JP5354867B2 - Dielectric porcelain and multilayer ceramic capacitor - Google Patents

Dielectric porcelain and multilayer ceramic capacitor Download PDF

Info

Publication number
JP5354867B2
JP5354867B2 JP2007115446A JP2007115446A JP5354867B2 JP 5354867 B2 JP5354867 B2 JP 5354867B2 JP 2007115446 A JP2007115446 A JP 2007115446A JP 2007115446 A JP2007115446 A JP 2007115446A JP 5354867 B2 JP5354867 B2 JP 5354867B2
Authority
JP
Japan
Prior art keywords
powder
crystal
dielectric
mol
crystal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007115446A
Other languages
Japanese (ja)
Other versions
JP2008273754A (en
Inventor
洋一 山崎
英之 大鈴
芳博 藤岡
大輔 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007115446A priority Critical patent/JP5354867B2/en
Priority to CN200880013339.8A priority patent/CN101668721B/en
Priority to TW97111621A priority patent/TW200902473A/en
Priority to PCT/JP2008/056192 priority patent/WO2008132928A1/en
Publication of JP2008273754A publication Critical patent/JP2008273754A/en
Application granted granted Critical
Publication of JP5354867B2 publication Critical patent/JP5354867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、チタン酸バリウムを主成分とする結晶粒子により構成される誘電体磁器と、それを誘電体層として用いる積層セラミックコンデンサに関する。   The present invention relates to a dielectric ceramic composed of crystal particles mainly composed of barium titanate and a multilayer ceramic capacitor using the dielectric ceramic as a dielectric layer.

近年、携帯電話などモバイル機器の普及や、パソコンなどの主要部品である半導体素子の高速、高周波化に伴い、このような電子機器に搭載される積層セラミックコンデンサは、小型、高容量化の要求がますます高まっており、積層セラミックコンデンサを構成する誘電体層は薄層化と高積層化が求められている。   In recent years, with the widespread use of mobile devices such as mobile phones and the high speed and high frequency of semiconductor devices, which are the main components of personal computers and the like, multilayer ceramic capacitors mounted on such electronic devices are required to be smaller and have higher capacities. The dielectric layer constituting the multilayer ceramic capacitor is required to be thin and highly multilayered.

ところで、積層セラミックコンデンサを構成する誘電体層となる誘電体磁器として、従来より、チタン酸バリウムを主成分とする誘電率材料が用いられているが、近年に至り、チタン酸バリウム粉末とチタン酸バリウムにカルシウムを固溶させた粉末を混合して用いて、これらの誘電体材料を共存させた複合系の誘電体材料が開発され、積層セラミックコンデンサに応用されている(例えば、特許文献1参照)。   By the way, as a dielectric porcelain serving as a dielectric layer constituting a multilayer ceramic capacitor, a dielectric constant material mainly composed of barium titanate has been conventionally used. However, in recent years, barium titanate powder and titanic acid have been used. A composite dielectric material in which these dielectric materials coexist is developed by mixing powder in which calcium is dissolved in barium, and applied to a multilayer ceramic capacitor (see, for example, Patent Document 1). ).

なお、上述したチタン酸バリウム粉末やチタン酸バリウムにカルシウムを固溶させた粉末を用いて作製される誘電体磁器には、マグネシウム、希土類元素およびマンガンの各酸化物が添加剤として用いられ、焼成時に、これらの添加剤を、チタン酸バリウム粉末やチタン酸バリウムにカルシウムを固溶させた粉末のそれぞれの表面付近に固溶させて、いわゆるコアシェル構造を有する結晶粒子とし、比誘電率や比誘電率の温度特性などの向上が図られている。   In addition, in the dielectric ceramic produced using the above-mentioned barium titanate powder or powder obtained by dissolving calcium in barium titanate, magnesium, rare earth elements and manganese oxides are used as additives, and firing. Sometimes, these additives are dissolved in the vicinity of the surface of barium titanate powder or powder of calcium in barium titanate to form crystal particles having a so-called core-shell structure. The temperature characteristics of the rate are improved.

ここで、結晶粒子のコアシェル構造とは、結晶粒子の中心部であるコア部と外殻部であるシェル部とが物理的、化学的に異なる相を形成している構造をいい、チタン酸バリウムを主成分とする結晶粒子については、いずれもコア部は正方晶系の結晶相で占められており、一方、シェル部は立方晶系の結晶相により占められている状態となっている。
特開2001−156450号公報
Here, the core-shell structure of the crystal particle means a structure in which the core part which is the center part of the crystal particle and the shell part which is the outer shell part form physically and chemically different phases, and barium titanate. In any of the crystal grains mainly composed of, the core portion is occupied by a tetragonal crystal phase, while the shell portion is occupied by a cubic crystal phase.
JP 2001-156450 A

しかしながら、上述のようなコアシェル構造の結晶粒子から構成された誘電体磁器は、比誘電率の向上とともに、比誘電率の温度特性としてX5R(25℃を基準にしたときの比誘電率の温度変化率が−55〜85℃において±15%)を満足させることができるものの、X5Rよりも高温までの比誘電率の温度特性であるX6R(25℃を基準にしたときの比誘電率の温度変化率が−55〜105℃において±15%)を満足させることが困難であった。   However, the dielectric ceramic composed of the core-shell structured crystal particles as described above has an increase in the relative permittivity and, as a temperature characteristic of the relative permittivity, X5R (change in temperature of the relative permittivity with respect to 25 ° C. X6R which is a temperature characteristic of relative permittivity up to a temperature higher than X5R (relative to 25 ° C as a reference). It was difficult to satisfy a rate of ± 15% at −55 to 105 ° C.).

また、誘電体磁器に直流電圧を印加し、その直流電圧を増加させたときに絶縁抵抗の低下が大きくなるという問題があった。   In addition, when a DC voltage is applied to the dielectric ceramic and the DC voltage is increased, there has been a problem that the decrease in insulation resistance becomes large.

そして、上述のような、コアシェル構造の結晶粒子から構成された誘電体磁器を誘電体層として備えた積層セラミックコンデンサは、誘電体磁器における比誘電率の温度特性としてX6Rを満足できないことに加えて、絶縁抵抗の低下に起因して、高温負荷試験での寿命特性を向上させることが困難となっていた。   In addition, the multilayer ceramic capacitor provided with the dielectric ceramic composed of the core-shell structured crystal particles as the dielectric layer as described above cannot satisfy X6R as the temperature characteristic of the relative dielectric constant in the dielectric ceramic. Due to the decrease in insulation resistance, it has been difficult to improve the life characteristics in the high temperature load test.

従って、本発明は、高誘電率かつ比誘電率の温度特性の安定性に優れるとともに、電圧を増加させた際の絶縁抵抗の電圧依存性の小さい誘電体磁器と、このような誘電体磁器を誘電体層として備え、高温負荷試験での寿命特性に優れた積層セラミックコンデンサを提供することを目的とする。   Accordingly, the present invention provides a dielectric ceramic with excellent stability of temperature characteristics of high dielectric constant and relative dielectric constant, and low voltage dependency of insulation resistance when the voltage is increased, and such a dielectric ceramic. An object of the present invention is to provide a multilayer ceramic capacitor that is provided as a dielectric layer and has excellent life characteristics in a high-temperature load test.

本発明の誘電体磁器は、チタン酸バリウムを主成分とし、カルシウムと、バナジウムと、マグネシウムと、マンガンと、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素とを含む結晶粒子を有する誘電
体磁器であって、前記結晶粒子は、結晶粒子中のカルシウム濃度が0.3原子%より少ない第1の結晶粒子と、結晶粒子中のカルシウム濃度が0.3原子%以上である第2の結晶粒子とを有するとともに、前記チタン酸バリウムを構成するチタン100モルに対して、バナジウムを 換算で0.1〜0.2モル、マグネシウムをMgO換算で0.55〜0.75モル、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素(RE)RE 換算で0.55〜0.75モル、およびマンガンをMnO換算で0.25〜0.6モル含有し、誘電体磁器の研磨面に見られる前記第1の結晶粒子の面積をC1、前記第2の結晶粒子の面積をC2としたときに、C2/(C1+C2)が0.5〜0.8であるとともに、キュリー温度が85〜95℃であることを特徴とする。
The dielectric ceramic of the present invention contains barium titanate as a main component, and includes calcium, vanadium, magnesium, manganese, and at least one rare earth element selected from yttrium, dysprosium, holmium, erbium, and terbium. A dielectric ceramic having crystal particles, wherein the crystal particles include a first crystal particle having a calcium concentration of less than 0.3 atomic% in the crystal particle, and a calcium concentration in the crystal particle of not less than 0.3 atomic%. The vanadium is 0.1 to 0.2 mol in terms of V 2 O 5 and the magnesium is 0.1 in terms of MgO with respect to 100 mol of titanium constituting the barium titanate. 55-0.75 mol, at least one of yttrium, dysprosium, holmium, erbium and terbium 0.55 to 0.75 mole rare earth element and (RE) in terms of RE 2 O 3, and manganese containing 0.25 to 0.6 mole in terms of MnO, the first seen in the polished surface of the dielectric ceramic C2 / (C1 + C2) is 0.5 to 0.8 and the Curie temperature is 85 to 95 ° C. where C1 is the area of the crystal grains and C2 is the area of the second crystal grains. It is characterized by.

また、上記誘電体磁器では、前記マンガンをMnO換算で0.25〜0.35モル含有することが望ましい。 The dielectric ceramic preferably contains 0.25 to 0.35 mol of manganese in terms of MnO .

また、上記誘電体磁器では、前記結晶粒子の平均粒径が0.25〜0.35μmであることが望ましい。   In the dielectric ceramic, it is preferable that an average particle diameter of the crystal particles is 0.25 to 0.35 μm.

次に、本発明の積層セラミックコンデンサは、上記の誘電体磁器からなる誘電体層と内部電極層との積層体から構成されていることを特徴とする。   Next, the multilayer ceramic capacitor of the present invention is characterized in that it is composed of a laminate of a dielectric layer made of the above dielectric ceramic and an internal electrode layer.

本発明の誘電体磁器によれば、チタン酸バリウムに対して、カルシウム、バナジウム、マグネシウム、希土類元素およびマンガンをそれぞれ所定の割合で含有させるとともに、誘電体磁器の結晶粒子をカルシウム濃度の異なる2種の結晶粒子から構成し、かつ、キュリー温度を85〜95℃の範囲としたことにより、高誘電率で、かつ比誘電率の温度変化率を小さくできるとともに、電圧を印加したときの絶縁抵抗の低下が小さい(絶縁抵抗の電圧依存性の小さい)誘電体磁器を得ることができる。   According to the dielectric ceramic of the present invention, calcium, vanadium, magnesium, rare earth elements and manganese are contained in barium titanate at a predetermined ratio, and the dielectric ceramic crystal particles are divided into two types having different calcium concentrations. And having a Curie temperature in the range of 85 to 95 ° C., the temperature change rate of the dielectric constant and the dielectric constant can be reduced, and the insulation resistance when a voltage is applied can be reduced. A dielectric ceramic having a small drop (insulation resistance having a small voltage dependency) can be obtained.

また、本発明の誘電体磁器に対して、マンガンを酸化物換算で0.25〜0.35モル含有させたときには、絶縁抵抗の電圧依存性がほとんど無い誘電体磁器を得ることができる。   In addition, when 0.25 to 0.35 mol of manganese in terms of oxide is contained in the dielectric ceramic of the present invention, a dielectric ceramic having almost no voltage dependency of insulation resistance can be obtained.

さらに、本発明の誘電体磁器に対して、チタン酸バリウムを主成分とする結晶粒子の平均粒径を0.25〜0.35μmとしたときには、印加する直流電圧の所定の範囲において、絶縁抵抗が増加する傾向を示す優れた誘電体磁器を得ることができる。   Furthermore, when the average particle diameter of the crystal grains mainly composed of barium titanate is 0.25 to 0.35 μm for the dielectric ceramic of the present invention, the insulation resistance is within a predetermined range of the applied DC voltage. An excellent dielectric ceramic exhibiting a tendency to increase can be obtained.

また、本発明の積層セラミックコンデンサによれば、誘電体層として、上記の誘電体磁器を適用することにより、比誘電率の温度特性が安定であり、誘電体層を薄層化しても高い絶縁性を確保でき、このため高温負荷試験においても寿命特性に優れた積層セラミックコンデンサを得ることができる。   Also, according to the multilayer ceramic capacitor of the present invention, by applying the above dielectric ceramic as the dielectric layer, the temperature characteristics of the relative dielectric constant are stable, and high insulation is achieved even if the dielectric layer is thinned. Therefore, it is possible to obtain a multilayer ceramic capacitor having excellent life characteristics even in a high temperature load test.

図1は、本発明の誘電体磁器の微構造を示す断面模式図である。   FIG. 1 is a schematic cross-sectional view showing the microstructure of a dielectric ceramic according to the present invention.

本発明の誘電体磁器は、チタン酸バリウムを主成分とし、カルシウム、バナジウム、マグネシウム、マンガン、ならびに、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素の一部または全部を含有する結晶粒子を有するとともに、この結晶粒子は、カルシウム濃度の低い第1の結晶粒子1aと、この第1の結晶粒子1aよりもカルシウム濃度が高い第2の結晶粒子1bと、これら第1の結晶粒子1aおよび第2の結晶粒子1b間に存在する粒界相2とからなる。   The dielectric ceramic of the present invention is mainly composed of barium titanate, and a part or all of at least one rare earth element selected from calcium, vanadium, magnesium, manganese, and yttrium, dysprosium, holmium, erbium, and terbium. The crystal particles include a first crystal particle 1a having a low calcium concentration, a second crystal particle 1b having a higher calcium concentration than the first crystal particle 1a, and the first crystal particles 1a. The crystal grain 1a and the grain boundary phase 2 existing between the second crystal grains 1b.

第1の結晶粒子1aはCa濃度が0.3原子%よりも低いチタン酸バリウムを主成分とする結晶粒子であり、第2の結晶粒子1bはCa濃度が0.3原子%以上の結晶粒子である。なお、第1の結晶粒子1aはCa濃度がゼロのものを含む。   The first crystal particle 1a is a crystal particle mainly composed of barium titanate having a Ca concentration lower than 0.3 atomic%, and the second crystal particle 1b is a crystal particle having a Ca concentration of 0.3 atomic% or more. It is. The first crystal particles 1a include those having a Ca concentration of zero.

結晶粒子中のCa濃度については、エネルギー分散型分析器(EDS)を付設した透過電子顕微鏡装置を用いて測定する。この場合、研磨した誘電体磁器の断面に映し出された結晶粒子に対して、EDSを用いて、結晶粒子の中心部近傍の任意の場所を分析し、結晶粒子から検出される主成分と添加剤の各元素の全量を100%として、その中に含まれるCaの含有量を求め、Ca濃度が0.3原子%より低い結晶粒子とCa濃度が0.3原子%以上の結晶粒子とを分類する。Ca濃度が0.3原子%より低い結晶粒子とCa濃度が0.3原子%以上の結晶粒子との割合は透過電子顕微鏡写真に映し出された結晶粒子の断面の面積比率から求める。また、結晶粒子の中心部近傍とは、誘電体磁器を断面研磨した試料の表面に現れた結晶粒子の粒界から深さ方向に向けて、直径の1/3以上深い領域のことである。   The Ca concentration in the crystal particles is measured using a transmission electron microscope apparatus provided with an energy dispersive analyzer (EDS). In this case, with respect to the crystal particles projected on the cross section of the polished dielectric ceramic, the EDS is used to analyze an arbitrary location near the center of the crystal particles, and the main components and additives detected from the crystal particles Assuming that the total amount of each element is 100%, the content of Ca contained therein is obtained, and crystal grains having a Ca concentration lower than 0.3 atomic% and crystal grains having a Ca concentration of 0.3 atomic% or more are classified. To do. The ratio of the crystal particles having a Ca concentration lower than 0.3 atomic% and the crystal particles having a Ca concentration of 0.3 atomic% or more is determined from the area ratio of the cross section of the crystal particles displayed in the transmission electron micrograph. Further, the vicinity of the center portion of the crystal grain is a region deeper than 1/3 of the diameter from the grain boundary of the crystal grain appearing on the surface of the sample whose dielectric ceramic has been subjected to cross-section polishing in the depth direction.

次に、本発明の誘電体磁器を構成する第1の結晶粒子1aおよび第2の結晶粒子1bの内部構造について説明する。第1の結晶粒子1aおよび第2の結晶粒子1bは同様の内部構造を有していることから、ここでは第1の結晶粒子1aを例に説明する。   Next, the internal structure of the first crystal particle 1a and the second crystal particle 1b constituting the dielectric ceramic of the present invention will be described. Since the first crystal particle 1a and the second crystal particle 1b have the same internal structure, the first crystal particle 1a will be described as an example here.

図2(a)は、本発明の誘電体磁器を構成する結晶粒子の断面模式図であり、図2(b)は、(a)における希土類元素またはマグネシウムの濃度変化を示した模式図である。   FIG. 2 (a) is a schematic cross-sectional view of crystal grains constituting the dielectric ceramic of the present invention, and FIG. 2 (b) is a schematic view showing a change in the concentration of rare earth elements or magnesium in (a). .

図2(a)(b)に示すように、結晶粒子は、チタン酸バリウムを主成分とするコア部1と、そのコア部1の周囲に形成されたチタン酸バリウムを主成分とするシェル部3とから構成されている。また、結晶粒子中には、カルシウム、バナジウム、マグネシウム、希土類元素およびマンガンが固溶しており、特に、マグネシウムや希土類元素の固溶状態を見ると、シェル部3はコア部1よりもマグネシウムや希土類元素の濃度勾配が大きくなっている。即ち、図2(b)に示すように、シェル部3における希土類元素またはマグネシウムの濃度勾配がコア部1の希土類元素またはマグネシウムの濃度勾配よりも大きくなっており、また、シェル部3における希土類元素またはマグネシウムの濃度が、コア部1における希土類元素またはマグネシウムの濃度よりも高いものである。   As shown in FIGS. 2 (a) and 2 (b), the crystal particles include a core portion 1 mainly composed of barium titanate and a shell portion mainly composed of barium titanate formed around the core portion 1. 3. In addition, calcium, vanadium, magnesium, rare earth elements, and manganese are dissolved in the crystal particles. In particular, when the solid solution state of magnesium and rare earth elements is seen, the shell portion 3 has a higher magnesium content than the core portion 1. The concentration gradient of rare earth elements is increasing. That is, as shown in FIG. 2B, the concentration gradient of the rare earth element or magnesium in the shell portion 3 is larger than the concentration gradient of the rare earth element or magnesium in the core portion 1, and the rare earth element in the shell portion 3 Alternatively, the magnesium concentration is higher than the rare earth element or magnesium concentration in the core portion 1.

なお、この測定はエネルギー分散型分析器(EDS)を付設した透過電子顕微鏡装置を用いて測定可能であり、結晶粒子の表面側から中心部にかけて所定の間隔でEDSで元素分析を行うことにより希土類元素やマグネシウムの濃度変化を求めることができる。   This measurement can be performed using a transmission electron microscope apparatus equipped with an energy dispersive analyzer (EDS), and by performing elemental analysis with EDS at a predetermined interval from the surface side to the center of the crystal particles, the rare earth Changes in the concentration of elements and magnesium can be obtained.

本発明の誘電体磁器を構成する結晶粒子では、シェル部3における希土類元素またはマグネシウムの濃度勾配が結晶粒子の最表面SSを最高濃度とし、最表面SSから内部にかけて0.1〜2原子%/nmであることが望ましく、希土類元素またはマグネシウムの濃度勾配が0.1〜2原子%/nmであると高温負荷試験などの寿命特性を高められるという利点がある。   In the crystal particles constituting the dielectric ceramic of the present invention, the concentration gradient of the rare earth element or magnesium in the shell portion 3 makes the outermost surface SS of the crystal particles the highest concentration, and 0.1 to 2 atomic% / from the outermost surface SS to the inside. It is desirable that it is nm, and when the concentration gradient of the rare earth element or magnesium is 0.1 to 2 atomic% / nm, there is an advantage that life characteristics such as a high temperature load test can be improved.

コアシェル構造を有する結晶粒子について、コア部1とシェル部3との境界は、EDSで求められる結晶粒子中の希土類元素の濃度変化のプロットに沿って、結晶粒子の最表面SSから内部、および、結晶粒子の中心部から最表面SSに向けて、相互に引いた直線の交点から求められる。   For the crystal particles having a core-shell structure, the boundary between the core part 1 and the shell part 3 follows the plot of the change in the concentration of rare earth elements in the crystal particles determined by EDS, from the outermost surface SS of the crystal particles, and It is calculated | required from the intersection of the mutually drawn straight line toward the outermost surface SS from the center part of a crystal grain.

この場合、シェル部3における希土類元素またはマグネシウムの濃度勾配が0.1原子%/nmよりも大きく、かつコア部1における希土類元素またはマグネシウムの濃度勾配とシェル部3における希土類元素またはマグネシウムの濃度勾配との差が0.1原子%/nm以上であれば、コア部1およびシェル部3として判定することが可能となる。   In this case, the concentration gradient of the rare earth element or magnesium in the shell portion 3 is larger than 0.1 atomic% / nm, the concentration gradient of the rare earth element or magnesium in the core portion 1 and the concentration gradient of the rare earth element or magnesium in the shell portion 3. If it is 0.1 atomic% / nm or more, the core portion 1 and the shell portion 3 can be determined.

本発明の誘電体磁器の組成は、チタン酸バリウムを構成するチタン100モルに対して、バナジウムを酸化物換算で0.1〜0.2モル、マグネシウムを酸化物換算で0.55〜0.75モル、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素を酸化物換算で0.55〜0.75モル、およびマンガンを酸化物換算で0.25〜0.6モル含有することを特徴とする。   The composition of the dielectric ceramic of the present invention is such that vanadium is 0.1 to 0.2 mol in terms of oxide and magnesium is 0.55 to 0.005 in terms of oxide with respect to 100 mol of titanium constituting barium titanate. 75 mol, at least one rare earth element of yttrium, dysprosium, holmium, erbium and terbium in an oxide equivalent of 0.55 to 0.75 mol, and manganese in an oxide equivalent of 0.25 to 0.6 It is characterized by containing a mole.

また、本発明の誘電体磁器は、第1の結晶粒子1aの面積をC1、第2の結晶粒子1bの面積をC2としたときに、C2/(C1+C2)が0.5〜0.8であるとともに、キュリー温度が85〜95℃であることが重要である。なお、本発明におけるキュリー温度は比誘電率の温度特性を測定した範囲(−60〜150℃)において比誘電率が最大となる温度である。   In the dielectric ceramic of the present invention, C2 / (C1 + C2) is 0.5 to 0.8 when the area of the first crystal particle 1a is C1 and the area of the second crystal particle 1b is C2. In addition, it is important that the Curie temperature is 85 to 95 ° C. In the present invention, the Curie temperature is a temperature at which the relative dielectric constant becomes maximum in the range (−60 to 150 ° C.) in which the temperature characteristic of the relative dielectric constant is measured.

誘電体磁器の組成、キュリー温度および結晶粒子の割合が上記範囲であると、室温(25℃)における比誘電率を3800以上にでき、また、比誘電率の温度特性がX6R(−55〜105℃の温度範囲において、25℃に対する比誘電率の変化率が±15%以内)を満足し、さらに、単位厚み(1μm)当たりに印加する直流電圧の値を12.5Vとしたときの絶縁抵抗を1010Ω以上にできるという利点がある。 When the dielectric ceramic composition, Curie temperature, and the ratio of crystal grains are within the above ranges, the relative dielectric constant at room temperature (25 ° C.) can be 3800 or more, and the temperature characteristic of the relative dielectric constant is X6R (−55 to 105). Insulation resistance when the rate of change of the relative dielectric constant with respect to 25 ° C is within ± 15% in the temperature range of ℃, and the value of DC voltage applied per unit thickness (1µm) is 12.5V There is an advantage that can be made 10 10 Ω or more.

即ち、本発明の誘電体磁器では、チタン酸バリウムに対して、カルシウム、バナジウム、マグネシウム、マンガン、ならびに、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素の一部または全部を固溶させるとともに、誘電体磁器を構成する第1の結晶粒子1aおよび第2の結晶粒子1bをC2/(C1+C2)比で0.5〜0.8とし、さらに、誘電体磁器のキュリー温度を85〜95℃と、キュリー温度を室温側にシフトさせる。   That is, in the dielectric ceramic according to the present invention, a part of at least one rare earth element selected from calcium, vanadium, magnesium, manganese, and yttrium, dysprosium, holmium, erbium, and terbium with respect to barium titanate or The first crystal particles 1a and the second crystal particles 1b constituting the dielectric porcelain are all made into a solid solution, and the C2 / (C1 + C2) ratio is 0.5 to 0.8. The temperature is 85 to 95 ° C., and the Curie temperature is shifted to the room temperature side.

これにより、チタン酸バリウムにカルシウムが固溶し、コアシェル構造を有しても、キュリー温度が125℃付近にある結晶粒子をもつ従来の誘電体磁器に対して、高誘電率化が図れるとともに、比誘電率の温度特性を高温まで安定にできる。   As a result, even when calcium is solid-solved in barium titanate and has a core-shell structure, a high dielectric constant can be achieved with respect to a conventional dielectric ceramic having crystal particles having a Curie temperature near 125 ° C. The temperature characteristics of the relative permittivity can be stabilized up to a high temperature.

また、コアシェル構造を有する結晶粒子において、従来に比較してコア部1の割合が減少し、シェル部3の割合が増加することから、高い絶縁抵抗を有する誘電体磁器を得ることができる。   Moreover, since the ratio of the core part 1 decreases and the ratio of the shell part 3 increases in the crystal particles having the core-shell structure, a dielectric ceramic having a high insulation resistance can be obtained.

即ち、結晶粒子中にマグネシウムや希土類元素の固溶量が少ない場合、酸素空孔などの欠陥を多く含むコア部1の占める割合が多くなることから、直流電圧を印加した場合に、誘電体磁器を構成する結晶粒子の内部において酸素空孔などが電荷を運ぶキャリアになりやすく、誘電体磁器の絶縁性が低下すると考えられるが、本発明の誘電体磁器は、バナジウムの添加により、結晶粒子へのマグネシウム、希土類元素およびマンガン等の成分の固溶を高めて結晶粒子中のコア部1の割合を減少させることにより、結晶粒子中における酸素空孔などのキャリア密度を減少させ、希土類元素やマグネシウムを多く含み、酸素空孔の少ないシェル部3の割合を高めることができるために高い絶縁性を得ることができると考えられる。   That is, when the solid solution amount of magnesium and rare earth elements in the crystal particles is small, the ratio of the core part 1 containing many defects such as oxygen vacancies increases, so that when a DC voltage is applied, the dielectric ceramic It is considered that oxygen vacancies or the like are likely to be carriers that carry electric charges inside the crystal particles constituting the material, and the insulating property of the dielectric ceramic is lowered. However, the dielectric ceramic according to the present invention is added to the crystal particles by adding vanadium. By increasing the solid solution of components such as magnesium, rare earth elements and manganese in the crystal grains and reducing the ratio of the core portion 1 in the crystal grains, the carrier density such as oxygen vacancies in the crystal grains is reduced. It is considered that a high insulating property can be obtained because the ratio of the shell part 3 containing a large amount of oxygen and few oxygen vacancies can be increased.

ただし、チタン酸バリウムを構成するチタン100モルに対するバナジウムの含有量がV換算で0.1モルよりも少ないか、または0.2モルよりも多い場合、また、チタン酸バリウムを構成するチタン100モルに対するマグネシウムの含有量がMgO換算で0.55モルよりも少ないか、または0.75モルよりも多い場合、また、チタン酸バリウムを構成するチタン100モルに対するイットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素の含有量がRE換算で0.55モルよりも少ないか、または0.75モルよりも多い場合、また、チタン酸バリウムを構成するチタン100モルに対するマンガンの含有量が0.25モルよりも少ない場合には、いずれも単位厚み当たりの直流電圧12.5Vにおける絶縁抵抗が1010Ωよりも低下するからであり、さらに、チタン酸バリウムを構成するチタン100モルに対するマンガンの含有量が0.6モルよりも多い場合には比誘電率が低下し、また、高温負荷試験での寿命特性が低下する。 However, when the content of vanadium with respect to 100 mol of titanium constituting barium titanate is less than 0.1 mol or more than 0.2 mol in terms of V 2 O 5 , it also constitutes barium titanate. When the content of magnesium with respect to 100 mol of titanium is less than 0.55 mol or more than 0.75 mol in terms of MgO, yttrium, dysprosium and holmium with respect to 100 mol of titanium constituting barium titanate When the content of at least one rare earth element of erbium and terbium is less than 0.55 mol or more than 0.75 mol in terms of RE 2 O 3 , titanium constituting barium titanate When the content of manganese is less than 0.25 mol per 100 mol, Is because the insulation resistance in the DC voltage 12.5V per unit thickness is lower than 10 10 Omega, further, when the content of manganese to titanium 100 moles constituting the barium titanate is larger than 0.6 mol The dielectric constant decreases, and the life characteristics in the high temperature load test decrease.

そのため、チタン酸バリウムを構成するチタン100モルに対して、バナジウムをV換算で0.1〜0.2モル、マグネシウムをMgO換算で0.55〜0.75モル、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素をRE換算で0.55〜0.75モル、およびマンガンをMnO換算で0.25〜0.6モル含有することが重要である。 Therefore, with respect to 100 mol of titanium constituting barium titanate, vanadium is 0.1 to 0.2 mol in terms of V 2 O 5 , magnesium is 0.55 to 0.75 mol in terms of MgO, yttrium, It is important to contain at least one rare-earth element of 0.55 to 0.75 mol in terms of RE 2 O 3 and manganese in an amount of 0.25 to 0.6 mol in terms of MnO among sium, holmium, erbium and terbium. It is.

好ましい組成としては、チタン酸バリウムを構成するチタン100モルに対して、バナジウムをV換算で0.1〜0.2モル、マグネシウムをMgO換算で0.55〜0.75モル、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素をRE換算で0.55〜0.75モルとしたときに、マンガンをMnO換算で0.25〜0.35モル含有するものが良く、この範囲の誘電体磁器は、単位厚み当たりに印加する直流電圧の値を3.15Vと12.5Vとして絶縁抵抗を評価したときに、絶縁抵抗の低下のほとんど無い誘電体磁器を得ることができる。なお、希土類元素としては、より高い比誘電率が得られ、絶縁抵抗が高いという点で、特に、イットリウムが好ましい。 As a preferable composition, with respect to 100 mol of titanium constituting barium titanate, vanadium is 0.1 to 0.2 mol in terms of V 2 O 5 , magnesium is 0.55 to 0.75 mol in terms of MgO, yttrium , Dysprosium, holmium, erbium and terbium at least one rare earth element in an amount of 0.55 to 0.75 mol in terms of RE 2 O 3 , manganese is in an amount of 0.25 to 0.35 in terms of MnO. The dielectric porcelain in this range is a dielectric that has almost no decrease in insulation resistance when the insulation resistance is evaluated by setting the values of DC voltage applied per unit thickness to 3.15 V and 12.5 V. A body porcelain can be obtained. As the rare earth element, yttrium is particularly preferable in that a higher relative dielectric constant is obtained and an insulation resistance is high.

また、誘電体磁器における第1の結晶粒子1aおよび第2の結晶粒子1bの面積比C2/(C1+C2)が0.5より小さい場合には比誘電率が高く、かつ高い絶縁抵抗が得られるものの、比誘電率の温度特性でX6Rを満足できなくなるおそれがあり、面積比C2/(C1+C2)比が0.8より大きい場合には、高い絶縁抵抗が得られ、また比誘電率の温度特性でX6Rを満足できるものの、比誘電率が低くなるおそれがある。   Further, when the area ratio C2 / (C1 + C2) of the first crystal particles 1a and the second crystal particles 1b in the dielectric ceramic is smaller than 0.5, the dielectric constant is high and high insulation resistance can be obtained. If the area ratio C2 / (C1 + C2) ratio is greater than 0.8, high insulation resistance can be obtained, and the temperature characteristics of the dielectric constant Although X6R can be satisfied, the relative permittivity may be lowered.

また、キュリー温度が85℃よりも低い場合には比誘電率が低下し、キュリー温度が95℃よりも高い場合には、いずれも誘電体層の単位厚み(1μm)当たりに印加する直流電圧を3.15Vおよび12.5Vとしたときの絶縁抵抗が1010Ωよりも低くなる。このため本発明の誘電体磁器では、面積比C2/(C1+C2)を0.5〜0.8とするとともに、キュリー温度を85〜95℃とすることで、比誘電率が高く、比誘電率の温度特性が高温まで安定で、かつ絶縁抵抗の高いものとなる。 In addition, when the Curie temperature is lower than 85 ° C., the relative dielectric constant decreases, and when the Curie temperature is higher than 95 ° C., the DC voltage applied per unit thickness (1 μm) of the dielectric layer is applied. The insulation resistance at 3.15 V and 12.5 V is lower than 10 10 Ω. Therefore, in the dielectric ceramic according to the present invention, the area ratio C2 / (C1 + C2) is set to 0.5 to 0.8, and the Curie temperature is set to 85 to 95 ° C. The temperature characteristics are stable up to high temperatures and have high insulation resistance.

また、本発明の誘電体磁器では、高誘電率化を可能にするという点で結晶粒子のサイズは0.1μm以上であれば良いが、静電容量のばらつきを小さくするのであれば0.5μm以下の範囲とすることが良く、好ましくは、第1の結晶粒子1aおよび第2の結晶粒子1bを構成する結晶粒子の平均粒径は0.25〜0.35μmであることが良い。結晶粒子の平均粒径が0.25〜0.35μmであると、印加する直流電圧が誘電体層の単位厚み(1μm)当たりに3.15Vと12.5Vとの間で絶縁抵抗が増加する傾向(正の変化)を示す高絶縁性の誘電体磁器を得ることができるという利点がある。   Further, in the dielectric ceramic according to the present invention, the size of the crystal particles may be 0.1 μm or more in terms of enabling a high dielectric constant, but 0.5 μm if the variation in capacitance is reduced. The average particle size of the crystal particles constituting the first crystal particle 1a and the second crystal particle 1b is preferably 0.25 to 0.35 μm. When the average grain size of the crystal grains is 0.25 to 0.35 μm, the insulation resistance increases between 3.15 V and 12.5 V per unit thickness (1 μm) of the dielectric layer applied to the DC voltage. There is an advantage that a highly insulating dielectric ceramic exhibiting a tendency (positive change) can be obtained.

なお、本発明の誘電体磁器では所望の誘電特性を維持できる範囲であれば焼結性を高めるための助剤としてガラス成分を含有させても良い。   In the dielectric ceramic according to the present invention, a glass component may be included as an auxiliary for enhancing the sinterability as long as desired dielectric characteristics can be maintained.

次に、本発明の誘電体磁器を製造する方法について説明する。まず、原料粉末として、純度が99%以上のチタン酸バリウム粉末(以下、BT粉末という。)およびチタン酸バリウムにカルシウムが固溶した粉末(以下、BCT粉末という。)に、V粉末とMgO粉末、さらに、Y粉末、Dy粉末、Ho粉末、Er粉末およびTb粉末のうち少なくとも1種の希土類元素の酸化物粉末およびMnCO粉末を添加混合する。BCT粉末はAサイトの一部がCaで置換されたチタン酸バリウムを主成分とする固溶体であり、(Ba1−xCa)TiOで表されるものであり、Aサイト中のCa置換量は、X=0.01〜0.2であることが好ましい。Ca置換量がこの範囲内であれば、第1の結晶粒子1aとの共存構造により、粒成長が抑制された結晶組織を形成することができる。これによりコンデンサとして使用する場合には使用温度範囲において優れた温度特性を得ることができる。なお、第2の結晶粒子1b中に含まれるCaは第2の結晶粒子1bに分散した状態で固溶している。 Next, a method for manufacturing the dielectric ceramic according to the present invention will be described. First, as raw material powder, a barium titanate powder (hereinafter referred to as BT powder) having a purity of 99% or more and a powder in which calcium is solid-solved in barium titanate (hereinafter referred to as BCT powder) are mixed with V 2 O 5 powder. And MgO powder, and also Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder, Er 2 O 3 powder and Tb 2 O 3 powder at least one rare earth element oxide powder and MnCO 3 Add powder and mix. The BCT powder is a solid solution mainly composed of barium titanate in which a part of the A site is substituted with Ca, and is represented by (Ba 1-x Ca x ) TiO 3. The amount is preferably X = 0.01-0.2. If the amount of Ca substitution is within this range, a crystal structure in which grain growth is suppressed can be formed by the coexistence structure with the first crystal grains 1a. Thus, when used as a capacitor, excellent temperature characteristics can be obtained in the operating temperature range. Note that Ca contained in the second crystal particles 1b is solid-dissolved in a state of being dispersed in the second crystal particles 1b.

また、用いるBT粉末およびBCT粉末の平均粒径は0.05〜0.15μmが好ましい。BT粉末およびBCT粉末の平均粒径が0.05μm以上であると、第1の結晶粒子1aおよび第2の結晶粒子1b中にコアシェル構造を形成し易くなりコア部1の体積割合を増やすことができるために比誘電率の向上を図れるという利点がある。   The average particle size of the BT powder and BCT powder used is preferably 0.05 to 0.15 μm. When the average particle size of the BT powder and the BCT powder is 0.05 μm or more, it is easy to form a core-shell structure in the first crystal particle 1a and the second crystal particle 1b, and the volume ratio of the core portion 1 is increased. Therefore, there is an advantage that the relative permittivity can be improved.

一方、BT粉末およびBCT粉末の平均粒径が0.15μm以下であると、マグネシウム、希土類元素およびマンガンなどの添加剤を第1の結晶粒子1aおよび第2の結晶粒子1bの内部にまで固溶させることが容易となり、また、後述するように、焼成前後における、BT粉末およびBCT粉末から、それぞれ第1の結晶粒子1aおよび第2の結晶粒子1bへの粒成長の比率を高められるという利点がある。   On the other hand, when the average particle size of the BT powder and the BCT powder is 0.15 μm or less, additives such as magnesium, rare earth elements and manganese are dissolved in the first crystal particles 1a and the second crystal particles 1b. Further, as described later, there is an advantage that the ratio of grain growth from the BT powder and the BCT powder to the first crystal particles 1a and the second crystal particles 1b can be increased before and after firing, as will be described later. is there.

添加剤であるY粉末、Dy粉末、Ho粉末、Er粉末およびTb粉末のうち少なくとも1種の希土類元素の酸化物粉末、V粉末、MgO粉末、およびMnCO粉末についても平均粒径は誘電体粉末と同等、もしくはそれ以下のものを用いることが好ましい。 Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder, Er 2 O 3 powder and Tb 2 O 3 powder which are additives, oxide powder of at least one rare earth element, V 2 O 5 Regarding the powder, MgO powder, and MnCO 3 powder, it is preferable to use those having an average particle diameter equal to or less than that of the dielectric powder.

次いで、これらの原料粉末を、BT粉末およびBCT粉末を構成するチタン100モルに対して、V粉末を0.1〜0.2モル、MgO粉末を0.55〜0.75モル、希土類元素の酸化物粉末を0.55〜0.75モル、およびMnCO粉末をMnOとして0.25〜0.6モルの割合で配合し、この成形体を脱脂した後、還元雰囲気中にて焼成する。 Next, these raw material powders are 0.1 to 0.2 mol of V 2 O 5 powder, 0.55 to 0.75 mol of MgO powder with respect to 100 mol of titanium constituting BT powder and BCT powder, After blending 0.55 to 0.75 mol of rare earth element oxide powder and 0.25 to 0.6 mol of MnCO 3 powder as MnO and degreasing the molded body, Bake.

なお、本発明の誘電体磁器を製造するに際しては、所望の誘電特性を維持できる範囲であれば焼結助剤としてガラス粉末を添加しても良く、その添加量は、主な原料粉末であるBT粉末およびBCT粉末の合計量を100質量部としたときに0.5〜2質量部が良い。   In the production of the dielectric ceramic of the present invention, glass powder may be added as a sintering aid so long as the desired dielectric properties can be maintained, and the addition amount is the main raw material powder. 0.5-2 mass parts is good when the total amount of BT powder and BCT powder is 100 mass parts.

焼成温度は、本発明におけるBT粉末およびBCT粉末への添加剤の固溶と結晶粒子の粒成長を制御するという理由から1100〜1150℃が好ましい。   The firing temperature is preferably 1100 to 1150 ° C. because the solid solution of the additive in the BT powder and BCT powder and the grain growth of the crystal particles are controlled in the present invention.

本発明では、かかる誘電体磁器を得るために、微粒のBT粉末およびBCT粉末を用い、これに上述の添加剤を所定量添加し、上記温度で焼成することで、各種の添加剤を含ませたBT粉末やBCT粉末の平均粒径が焼成前後で2倍以上になるように焼成する。焼成後における結晶粒子の平均粒径がバナジウムや他の添加剤を含ませたチタン酸バリウム粉末の平均粒径の2倍以上になるように焼成することで、第1の結晶粒子1aおよび第2の結晶粒子1bは添加剤の固溶が高まり、その結果、コア部1の割合が減少し、シェル部3の体積割合が増加する。   In the present invention, in order to obtain such a dielectric ceramic, fine BT powder and BCT powder are used, a predetermined amount of the above-mentioned additive is added thereto, and the mixture is baked at the above temperature to include various additives. The BT powder and the BCT powder are fired so that the average particle size becomes twice or more before and after firing. By firing so that the average particle size of the crystal particles after firing is at least twice the average particle size of the barium titanate powder containing vanadium and other additives, the first crystal particles 1a and the second crystal particles In the crystal particles 1b, the solid solution of the additive increases, and as a result, the ratio of the core part 1 decreases and the volume ratio of the shell part 3 increases.

また、本発明では、焼成後に、再度、弱還元雰囲気にて熱処理を行う。この熱処理は還元雰囲気中での焼成において還元された誘電体磁器を再酸化し、焼成時に還元されて低下した絶縁抵抗を回復するために行うものであり、その温度は第1の結晶粒子1aおよび第2の結晶粒子1bの更なる粒成長を抑えつつ再酸化量を高めるという理由から900〜1100℃が好ましい。こうして第1の結晶粒子1aおよび第2の結晶粒子1b中において高絶縁性のシェル部3の体積割合が増加し、85〜95℃のキュリー温度を示す誘電体磁器を形成することができる。   Moreover, in this invention, after baking, it heat-processes in a weak reduction atmosphere again. This heat treatment is performed to reoxidize the dielectric ceramic reduced in firing in a reducing atmosphere and recover the reduced insulation resistance reduced during firing, the temperature of which is the first crystal particles 1a and 900-1100 degreeC is preferable from the reason of raising the amount of reoxidation, suppressing the further grain growth of the 2nd crystal grain 1b. Thus, the volume ratio of the highly insulating shell portion 3 in the first crystal particle 1a and the second crystal particle 1b is increased, and a dielectric ceramic exhibiting a Curie temperature of 85 to 95 ° C. can be formed.

図3は、本発明の積層セラミックコンデンサの例を示す断面模式図である。本発明の積層セラミックコンデンサは、コンデンサ本体10の両端部に外部電極3が設けられたものであり、また、コンデンサ本体10は誘電体層5と内部電極層7とが交互に積層された積層体10Aから構成されている。そして、誘電体層5は上述した本発明の誘電体磁器によって形成されることが重要である。なお、図3では、誘電体層5と内部電極層7との積層の状態を単純化して示しているが、本発明の積層セラミックコンデンサは、誘電体層5と内部電極層7とが数百層にも及ぶ積層体を形成している。   FIG. 3 is a schematic cross-sectional view showing an example of the multilayer ceramic capacitor of the present invention. The multilayer ceramic capacitor of the present invention is one in which external electrodes 3 are provided at both ends of a capacitor body 10, and the capacitor body 10 is a multilayer body in which dielectric layers 5 and internal electrode layers 7 are alternately stacked. 10A. It is important that the dielectric layer 5 is formed by the above-described dielectric ceramic of the present invention. In FIG. 3, the laminated state of the dielectric layer 5 and the internal electrode layer 7 is shown in a simplified manner, but the multilayer ceramic capacitor of the present invention has several hundreds of dielectric layers 5 and internal electrode layers 7. A laminated body extending to the layers is formed.

このような本発明の積層セラミックコンデンサによれば、誘電体層5として、上記の誘電体磁器を適用することにより、誘電体層5を薄層化しても高い絶縁性を確保でき、高温負荷試験での寿命特性に優れた積層セラミックコンデンサを得ることができる。   According to the multilayer ceramic capacitor of the present invention, by applying the above dielectric ceramic as the dielectric layer 5, high insulation can be secured even if the dielectric layer 5 is thinned, and a high temperature load test is performed. A multilayer ceramic capacitor having excellent lifetime characteristics can be obtained.

ここで、誘電体層5の厚みは3μm以下、特に、2.5μm以下であることが積層セラミックコンデンサを小型高容量化する上で好ましく、さらに本発明では静電容量のばらつきおよび容量温度特性の安定化のために、誘電体層5の厚みは1μm以上であることがより望ましい。   Here, the thickness of the dielectric layer 5 is preferably 3 μm or less, and particularly preferably 2.5 μm or less, in order to reduce the size and capacity of the multilayer ceramic capacitor. For stabilization, the thickness of the dielectric layer 5 is more preferably 1 μm or more.

内部電極層7は高積層化しても製造コストを抑制できるという点で、ニッケル(Ni)や銅(Cu)などの卑金属が望ましく、特に、本発明における誘電体層1との同時焼成が図れるという点でニッケル(Ni)がより望ましい。   The internal electrode layer 7 is preferably a base metal such as nickel (Ni) or copper (Cu) in that the manufacturing cost can be suppressed even if the internal electrode layer 7 is highly laminated, and in particular, simultaneous firing with the dielectric layer 1 in the present invention can be achieved. In this respect, nickel (Ni) is more desirable.

外部電極4は、例えば、CuもしくはCuとNiの合金ペーストを焼き付けて形成される。   The external electrode 4 is formed by baking, for example, Cu or an alloy paste of Cu and Ni.

次に、積層セラミックコンデンサの製造方法について説明する。上記の素原料粉末に専用の有機ビヒクルを加えてセラミックスラリを調製し、次いで、セラミックスラリをドクターブレード法やダイコータ法などのシート成形法を用いてセラミックグリーンシートを形成する。この場合、セラミックグリーンシートの厚みは誘電体層の高容量化のための薄層化、高絶縁性を維持するという点で1〜4μmが好ましい。   Next, a method for manufacturing a multilayer ceramic capacitor will be described. A ceramic slurry is prepared by adding a dedicated organic vehicle to the raw material powder, and then a ceramic green sheet is formed from the ceramic slurry using a sheet forming method such as a doctor blade method or a die coater method. In this case, the thickness of the ceramic green sheet is preferably 1 to 4 μm from the viewpoint of thinning the dielectric layer for increasing the capacity and maintaining high insulation.

次に、得られたセラミックグリーンシートの主面上に矩形状の内部電極パターンを印刷して形成する。内部電極パターンとなる導体ペーストはNi、Cuもしくはこれらの合金粉末が好適である。   Next, a rectangular internal electrode pattern is printed and formed on the main surface of the obtained ceramic green sheet. Ni, Cu, or an alloy powder thereof is suitable for the conductor paste that forms the internal electrode pattern.

次に、内部電極パターンが形成されたセラミックグリーンシートを所望枚数重ねて、その上下に内部電極パターンを形成していないセラミックグリーンシートを複数枚、上下層が同じ枚数になるように重ねてシート積層体を形成する。この場合、シート積層体中における内部電極パターンは、長寸方向に半パターンずつずらしてある。   Next, stack the desired number of ceramic green sheets with internal electrode patterns, and stack multiple ceramic green sheets without internal electrode patterns on the top and bottom so that the upper and lower layers are the same number. Form the body. In this case, the internal electrode pattern in the sheet laminate is shifted by a half pattern in the longitudinal direction.

次に、シート積層体を格子状に切断して、内部電極パターンの端部が露出するようにコンデンサ本体成形体を形成する。このような積層工法により、切断後のコンデンサ本体成形体の端面に内部電極パターンが交互に露出されるように形成できる。   Next, the sheet laminate is cut into a lattice shape to form a capacitor body molded body so that the end of the internal electrode pattern is exposed. By such a laminating method, the internal electrode pattern can be formed so as to be alternately exposed on the end surface of the cut capacitor body molded body.

次に、コンデンサ本体成形体を脱脂したのち、上記した誘電体磁器と同様の焼成条件および弱還元雰囲気での熱処理を行うことによりコンデンサ本体を作製する。   Next, after degreasing the capacitor body molded body, the capacitor body is fabricated by performing heat treatment under the same firing conditions and weak reducing atmosphere as the above dielectric ceramic.

次に、このコンデンサ本体の対向する端部に、外部電極ペーストを塗布して焼付けを行い外部電極4を形成する。また、この外部電極4の表面には実装性を高めるためにメッキ膜を形成しても構わない。   Next, an external electrode paste is applied to the opposite ends of the capacitor body and baked to form the external electrodes 4. Further, a plating film may be formed on the surface of the external electrode 4 in order to improve mountability.

まず、原料粉末として、BT粉末、BCT粉末(組成は(Ba1−xCa)TiO、 X=0.05)、MgO粉末、Y粉末、Dy粉末、Ho粉末、Er粉末、Tb粉末、MnCO粉末およびV粉末を準備し、これらの各種粉末を表1に示す割合で混合した。これらの原料粉末は純度が99.9%のものを用いた。なお、BT粉末およびBCT粉末の平均粒径は表1に示した。MgO粉末、Y粉末、Dy粉末、Ho粉末、Er粉末、Tb粉末、MnCO粉末およびV粉末は平均粒径が0.1μmのものを用いた。BT粉末のBa/Ti比は1.005とした。焼結助剤はSiO=55、BaO=20、CaO=15、LiO=10(モル%)組成のガラス粉末を用いた。ガラス粉末の添加量はBT粉末100質量部に対して1質量部とした。 First, as the raw material powder, BT powder, BCT powder (composition (Ba 1-x Ca x) TiO 3, X = 0.05), MgO powder, Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder, Er 2 O 3 powder, Tb 2 O 3 powder, to prepare a MnCO 3 powder and V 2 O 5 powder, mixing these various powders in proportions shown in Table 1. These raw material powders having a purity of 99.9% were used. The average particle sizes of the BT powder and BCT powder are shown in Table 1. MgO powder, Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder, Er 2 O 3 powder, Tb 2 O 3 powder, MnCO 3 powder and V 2 O 5 powder have an average particle size of 0.1 μm. The thing of was used. The Ba / Ti ratio of the BT powder was 1.005. As the sintering aid, glass powder having a composition of SiO 2 = 55, BaO = 20, CaO = 15, and Li 2 O = 10 (mol%) was used. The addition amount of the glass powder was 1 part by mass with respect to 100 parts by mass of the BT powder.

次に、これらの原料粉末を直径5mmのジルコニアボールを用いて、溶媒としてトルエンとアルコールとの混合溶媒を添加し湿式混合した。   Next, these raw material powders were wet mixed by adding a mixed solvent of toluene and alcohol as a solvent using zirconia balls having a diameter of 5 mm.

次に、湿式混合した粉末にポリビニルブチラール樹脂およびトルエンとアルコールの混合溶媒を添加し、同じく直径5mmのジルコニアボールを用いて湿式混合しセラミックスラリを調製し、ドクターブレード法により厚み2.5μmのセラミックグリーンシートを作製した。   Next, a polyvinyl butyral resin and a mixed solvent of toluene and alcohol are added to the wet-mixed powder, and wet-mixed using a zirconia ball having a diameter of 5 mm to prepare a ceramic slurry, and a ceramic having a thickness of 2.5 μm is obtained by a doctor blade method. A green sheet was produced.

次に、このセラミックグリーンシートの上面にNiを主成分とする矩形状の内部電極パターンを複数形成した。内部電極パターンに用いた導体ペーストは、Ni粉末は平均粒径0.3μmのものを、共材としてグリーンシートに用いたBT粉末をNi粉末100質量部に対して30質量部添加した。   Next, a plurality of rectangular internal electrode patterns mainly composed of Ni were formed on the upper surface of the ceramic green sheet. The conductor paste used for the internal electrode pattern was Ni powder having an average particle size of 0.3 μm, and 30 parts by mass of BT powder used for a green sheet as a co-material with respect to 100 parts by mass of Ni powder.

次に、内部電極パターンを印刷したセラミックグリーンシートを360枚積層し、その上下面に内部電極パターンを印刷していないセラミックグリーンシートをそれぞれ20枚積層し、プレス機を用いて温度60℃、圧力10Pa、時間10分の条件で一括積層し、所定の寸法に切断した。 Next, 360 ceramic green sheets on which internal electrode patterns were printed were laminated, and 20 ceramic green sheets on which the internal electrode patterns were not printed were laminated on the upper and lower surfaces, respectively, using a press machine at a temperature of 60 ° C. and pressure The layers were laminated together under the conditions of 10 7 Pa and time 10 minutes, and cut into predetermined dimensions.

次に、積層成形体を10℃/hの昇温速度で大気中で300℃/hにて脱バインダ処理を行い、500℃からの昇温速度が300℃/hの昇温速度で、水素−窒素中、1100〜1145℃で2時間焼成してコンデンサ本体を作製した。また、試料は、続いて300℃/hの降温速度で1000℃まで冷却し、窒素雰囲気中1000℃で4時間再酸化処理をし、300℃/hの降温速度で冷却し、コンデンサ本体を作製した。このコンデンサ本体の大きさは0.95×0.48×0.48mm、誘電体層の厚みは2μm、内部電極層の1層の面積は0.3mmであった。 Next, the laminated molded body was subjected to binder removal treatment at 300 ° C./h in the atmosphere at a heating rate of 10 ° C./h, and the temperature rising rate from 500 ° C. was 300 ° C./h. -A capacitor body was fabricated by firing at 1100 to 1145 ° C for 2 hours in nitrogen. The sample was then cooled to 1000 ° C. at a rate of 300 ° C./h, reoxidized at 1000 ° C. for 4 hours in a nitrogen atmosphere, and cooled at a rate of 300 ° C./h to produce a capacitor body. did. The size of this capacitor body was 0.95 × 0.48 × 0.48 mm 3 , the thickness of the dielectric layer was 2 μm, and the area of one internal electrode layer was 0.3 mm 2 .

次に、焼成したコンデンサ本体をバレル研磨した後、コンデンサ本体の両端部にCu粉末とガラスを含んだ外部電極ペーストを塗布し、850℃で焼き付けを行い外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiメッキ及びSnメッキを行い、積層セラミックコンデンサを作製した。   Next, the fired capacitor body was barrel-polished, and then an external electrode paste containing Cu powder and glass was applied to both ends of the capacitor body and baked at 850 ° C. to form external electrodes. Thereafter, using an electrolytic barrel machine, Ni plating and Sn plating were sequentially performed on the surface of the external electrode to produce a multilayer ceramic capacitor.

次に、これらの積層セラミックコンデンサについて以下の評価を行った。評価はいずれも試料数10個とし、平均値を求めた。比誘電率は静電容量を温度25℃、周波数1.0kHz、測定電圧1Vrmsの測定条件で測定し、誘電体層の厚みと内部電極層の全面積から求めた。また、比誘電率の温度特性は静電容量を温度−55〜85℃の範囲で測定した。キュリー温度は比誘電率の温度特性を測定した範囲において比誘電率が最大となる温度として求めた。絶縁抵抗は直流電圧6.3Vおよび25Vにて評価した。   Next, the following evaluation was performed on these multilayer ceramic capacitors. In all cases, the number of samples was 10 and the average value was obtained. The relative dielectric constant was determined from the thickness of the dielectric layer and the total area of the internal electrode layer by measuring the capacitance under the measurement conditions of a temperature of 25 ° C., a frequency of 1.0 kHz, and a measurement voltage of 1 Vrms. Moreover, the temperature characteristic of the relative dielectric constant was measured by measuring the capacitance in the range of temperature -55 to 85 ° C. The Curie temperature was determined as the temperature at which the relative dielectric constant was maximum in the range in which the temperature characteristic of the relative dielectric constant was measured. The insulation resistance was evaluated at DC voltages of 6.3V and 25V.

高温負荷試験は温度85℃において、印加電圧9.45Vおよび12.6Vの条件で行い、1000時間まで不良なしを良品とした。高温負荷試験での試料数は各試料20個とした。   The high temperature load test was performed at a temperature of 85 ° C. under the conditions of applied voltages of 9.45 V and 12.6 V, and the product with no defects was regarded as non-defective product up to 1000 hours. The number of samples in the high temperature load test was 20 samples.

また、誘電体層を構成する結晶粒子の平均粒径は走査型電子顕微鏡(SEM)により求めた。研磨面をエッチングし、電子顕微鏡写真内の結晶粒子を任意に20個選択し、インターセプト法により各結晶粒子の最大径を求め、それらの平均値を求め、また、誘電体粉末からの粒成長の割合を評価した。   Moreover, the average particle diameter of the crystal grains constituting the dielectric layer was determined by a scanning electron microscope (SEM). The polished surface is etched, 20 crystal particles in the electron micrograph are arbitrarily selected, the maximum diameter of each crystal particle is obtained by the intercept method, the average value thereof is obtained, and the grain growth from the dielectric powder is determined. The percentage was evaluated.

また、Ca濃度については、積層セラミックコンデンサの積層方向の断面を研磨した誘電体層の表面を約30000倍にて観察し、その画面に存在する、約100個の結晶粒子に対して、元素分析機器を付設した透過電子顕微鏡を用いて、結晶粒子の中心部近傍の任意の場所を分析した。このとき、結晶粒子から検出されるBa、Ti、Ca、V、Mg、希土類元素およびMnの全量を100%として、その含有量を求めた。評価した結晶粒子は各試料について100点とし平均値を求め、撮影した透過電子顕微鏡の写真の面積において第1の結晶粒子1aおよび第2の結晶粒子1bのそれぞれの面積比(C2/(C1+C2))を求めた。なお、結晶粒子の中心部近傍とは、誘電体磁器を断面研磨した試料の表面に現れた結晶粒子の粒界から深さ方向に向けて、直径の1/3以上深い領域のことである。   As for the Ca concentration, the surface of the dielectric layer obtained by polishing the cross section in the stacking direction of the multilayer ceramic capacitor is observed at about 30000 times, and elemental analysis is performed on about 100 crystal particles present on the screen. An arbitrary location near the center of the crystal particle was analyzed using a transmission electron microscope equipped with an instrument. At this time, the content of Ba, Ti, Ca, V, Mg, rare earth elements and Mn detected from the crystal particles was taken as 100%, and the content was determined. The evaluated crystal grains were 100 points for each sample, and the average value was obtained. In the area of the photographed transmission electron microscope, the area ratio of each of the first crystal grains 1a and the second crystal grains 1b (C2 / (C1 + C2) ) The vicinity of the center of the crystal grain is a region deeper than 1/3 of the diameter in the depth direction from the grain boundary of the crystal grain appearing on the surface of the sample obtained by polishing the dielectric ceramic.

希土類元素の濃度勾配の測定も元素分析機器を付設した透過電子顕微鏡を用いて測定した。この場合、積層セラミックコンデンサの積層方向の断面を研磨し、各試料の結晶粒子の最表面側から中心部にかけて5nmの間隔でエネルギー分散型分析器を用いて元素分析を行うことにより希土類元素の濃度変化を求めた。そして、30000倍にて撮影した誘電体磁器の所定の面積内にある測定可能な結晶粒子から5個を任意に抽出して測定し、これも平均値を求めた。この場合、Mn量がチタン100モルに対して、0.5モル以下の試料では、結晶粒子の表面付近のシェル部における希土類元素の濃度勾配が0.1〜1原子%/nm以上であったが、Mnをチタン100モルに対して0.6モル以上とした試料では、結晶粒子の表面付近のシェル部における希土類元素の濃度勾配が0.04原子%/nmであった。   The concentration gradient of the rare earth elements was also measured using a transmission electron microscope equipped with an elemental analysis instrument. In this case, the concentration of the rare earth element is determined by polishing the cross section in the stacking direction of the multilayer ceramic capacitor and performing elemental analysis using an energy dispersive analyzer at intervals of 5 nm from the outermost surface side to the center of the crystal particles of each sample. Sought change. Then, 5 particles were arbitrarily extracted from the measurable crystal particles within a predetermined area of the dielectric ceramic photographed at 30000 times, and the average value was also obtained. In this case, in a sample having an Mn amount of 0.5 mol or less with respect to 100 mol of titanium, the concentration gradient of the rare earth element in the shell portion near the surface of the crystal particles was 0.1 to 1 atom% / nm or more. However, in the sample in which Mn was 0.6 mol or more with respect to 100 mol of titanium, the concentration gradient of the rare earth element in the shell portion near the surface of the crystal particles was 0.04 atomic% / nm.

また、得られた焼結体である試料の組成分析はICP分析もしくは原子吸光分析により行った。この場合、得られた誘電体磁器を硼酸と炭酸ナトリウムと混合し溶融させたものを塩酸に溶解させて、まず、原子吸光分析により誘電体磁器に含まれる元素の定性分析を行い、次いで、特定した各元素について標準液を希釈したものを標準試料として、ICP発光分光分析にかけて定量化した。また、各元素の価数を周期表に示される価数として酸素量を求めた。   In addition, the composition analysis of the obtained sintered body sample was performed by ICP analysis or atomic absorption analysis. In this case, the obtained dielectric porcelain mixed with boric acid and sodium carbonate and dissolved in hydrochloric acid is first subjected to qualitative analysis of the elements contained in the dielectric porcelain by atomic absorption spectrometry, and then specified. The diluted standard solution for each element was used as a standard sample and quantified by ICP emission spectroscopic analysis. Further, the amount of oxygen was determined using the valence of each element as the valence shown in the periodic table.

調合組成と焼成温度を表1に、焼結体中の各元素の酸化物換算での組成を表2に、および特性の結果を表3にそれぞれ示した。

Figure 0005354867
Table 1 shows the preparation composition and the firing temperature, Table 2 shows the composition of each element in the sintered body in terms of oxide, and Table 3 shows the results of the characteristics.
Figure 0005354867

Figure 0005354867
Figure 0005354867

Figure 0005354867
Figure 0005354867

表1〜3の結果から明らかなように、チタン酸バリウムに対して、カルシウム、バナジウム、マグネシウム、希土類元素およびマンガンをそれぞれ所定の割合で含有させるとともに、誘電体磁器の結晶粒子をカルシウム濃度の異なる2種の結晶粒子から構成し、第1の結晶粒子と第2の結晶粒子の合計面積に対する第2の結晶粒子の面積比(C2/(C1+C2))を0.5〜0.8とし、かつ、キュリー温度を85〜95℃の範囲とした試料No.2〜4、8〜10、16〜18、24〜28、31〜33、35、36および39〜44では、印加電圧を6.3Vおよび25Vとしたときの直流電圧の増加に対する絶縁抵抗の低下が小さく、印加電圧25Vにおける絶縁抵抗が1010Ω以上を示し、比誘電率が3800以上であり、比誘電率の温度特性がX6Rを満足するものであった。これらの試料はいずれも焼成前のBT粉末およびBCT粉末の平均粒径と焼成後の結晶粒子の平均粒径の変化率である焼成前後の粒成長率が215%以上であった。また、これら本発明の誘電体磁器を誘電体層とする積層セラミックコンデンサについて、温度85℃、印加電圧9.45Vの条件で高温負荷試験を行ったところ、いずれも1000時間経過後も不良ゼロであった。 As is apparent from the results of Tables 1 to 3, calcium, vanadium, magnesium, rare earth elements and manganese are contained at a predetermined ratio with respect to barium titanate, and the dielectric ceramic crystal particles have different calcium concentrations. It is composed of two types of crystal particles, and the area ratio of the second crystal particles to the total area of the first crystal particles and the second crystal particles (C2 / (C1 + C2)) is 0.5 to 0.8, and Sample No. with Curie temperature in the range of 85-95 ° C. In 2 to 4, 8 to 10, 16 to 18, 24 to 28, 31 to 33, 35, 36, and 39 to 44, the insulation resistance decreases with increasing DC voltage when the applied voltage is 6.3 V and 25 V. The insulation resistance at an applied voltage of 25 V was 10 10 Ω or higher, the relative dielectric constant was 3800 or higher, and the temperature characteristics of the relative dielectric constant satisfied X6R. All of these samples had a grain growth rate of 215% or more before and after firing, which is the rate of change of the average particle size of BT powder and BCT powder before firing and the average particle size of crystal particles after firing. Moreover, when the high temperature load test was conducted on the multilayer ceramic capacitor having the dielectric ceramic according to the present invention as a dielectric layer under the conditions of a temperature of 85 ° C. and an applied voltage of 9.45 V, all had zero defects after 1000 hours. there were.

また、マンガンの含有量を0.25〜0.35モルとした試料No.2〜4、8〜10、16〜18、24、25、31〜33、35、36および39〜44では、いずれも直流電圧の増加に対する絶縁抵抗の低下が無く、また、これらの試料は温度85℃、印加電圧12.6V、1000時間の高温負荷試験を満足するものであった。   In addition, Sample No. 2 having a manganese content of 0.25 to 0.35 mol was used. In 2-4, 8-10, 16-18, 24, 25, 31-33, 35, 36 and 39-44, there is no decrease in insulation resistance with respect to an increase in DC voltage. The high-temperature load test of 85 ° C., applied voltage of 12.6 V, and 1000 hours was satisfied.

さらに、結晶粒子の平均粒径が0.25〜0.35μmである試料No.2、3、9、10、24、25、32、33、36、および39〜42では、いずれも直流電圧の増加に対して絶縁抵抗が増加する傾向を示し、絶縁特性に優れた誘電体磁器が得られた。   Furthermore, Sample No. in which the average particle diameter of the crystal particles is 0.25 to 0.35 μm. 2, 3, 9, 10, 24, 25, 32, 33, 36, and 39 to 42 all show a tendency that the insulation resistance increases as the DC voltage increases, and the dielectric ceramic is excellent in insulation characteristics. was gotten.

これに対して、本発明の範囲外の試料No.1、5〜7、11〜15および19〜23、37および38では、印加電圧を6.3Vおよび25Vとしたときの直流電圧の増加に対する絶縁抵抗が低下する傾向を示し、かつ直流電圧25Vにおける絶縁抵抗が1010Ωよりも低かった。 On the other hand, sample no. 1, 5-7, 11-15, and 19-23, 37, and 38 show a tendency for the insulation resistance to decrease when the applied voltage is 6.3 V and 25 V, and the DC voltage is 25 V. The insulation resistance was lower than 10 10 Ω.

また、マンガンを0.8モル含有させた試料No.29ではキュリー温度が82℃となり、比誘電率が3600と本発明の誘電体磁器よりも低くかった。   Sample No. 8 containing 0.8 mol of manganese was used. In No. 29, the Curie temperature was 82 ° C., and the relative dielectric constant was 3600, which was lower than that of the dielectric ceramic of the present invention.

また、焼成前の誘電体粉末の平均粒径と焼成後の結晶粒子の平均粒径の変化率である焼成前後の粒成長率が105%〜120%であり、キュリー温度が100℃〜125℃である試料No.37、38では比誘電率が3000〜3200であった。   The grain growth rate before and after firing, which is the rate of change between the average particle diameter of the dielectric powder before firing and the average grain diameter of the crystal particles after firing, is 105% to 120%, and the Curie temperature is 100 ° C. to 125 ° C. Sample No. In 37 and 38, the relative dielectric constant was 3000 to 3200.

また、第1の結晶粒子と第2の結晶粒子の合計面積に対する第2の結晶粒子の面積比(C2/(C1+C2))が0.4である試料No.34では、比誘電率の温度特性がX6Rを満足できなかった。また、C2/(C1+C2)比が0.9である試料No.30では、比誘電率が3500と本発明の誘電体磁器に比較して低かった。   In addition, the sample No. 1 in which the area ratio (C2 / (C1 + C2)) of the second crystal particles to the total area of the first crystal particles and the second crystal particles is 0.4. 34, the temperature characteristics of the relative dielectric constant could not satisfy X6R. In addition, sample No. C2 / (C1 + C2) ratio is 0.9. 30, the dielectric constant was 3500, which was lower than that of the dielectric ceramic according to the present invention.

本発明の誘電体磁器の微構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the microstructure of the dielectric material ceramic of this invention. (a)は、本発明の誘電体磁器を構成する結晶粒子の断面模式図であり、図2(b)は、(a)の断面における希土類元素およびマグネシウムの濃度変化を示した模式図である。(A) is a schematic cross-sectional view of crystal grains constituting the dielectric ceramic according to the present invention, and FIG. 2 (b) is a schematic diagram showing concentration changes of rare earth elements and magnesium in the cross-section of (a). . 本発明の積層セラミックコンデンサの例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of the multilayer ceramic capacitor of this invention.

符号の説明Explanation of symbols

1a 第1の結晶粒子
1b 第2の結晶粒子
2 粒界相
5 誘電体層
7 内部電極層
10A 積層体
DESCRIPTION OF SYMBOLS 1a 1st crystal particle 1b 2nd crystal particle 2 Grain boundary phase 5 Dielectric layer 7 Internal electrode layer 10A Laminate

Claims (4)

チタン酸バリウムを主成分とし、カルシウムと、バナジウムと、マグネシウムと、マンガンと、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素とを含む結晶粒子を有する誘電体磁器であって、前記結晶粒子は、結晶粒子中のカルシウム濃度が0.3原子%より少ない第1の結晶粒子と、結晶粒子中のカルシウム濃度が0.3原子%以上である第2の結晶粒子とを有するとともに、前記チタン酸バリウムを構成するチタン100モルに対して、バナジウムを 換算で0.1〜0.2モル、マグネシウムをMgO換算で0.55〜0.75モル、イットリウム、ディスプロシウム、ホルミウム、エルビウムおよびテルビウムのうち少なくとも1種の希土類元素(RE)RE 換算で0.55〜0.75モル、およびマンガンをMnO換算で0.25〜0.6モル含有し、誘電体磁器の研磨面に見られる前記第1の結晶粒子の面積をC1、前記第2の結晶粒子の面積をC2としたときに、C2/(C1+C2)が0.5〜0.8であるとともに、キュリー温度が85〜95℃であることを特徴とする誘電体磁器。 A dielectric porcelain having crystal grains mainly composed of barium titanate and containing calcium, vanadium, magnesium, manganese, and at least one rare earth element selected from yttrium, dysprosium, holmium, erbium and terbium. The crystal particles include a first crystal particle having a calcium concentration in the crystal particle of less than 0.3 atomic%, and a second crystal particle having a calcium concentration in the crystal particle of 0.3 atomic% or more. Vanadium is 0.1 to 0.2 mol in terms of V 2 O 5 and magnesium is 0.55 to 0.75 mol in terms of MgO with respect to 100 mol of titanium constituting the barium titanate, and yttrium. , dysprosium, holmium, at least one rare earth element selected from erbium and terbium (RE) E 2 O 3 in terms of in 0.55 to 0.75 mol, and manganese were 0.25 to 0.6 molar content in terms of MnO, the area of the first crystal grains observed on the polished surface of the dielectric ceramic C1, a dielectric having C2 / (C1 + C2) of 0.5 to 0.8 and a Curie temperature of 85 to 95 ° C. when the area of the second crystal grain is C2. porcelain. 前記マンガンをMnO換算で0.25〜0.35モル含有することを特徴とする請求項1に記載の誘電体磁器。 The dielectric ceramic according to claim 1, wherein the manganese is contained in an amount of 0.25 to 0.35 mol in terms of MnO . 前記結晶粒子の平均粒径が0.25〜0.35μmであることを特徴とする請求項1または2に記載の誘電体磁器。   3. The dielectric ceramic according to claim 1, wherein the crystal grains have an average grain size of 0.25 to 0.35 μm. 請求項1乃至3のうちいずれかに記載の誘電体磁器からなる誘電体層と内部電極層との積層体から構成されていることを特徴とする積層セラミックコンデンサ。   A multilayer ceramic capacitor comprising a laminate of a dielectric layer made of the dielectric ceramic according to any one of claims 1 to 3 and an internal electrode layer.
JP2007115446A 2007-04-25 2007-04-25 Dielectric porcelain and multilayer ceramic capacitor Active JP5354867B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007115446A JP5354867B2 (en) 2007-04-25 2007-04-25 Dielectric porcelain and multilayer ceramic capacitor
CN200880013339.8A CN101668721B (en) 2007-04-25 2008-03-28 Dielectric ceramic and laminated ceramic capacitor
TW97111621A TW200902473A (en) 2007-04-25 2008-03-28 Dielectric ceramic material, and laminated ceramic capacitor
PCT/JP2008/056192 WO2008132928A1 (en) 2007-04-25 2008-03-28 Dielectric ceramic material, and laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007115446A JP5354867B2 (en) 2007-04-25 2007-04-25 Dielectric porcelain and multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2008273754A JP2008273754A (en) 2008-11-13
JP5354867B2 true JP5354867B2 (en) 2013-11-27

Family

ID=39925388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007115446A Active JP5354867B2 (en) 2007-04-25 2007-04-25 Dielectric porcelain and multilayer ceramic capacitor

Country Status (4)

Country Link
JP (1) JP5354867B2 (en)
CN (1) CN101668721B (en)
TW (1) TW200902473A (en)
WO (1) WO2008132928A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4992918B2 (en) * 2009-01-30 2012-08-08 株式会社村田製作所 Dielectric ceramic and multilayer ceramic capacitors
EP2328193B1 (en) 2009-11-30 2015-03-11 Canon Kabushiki Kaisha Piezoelectric ceramic, method for making the same, piezoelectric element, liquid discharge head, and ultrasonic motor
JP5578882B2 (en) * 2010-02-25 2014-08-27 京セラ株式会社 Multilayer ceramic capacitor
JP5573261B2 (en) * 2010-03-18 2014-08-20 株式会社村田製作所 Multilayer ceramic capacitor, manufacturing method thereof and internal stress evaluation method
JP5655036B2 (en) * 2012-06-21 2015-01-14 太陽誘電株式会社 Dielectric ceramics, dielectric ceramic manufacturing method and multilayer ceramic capacitor
JP5936534B2 (en) * 2012-12-27 2016-06-22 国立大学法人九州大学 Ceramic slurry, method for producing the same, and solid oxide fuel cell
TWI587332B (en) * 2015-07-01 2017-06-11 Holy Stone Enterprise Co Ltd Method for manufacturing electrode of chip ceramic capacitor
KR101792368B1 (en) * 2015-12-24 2017-11-20 삼성전기주식회사 Dielectric ceramic composition, dielectric material and multilayer ceramic capacitor comprising the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302467A (en) * 1993-04-16 1994-10-28 Tdk Corp Dielectric porcelain composition and multilayer ceramic capacitor using dielectric porcelain composition
JP3091192B2 (en) * 1998-07-29 2000-09-25 ティーディーケイ株式会社 Dielectric porcelain composition and electronic component
JP2001278662A (en) * 2000-03-30 2001-10-10 Kyocera Corp Method for manufacturing dielectric ceramic
JP4502741B2 (en) * 2004-07-29 2010-07-14 京セラ株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP4502740B2 (en) * 2004-07-29 2010-07-14 京セラ株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP4706398B2 (en) * 2005-08-30 2011-06-22 Tdk株式会社 Method for producing dielectric ceramic composition

Also Published As

Publication number Publication date
CN101668721A (en) 2010-03-10
WO2008132928A1 (en) 2008-11-06
CN101668721B (en) 2013-01-23
TWI361178B (en) 2012-04-01
JP2008273754A (en) 2008-11-13
TW200902473A (en) 2009-01-16

Similar Documents

Publication Publication Date Title
JP5046700B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4925958B2 (en) Multilayer ceramic capacitor
JP4814342B2 (en) Multilayer ceramic capacitor
JP4805938B2 (en) Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor
JP4965435B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5121311B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4809152B2 (en) Multilayer ceramic capacitor
JP5483825B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4999987B2 (en) Multilayer ceramic capacitor
JP5354867B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4999988B2 (en) Multilayer ceramic capacitor
JP5094283B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5046699B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5106626B2 (en) Multilayer ceramic capacitor
JP2008135638A (en) Multilayer ceramic capacitor
JP4771818B2 (en) Multilayer ceramic capacitor
JP2012028683A (en) Multilayer ceramic capacitor
JP2002265260A (en) Dielectric ceramic and lamination type electronic part
JP2006041370A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2006041371A (en) Laminated ceramic capacitor, and manufacturing method thereof
JP4463093B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4508858B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4771817B2 (en) Multilayer ceramic capacitor
JP4557708B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4753860B2 (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Ref document number: 5354867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150