm以上、特に、0.2μm以上がより望ましい。さらに、本発明では、結晶粒子11の平均粒径のばらつきとしては、CV値(=標準偏差/平均値)が0.5以下であることが、上記容量温度特性を安定化するという点でさらに望ましい。   The dielectric layer 5 of the present invention is characterized by comprising crystal grains 11 made of a perovskite complex oxide containing Ba, Ti, rare earth elements, Mg and Mn as metal elements and a grain boundary phase 13. In addition, the average particle diameter of the crystal particles 11 constituting the dielectric layer 5 is preferably 0.4 μm or less, particularly 0.3 μm or less in terms of stabilizing the capacity-temperature characteristics. In terms of increasing, it is more preferably 0.1 μm or more, particularly 0.2 μm or more. Furthermore, in the present invention, the variation of the average particle diameter of the crystal particles 11 is further that the CV value (= standard deviation / average value) is 0.5 or less in that the capacity-temperature characteristic is stabilized. desirable.

図2は、誘電体層を形成する結晶粒子中に含まれる希土類元素、MgおよびMnの濃度分布を示す模式図である。本発明の結晶粒子11は金属元素としてBa、Ti、希土類元素、Mg及びMnを含有するペロブスカイト型複合酸化物からなり、これらMg、Mnおよび希土類元素は結晶粒子11の中心から粒子表面にかけて濃度が高くなる濃度勾配を有するとともに、前記Mg、Mnおよび希土類元素のうち希土類元素の濃度勾配が0.02atomic%/nm以上であることが重要である。希土類元素の濃度勾配をこのように規定することにより比誘電率および高温負荷寿命の向上とともに容量温度特性としてもX7R規格を満たすものを得ることができる。また、MgおよびMnの濃度勾配は、それぞれ0.003atomic%/nm以上、0.02atomic%/nm以上であることが望ましい。一方、希土類元素の濃度勾配が0.02atomic%/nmよりも小さい場合には容量温度特性がX7Rを満足しない。   FIG. 2 is a schematic diagram showing concentration distributions of rare earth elements, Mg and Mn contained in crystal grains forming the dielectric layer. The crystal particle 11 of the present invention is composed of a perovskite type complex oxide containing Ba, Ti, rare earth element, Mg and Mn as metal elements, and these Mg, Mn and rare earth elements have concentrations from the center of the crystal particle 11 to the particle surface. It is important that the concentration gradient of the rare earth element is 0.02 atomic% / nm or more among the Mg, Mn, and rare earth elements as well as the concentration gradient increasing. By defining the concentration gradient of the rare earth element in this way, it is possible to obtain a material that satisfies the X7R standard as a capacitance temperature characteristic as well as an improvement in relative permittivity and high temperature load life. The concentration gradients of Mg and Mn are preferably 0.003 atomic% / nm or more and 0.02 atomic% / nm or more, respectively. On the other hand, when the concentration gradient of the rare earth element is smaller than 0.02 atomic% / nm, the capacity-temperature characteristic does not satisfy X7R.

ここで、本発明の希土類元素としては、Yを含め、La、Ce、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Eb、Tm、Ybなどの群から選ばれる少なくとも1種が好適に選択されるが、本発明では誘電体層5の比誘電率を高めるという点でYがより望ましい。   Here, as the rare earth element of the present invention, including Y, at least one selected from the group of La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Eb, Tm, Yb and the like is preferable. Although selected, Y is more desirable in the present invention in terms of increasing the relative dielectric constant of the dielectric layer 5.

本発明の製法では、(a)BaTiO粉末とMgOとの混合粉末を750℃以下の温度で仮焼して、MgOがBaTiO粉末表面に被覆形成された被覆BaTiO粉末を調製することを特徴とする。この場合、MgOはBaTiO粉末の表面に存在していることが望ましい。ここで用いる主原料のBaTiO粉末としては粒度分布が狭く結晶性が高いという理由から水熱合成法により得られた粉末が望ましく、その平均粒径は0.1μm以上、0.4μm以下、特に、0.2μm以上、0.3μm以下が望ましい。また、このように微細な粉末の比表面積としては1.7〜6.6(m/g)が好ましい。 The process of the present invention, the preparation of (a) BaTiO 3 powder and the mixed powder of MgO was calcined at 750 ° C. below the temperature, the coating BaTiO 3 powder MgO is coated formed on BaTiO 3 powder surface Features. In this case, MgO is preferably present on the surface of the BaTiO 3 powder. The main raw material BaTiO 3 powder used here is preferably a powder obtained by a hydrothermal synthesis method because of its narrow particle size distribution and high crystallinity, and its average particle size is 0.1 μm or more and 0.4 μm or less, particularly 0.2 μm or more and 0.3 μm or less are desirable. In addition, the specific surface area of such a fine powder is preferably 1.7 to 6.6 (m 2 / g).

即ち、本発明においては、低温仮焼により被覆BaTiOを形成するという理由から高い反応性を有する粉末としておくことが必要であることから、平均粒径とともに比表面積までも上記の範囲に規定しておくことが望ましい。 That is, in the present invention, it is necessary to prepare a highly reactive powder for the reason that the coated BaTiO 3 is formed by low-temperature calcining. It is desirable to keep it.

本発明の製法における仮焼温度としては被覆BaTiOにおけるMgOの固溶を抑制するという理由から、特には、800℃以下、750℃以下が望ましく、一方、BaTiO粉末表面へのMgOの被覆を確実なものにするという理由から600℃以上、特には、650℃以上が望ましい。尚、ここで用いるMgO粉末の平均粒径は0.3μm以下が望ましい。本発明では、このように予めMgOと仮焼を行ったBaTiO粉を用いることにより、希土類元素やMnさらにはSiを含む添加物がBaTiO結晶粒子中に固溶しにくくなり、希土類元素などを結晶粒子表面側に存在させることができる。 The calcining temperature in the production method of the present invention is particularly preferably 800 ° C. or lower and 750 ° C. or lower because the solid solution of MgO in the coated BaTiO 3 is suppressed. On the other hand, the BaTiO 3 powder surface is coated with MgO. For reasons of certainty, 600 ° C. or higher, particularly 650 ° C. or higher is desirable. The average particle size of the MgO powder used here is preferably 0.3 μm or less. In the present invention, by using BaTiO 3 powder preliminarily calcined with MgO in this way, the additive containing rare earth elements, Mn, and Si is not easily dissolved in the BaTiO 3 crystal particles. Can be present on the crystal grain surface side.

次に(b)この被覆BaTiO粉末に、希土類元素、Mnを金属元素として含む原料粉末およびSiを含む添加物粉末とを混合しスラリーを調製する。ここで用いる希土類元素、Mnを金属元素として含む原料粉末は、主原料であるBaTiO粉末と同じ形態であり混合が容易であるという点で酸化物であることが好ましく、それらの平均粒径は0.3μm以下であることが望ましい。なお、Siを含む添加物粉末としては、焼結助剤としてSi−Li−Ca系のガラス粉末が好適である。 Next, (b) this coated BaTiO 3 powder is mixed with a raw material powder containing rare earth elements and Mn as metal elements and an additive powder containing Si to prepare a slurry. The raw material powder containing rare earth element and Mn as a metal element used here is preferably an oxide in that it is the same form as the main raw material BaTiO 3 powder and is easy to mix, and their average particle size is It is desirable that it is 0.3 μm or less. As additive powder containing Si, Si-Li-Ca-based glass powder is suitable as a sintering aid.

続いて、(c)このスラリーを用いてダイコータなどのシート成形法を用いて誘電体グリーンシートを形成する。誘電体グリーンシートの厚みは3μm以下、特に、2.5μm以下が好ましい。   Subsequently, (c) using this slurry, a dielectric green sheet is formed using a sheet forming method such as a die coater. The thickness of the dielectric green sheet is preferably 3 μm or less, particularly preferably 2.5 μm or less.

次に、(d)該誘電体グリーンシートの主面上の所定の領域に内部電極パターンを形成する。内部電極パターンは、例えば、NiやCuなどの卑金属粉末を有機樹脂や溶剤とともにペースト化したものをスクリーン印刷により形成する。内部電極パターンの厚みは、誘電体グリーンシート上における段差を小さくするという点で、誘電体グリーンシートの厚みよりも薄く2μm以下であることが望ましい。   Next, (d) an internal electrode pattern is formed in a predetermined region on the main surface of the dielectric green sheet. The internal electrode pattern is formed, for example, by screen printing of a base metal powder such as Ni or Cu that is pasted together with an organic resin or a solvent. The thickness of the internal electrode pattern is preferably less than the thickness of the dielectric green sheet and 2 μm or less in terms of reducing the level difference on the dielectric green sheet.

次に、(e)内部電極パターンが形成された誘電体グリーンシートを複数積層した後加熱加圧して母体積層体を形成し所定の位置で切断してコンデンサ本体成形体を形成する。この後、コンデンサ本体を大気中で40〜80℃/hの昇温速度で400〜500℃にて脱バインダー処理を行い、その後、還元雰囲気中で500℃からの昇温速度を100〜400℃/hとし、1100〜1300℃の温度で2〜5時間焼成し、続いて80〜400℃/hの降温速度で冷却し、大気雰囲気中750〜1100℃で再酸化処理を行う。   Next, (e) a plurality of dielectric green sheets on which internal electrode patterns are formed are stacked, then heated and pressed to form a base stack, and cut at a predetermined position to form a capacitor body molded body. Thereafter, the capacitor body is debindered at 400 to 500 ° C. at a temperature increase rate of 40 to 80 ° C./h in the atmosphere, and then the temperature increase rate from 500 ° C. to 100 to 400 ° C. in a reducing atmosphere. / H, baked at a temperature of 1100 to 1300 ° C. for 2 to 5 hours, subsequently cooled at a cooling rate of 80 to 400 ° C./h, and reoxidized at 750 to 1100 ° C. in an air atmosphere.

最後に、焼成したコンデンサ本体の両端面に、外部電極用ペーストを塗布して窒素中で焼き付けることによって、外部電極3を形成し、本発明の積層セラミックコンデンサを得ることができる。   Finally, the external electrode 3 is formed by applying an external electrode paste on both end faces of the fired capacitor body and baking it in nitrogen, whereby the multilayer ceramic capacitor of the present invention can be obtained.

本発明の積層セラミックコンデンサを以下のようにして作製した。まず、あらかじめ合成したBaTiOを100質量部、MgOを0.1質量部のそれぞれを秤量し、これらを十分混合し、表1に示す温度で2時間加熱した。次に、この仮焼したBaTiO100質量部に対して、MgOを0.3質量部、Yを1質量部の、MnCOを0.1質量部、LiOとSiOとCaOからなる添加成分を0.5質量部混合して、この混合粉末を直径5mmφのZrOボールを用いたボールミルにて湿式粉砕し有機バインダを加えてスラリを調製した。次に、このスラリを用いてドクターブレードにより厚み2.5μmの誘電体グリーンシートを作製した。 The multilayer ceramic capacitor of the present invention was produced as follows. First, 100 parts by mass of BaTiO 3 synthesized in advance and 0.1 part by mass of MgO were weighed, mixed sufficiently, and heated at the temperature shown in Table 1 for 2 hours. Next, with respect to BaTiO 3 100 parts by weight of this calcined, 0.3 parts by weight of MgO, of Y 2 O 3 and 1 part by mass, MnCO 3 and 0.1 part by weight, and Li 2 O and SiO 2 0.5 parts by mass of an additive component composed of CaO was mixed, and this mixed powder was wet pulverized by a ball mill using ZrO 2 balls having a diameter of 5 mmφ, and an organic binder was added to prepare a slurry. Next, using this slurry, a dielectric green sheet having a thickness of 2.5 μm was produced by a doctor blade.

次に、この誘電体グリーンシート上に、Ni金属を含む導体ペーストをスクリーン印刷して内部電極パターンを形成した。   Next, a conductive paste containing Ni metal was screen printed on the dielectric green sheet to form an internal electrode pattern.

次に、内部電極パターンを形成した誘電体グリーンシートを100枚積層し、その上下面に、内部電極パターンを形成していない誘電体グリーンシートをそれぞれ20枚積層しプレス機を用いて一体化し母体積層体を得た。   Next, 100 dielectric green sheets on which internal electrode patterns are formed are stacked, and 20 dielectric green sheets on which internal electrode patterns are not formed are stacked on the upper and lower surfaces, and are integrated using a press. A laminate was obtained.

この後、母体積層体を格子状に切断して、2.3mm×1.5mm×1.5mmのコンデンサ本体成形体を作製した。   Thereafter, the base laminate was cut into a lattice shape to produce a capacitor body molded body of 2.3 mm × 1.5 mm × 1.5 mm.

次に、このコンデンサ本体成形体を50℃/hの昇温速度で大気中で500℃にて脱バインダー処理を行い、500℃からの昇温速度が200℃/hの昇温速度で、1270℃〜1300℃(酸素分圧10−11atm)で2時間焼成し、続いて200℃/hの降温速度で800℃まで冷却し、大気雰囲気中800℃で4時間再酸化処理をし、200℃/hの降温速度で冷却しコンデンサ本体を作製した。誘電体層の厚みは2μmであった。 Next, this capacitor body molded body was debindered at 500 ° C. in the air at a temperature rising rate of 50 ° C./h, and the temperature rising rate from 500 ° C. was 1270 ° C. Calcination for 2 hours at a temperature of -1 ° C to 1300 ° C (oxygen partial pressure 10 -11 atm), followed by cooling to 800 ° C at a temperature decrease rate of 200 ° C / h, followed by reoxidation treatment at 800 ° C for 4 hours in an air atmosphere The capacitor body was manufactured by cooling at a temperature drop rate of ° C / h. The thickness of the dielectric layer was 2 μm.

次に、焼成したコンデンサ本体をバレル研磨した後、その両端部にCu粉末とガラスを含んだ外部電極ペーストを塗布し、850℃、窒素中で焼き付けを行い外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiおよびSnメッキを行い積層セラミックコンデンサを作製した。   Next, the fired capacitor body was barrel-polished, and then an external electrode paste containing Cu powder and glass was applied to both ends thereof, followed by baking in nitrogen at 850 ° C. to form external electrodes. Thereafter, using an electrolytic barrel machine, the surface of the external electrode was sequentially plated with Ni and Sn to produce a multilayer ceramic capacitor.

次に、作製した積層セラミックコンデンサであるこれらの試料をLCRメーター4284Aを用いて周波数1.0kHz、入力信号レベル1.0Vrmsにて静電容量、誘電損失を測定した。比誘電率は、静電容量と内部電極層の有効面積、誘電体層の厚みから算出した。続いて、静電容量の温度特性を25℃の時の静電容量を基準として、−55〜125℃の範囲において測定した。高温負荷試験は、温度85℃、電圧は9.5Vの条件で、1000時間行い、試料数100個につき絶縁抵抗の変化を測定した。この場合ショートを不良とした。結晶粒子径およびそのばらつきは電子顕微鏡を用いて測定した。また、誘電体層を構成する結晶粒子中のY、Mg、Mnの成分の存在については断面研磨した試料について分析電子顕微鏡を用いて評価した。なお、本発明の試料では2段階のMg添加のためにMnのみならずMg元素についてもY元素と同様の濃度勾配が見られた。その濃度勾配はMgが0.003atomic%/nm以上、Mnの濃度勾配が0.02atomic%/nm以上であった。本発明の試料における結晶粒子の平均粒径は0.4μm以下、そのばらつきは0.5以下であった。   Next, the capacitance and dielectric loss of these samples, which were the produced multilayer ceramic capacitors, were measured using an LCR meter 4284A at a frequency of 1.0 kHz and an input signal level of 1.0 Vrms. The relative dielectric constant was calculated from the capacitance, the effective area of the internal electrode layer, and the thickness of the dielectric layer. Subsequently, the temperature characteristics of the capacitance were measured in a range of −55 to 125 ° C. with reference to the capacitance at 25 ° C. The high temperature load test was performed for 1000 hours under the conditions of a temperature of 85 ° C. and a voltage of 9.5 V, and the change in insulation resistance was measured for 100 samples. In this case, the short was regarded as defective. The crystal particle diameter and its variation were measured using an electron microscope. In addition, the presence of Y, Mg, and Mn components in the crystal particles constituting the dielectric layer was evaluated using an analytical electron microscope for a sample whose cross-section was polished. In the sample of the present invention, a concentration gradient similar to that of the Y element was observed not only for Mn but also for the Mg element due to the two-stage Mg addition. The concentration gradient was 0.003 atomic% / nm or more for Mg and 0.02 atomic% / nm or more for Mn. The average particle size of the crystal particles in the sample of the present invention was 0.4 μm or less, and the variation was 0.5 or less.

比較例1として、BaTiOとMgOとの混合粉末を900℃で2時間加熱して仮焼粉末を調製した。これ以外の添加物組成や手順は上記本発明の工程と、焼成温度を1130℃とした以外はほぼ同じとした。 As Comparative Example 1, a mixed powder of BaTiO 3 and MgO was heated at 900 ° C. for 2 hours to prepare a calcined powder. The other additive compositions and procedures were substantially the same as the above-described step of the present invention except that the firing temperature was 1130 ° C.

比較例2として、上記本発明に用いた原料粉末を一括混合した原料粉末をスプレードライヤを用いて造粒し、この造粒粉末を用いて本発明と同じ工程により積層セラミックコンデンサを作製した。上記2つの比較例の試料について、結晶粒子の平均粒径はともに0.6μm以上、そのばらつきは0.8以上であった。また、その濃度勾配はMgが0.002atomic%/nm以下、Mnの濃度勾配についても0.015atomic%/nm以下であった。

Figure 0004423052
As Comparative Example 2, a raw material powder obtained by batch mixing the raw material powders used in the present invention was granulated using a spray dryer, and a multilayer ceramic capacitor was produced using the granulated powder by the same process as that of the present invention. For the samples of the above two comparative examples, the average grain size of the crystal grains was both 0.6 μm or more, and the variation was 0.8 or more. The concentration gradient of Mg was 0.002 atomic% / nm or less, and the concentration gradient of Mn was 0.015 atomic% / nm or less.
Figure 0004423052

表1の結果から明らかなように、本発明の製法を用いて作製した試料No.3〜6では、いずれもYの濃度勾配が0.02atomic%/nm以上であり、比誘電率が2850以上、容量温度特性がX7R規格を満足し、高温負荷試験においても1000時間を満足するものであった。   As is apparent from the results in Table 1, sample Nos. Produced using the production method of the present invention. 3 to 6, all have a Y concentration gradient of 0.02 atomic% / nm or more, a relative dielectric constant of 2850 or more, a capacity-temperature characteristic that satisfies the X7R standard, and a high-temperature load test that satisfies 1000 hours. Met.

これに対して、比較例1、2の試料では、Yの濃度勾配が0.018atomic%/nm以下となり、いずれも容量温度特性がX7R規格および高温負荷寿命を満足しなかった。   On the other hand, in the samples of Comparative Examples 1 and 2, the Y concentration gradient was 0.018 atomic% / nm or less, and none of the capacity-temperature characteristics satisfied the X7R standard and the high temperature load life.

本発明の積層セラミックコンデンサの概略断面図である。It is a schematic sectional drawing of the multilayer ceramic capacitor of this invention. 誘電体層を形成する結晶粒子中に含まれる希土類元素、MgおよびMnの濃度分布を示す模式図である。It is a schematic diagram which shows the density | concentration distribution of the rare earth elements, Mg, and Mn contained in the crystal grain which forms a dielectric material layer.

符号の説明Explanation of symbols

1・・・コンデンサ本体
5・・・誘電体層
7・・・内部電極層
11・・結晶粒子
13・・粒界相
DESCRIPTION OF SYMBOLS 1 ... Capacitor body 5 ... Dielectric layer 7 ... Internal electrode layer 11 ... Crystal grain 13 ... Grain boundary phase

Claims (10)

誘電体層と内部電極層とを交互に積層してなるコンデンサ本体を備えてなる積層セラミックコンデンサであって、前記誘電体層が金属元素としてBa、Ti、希土類元素、Mg及びMnを含有するペロブスカイト型複合酸化物からなる結晶粒子と粒界相とからなり、前記結晶粒子がMg、Mnおよび希土類元素を含み、かつこれらMg、Mnおよび希土類元素は前記結晶粒子中心から粒子表面にかけて濃度が高くなる濃度勾配を有するとともに、前記Mg、Mnおよび希土類元素のうち希土類元素の濃度勾配が0.02atomic%/nm以上であることを特徴とする積層セラミックコンデンサ。 A multilayer ceramic capacitor comprising a capacitor body in which dielectric layers and internal electrode layers are alternately laminated, wherein the dielectric layer contains Ba, Ti, rare earth elements, Mg and Mn as metal elements A crystal grain made of a composite oxide and a grain boundary phase, wherein the crystal grain contains Mg, Mn and a rare earth element, and the concentration of Mg, Mn and rare earth element increases from the center of the crystal grain to the grain surface. A multilayer ceramic capacitor having a concentration gradient, wherein the concentration gradient of rare earth elements among the Mg, Mn, and rare earth elements is 0.02 atomic% / nm or more. 希土類元素がYである請求項1に記載の積層セラミックコンデンサ。 The multilayer ceramic capacitor according to claim 1, wherein the rare earth element is Y. 結晶粒子の平均粒径が0.4μm以下である請求項1または2に記載の積層セラミックコンデンサ。 The multilayer ceramic capacitor according to claim 1 or 2, wherein the average grain size of the crystal grains is 0.4 µm or less. 誘電体層の厚みが2.5μm以下である請求項1乃至3のうちいずれか記載の積層セラミックコンデンサ。 The multilayer ceramic capacitor according to claim 1, wherein the dielectric layer has a thickness of 2.5 μm or less. 内部電極層が卑金属を主成分とする請求項1乃至4のうちいずれか記載の積層セラミックコンデンサ。 The multilayer ceramic capacitor according to claim 1, wherein the internal electrode layer contains a base metal as a main component. (a)BaTiO粉末とMgOとの混合粉末を750℃以下の温度で仮焼して、MgOがBaTiO粉末表面に被覆形成された被覆BaTiO粉末を調製する工程と、
(b)該被覆BaTiO粉末に、希土類元素、Mnを金属元素として含む原料粉末およびSiを含む添加物粉末とを混合し、スラリーを調製する工程と、
(c)該スラリーを用いて誘電体グリーンシートを形成する工程と、
(d)該誘電体グリーンシートの主面上に内部電極パターンを形成する工程と、(e)該内部電極パターンが形成された誘電体グリーンシートを複数積層して、コンデンサ本体成形体を形成し焼成する工程とを具備することを特徴とする積層セラミックコンデンサの製法。
(A) a mixed powder of BaTiO 3 powder and MgO and calcined at temperatures below 750 ° C., a step of MgO to prepare a coating BaTiO 3 powder coated formed on BaTiO 3 powder surface,
(B) mixing the raw material powder containing rare earth element, Mn as a metal element and additive powder containing Si with the coated BaTiO 3 powder, and preparing a slurry;
(C) forming a dielectric green sheet using the slurry;
(D) forming an internal electrode pattern on the main surface of the dielectric green sheet; and (e) stacking a plurality of dielectric green sheets on which the internal electrode pattern is formed to form a capacitor body molded body. A method for producing a multilayer ceramic capacitor comprising the step of firing.
希土類元素がYである請求項6に記載の積層セラミックコンデンサの製法。 The method for producing a multilayer ceramic capacitor according to claim 6, wherein the rare earth element is Y. BaTiO粉末の平均粒径が0.4μm以下である請求項6または7に記載の積層セラミックコンデンサの製法。 The method for producing a multilayer ceramic capacitor according to claim 6 or 7, wherein the average particle diameter of the BaTiO 3 powder is 0.4 µm or less. 誘電体グリーンシートの厚みが3μm以下である請求項6乃至8のうちいずれか記載の積層セラミックコンデンサの製法。 The method for producing a multilayer ceramic capacitor according to claim 6, wherein the dielectric green sheet has a thickness of 3 μm or less. 内部電極層が卑金属を主成分とする請求項6乃至9のうちいずれか記載の積層セラミックコンデンサの製法。 The method for producing a multilayer ceramic capacitor according to claim 6, wherein the internal electrode layer contains a base metal as a main component.
JP2004019480A 2004-01-28 2004-01-28 Multilayer ceramic capacitor and manufacturing method thereof Expired - Lifetime JP4423052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004019480A JP4423052B2 (en) 2004-01-28 2004-01-28 Multilayer ceramic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004019480A JP4423052B2 (en) 2004-01-28 2004-01-28 Multilayer ceramic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005217000A JP2005217000A (en) 2005-08-11
JP4423052B2 true JP4423052B2 (en) 2010-03-03

Family

ID=34903681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004019480A Expired - Lifetime JP4423052B2 (en) 2004-01-28 2004-01-28 Multilayer ceramic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4423052B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10872725B2 (en) 2017-12-19 2020-12-22 Samsung Electronics Co., Ltd. Ceramic dielectric, method of manufacturing the same, ceramic electronic component, and electronic device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013236A1 (en) 2006-07-27 2008-01-31 Kyocera Corporation Dielectric porcelain and capacitor
JP4937068B2 (en) * 2006-09-27 2012-05-23 京セラ株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP4753860B2 (en) * 2006-12-25 2011-08-24 京セラ株式会社 Multilayer ceramic capacitor
TW200839814A (en) 2007-03-14 2008-10-01 Tdk Corp Dielectric ceramic composition and electronic device
KR101732422B1 (en) * 2009-02-18 2017-05-08 서울대학교산학협력단 Precursor powder for sintering used for preparing dielectric material and process for preparing the same
JP5067401B2 (en) 2009-06-30 2012-11-07 株式会社村田製作所 Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP5786704B2 (en) * 2011-12-21 2015-09-30 Tdk株式会社 Dielectric porcelain composition and electronic component
JP5205544B1 (en) * 2012-03-30 2013-06-05 太陽誘電株式会社 Multilayer ceramic capacitor
WO2014207900A1 (en) * 2013-06-28 2014-12-31 Tdk株式会社 Dielectric ceramic composition and layered ceramic capacitor
JP2022143403A (en) * 2021-03-17 2022-10-03 株式会社村田製作所 Multilayer ceramic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10872725B2 (en) 2017-12-19 2020-12-22 Samsung Electronics Co., Ltd. Ceramic dielectric, method of manufacturing the same, ceramic electronic component, and electronic device

Also Published As

Publication number Publication date
JP2005217000A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
JP4965435B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
US8238077B2 (en) Dielectric ceramics and multilayer ceramic capacitor
US7057876B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5121311B2 (en) Dielectric porcelain and multilayer ceramic capacitor
WO2007026614A1 (en) Dielectric ceramic, process for producing the same, and laminated ceramic capacitor
JP2005277393A (en) Laminated ceramic capacitor and its manufacturing method
WO2008066140A1 (en) Multilayered ceramic capacitor
JP2007095382A (en) Internal electrode paste, manufacturing method of laminated ceramic capacitor, and laminated ceramic capacitor
JP2004214539A (en) Dielectric ceramic and laminated ceramic capacitor
CN106747419B (en) Dielectric material for medium-high voltage X7R characteristic multilayer ceramic capacitor
JP5354867B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4423052B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5558249B2 (en) Multilayer ceramic capacitor
JP2008135638A (en) Multilayer ceramic capacitor
JP5046699B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4771818B2 (en) Multilayer ceramic capacitor
JP4502740B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4502741B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4511323B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2002265260A (en) Dielectric ceramic and lamination type electronic part
JP4508858B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4463093B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4557708B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4463095B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4753860B2 (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4423052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4