JP2006041371A - Laminated ceramic capacitor, and manufacturing method thereof - Google Patents

Laminated ceramic capacitor, and manufacturing method thereof Download PDF

Info

Publication number
JP2006041371A
JP2006041371A JP2004221994A JP2004221994A JP2006041371A JP 2006041371 A JP2006041371 A JP 2006041371A JP 2004221994 A JP2004221994 A JP 2004221994A JP 2004221994 A JP2004221994 A JP 2004221994A JP 2006041371 A JP2006041371 A JP 2006041371A
Authority
JP
Japan
Prior art keywords
powder
ceramic capacitor
alkaline earth
multilayer ceramic
batio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004221994A
Other languages
Japanese (ja)
Other versions
JP4502741B2 (en
Inventor
Yoshihiro Fujioka
芳博 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004221994A priority Critical patent/JP4502741B2/en
Priority to US11/193,284 priority patent/US7057876B2/en
Priority to TW094125615A priority patent/TWI347624B/en
Publication of JP2006041371A publication Critical patent/JP2006041371A/en
Application granted granted Critical
Publication of JP4502741B2 publication Critical patent/JP4502741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized laminated ceramic capacitor having a high capacity, and to provide a manufacturing method of the capacitor wherein its dielectric constant is high in the range of the AC electric-field strength of 0.002-1 Vrms/μm, and it excels in the reliability comprising its capacity-temperature characteristic, its high-temperature-loaded life time, and the like, even if thinning its dielectric layers. <P>SOLUTION: In each dielectric layer of the laminated ceramic capacitor, there coexist with each other the barium titanate grains, having an alkaline-earth component concentration not higher than 0.2 atom% (BMTL), wherefrom Ba is excluded. and the barium titanate grains having an alkaline-earth component concentration equal to 0.5-2.5 atom% (BMTH), wherefrom Ba is excluded. Also, each dielectric layer satisfies the relation DL/DH=1.1 to 2, when the mean grain sizes of BMTL and BMTH are represented respectively by DL and DH. Further, in the body of the laminated ceramic capacitor, its dielectric layers and its inner-electrode layers are laminated alternately. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、積層セラミックコンデンサおよびその製法に関し、特に、パソコン、携帯電話など、高機能の電子機器に使用され、それぞれ極めて薄い誘電体層と内部電極層とが交互に積層され、容量温度特性および高温負荷寿命などの信頼性に優れた小型高容量の積層セラミックコンデンサおよびその製法に関する。   The present invention relates to a multilayer ceramic capacitor and a method for producing the same, and in particular, is used for high-functional electronic devices such as personal computers and mobile phones, and extremely thin dielectric layers and internal electrode layers are alternately laminated, respectively. The present invention relates to a small-sized and high-capacity multilayer ceramic capacitor excellent in reliability such as a high-temperature load life and a manufacturing method thereof.

近年、電子機器の小型化、高機能化に伴い、これに用いる積層セラミックコンデンサは小型高容量化が求められており、このため誘電体層および内部電極層の積層数の増加と誘電体層自体の薄層化が進められ、また、積層セラミックコンデンサとしての特性としても容量温度特性や高温負荷寿命などの信頼性の向上が図られている。そして、このような積層セラミックコンデンサとして、例えば、下記の特許文献1〜3に開示されるようなものが知られている。   In recent years, along with the downsizing and higher functionality of electronic devices, the multilayer ceramic capacitors used for this purpose have been required to be smaller and have higher capacity. In addition, as the characteristics of a multilayer ceramic capacitor, reliability such as capacity-temperature characteristics and high-temperature load life is improved. And as such a multilayer ceramic capacitor, what is disclosed by the following patent documents 1-3 is known, for example.

まず、特許文献1に開示された積層セラミックコンデンサでは、誘電体磁器の調製において、予め、BaTiOとMgOとを仮焼し、次いで、この仮焼粉末に対して希土類元素やアクセプタ型元素の各種酸化物を添加する方法を用いている。このような2段階の混合方法を採用することにより、焼成後においても、先に固溶させたMgOのために、後に添加した希土類元素やアクセプタ型元素の各種酸化物のBaTiO結晶粒子内への拡散が抑制され、結果的に上記した所望の特性が得られると記載されている。 First, in the multilayer ceramic capacitor disclosed in Patent Document 1, in preparation of the dielectric ceramic, BaTiO 3 and MgO are preliminarily calcined, and then various kinds of rare earth elements and acceptor elements are applied to the calcined powder. A method of adding an oxide is used. By adopting such a two-stage mixing method, even after firing, because of MgO previously dissolved, it enters into the BaTiO 3 crystal particles of various oxides of rare earth elements and acceptor elements added later. It is described that the above-mentioned desired characteristics can be obtained as a result.

特許文献2では、平均粒径が0.1〜0.3μmで、かつ容量温度特性の異なる2種類以上の結晶粒子により誘電体磁器を構成することにより、容量温度特性が平坦かつDCバイアス特性に優れた積層セラミックコンデンサが得られることが記載されている。   In Patent Document 2, by forming a dielectric ceramic with two or more types of crystal particles having an average particle diameter of 0.1 to 0.3 μm and different capacity-temperature characteristics, the capacity-temperature characteristics are flat and the DC bias characteristics are achieved. It is described that an excellent multilayer ceramic capacitor can be obtained.

この公報によれば、BaTiOを主成分とする誘電体粒子において、粒子サイズが1μm以下になると平坦な容量温度特性や優れたDCバイアス特性を実現する、通称、コアシェル構造と呼ばれる結晶粒子の形成が困難となるために、このように粒子サイズが1μm以下の誘電体粒子については、さらなる微粒化を行い、誘電的活性を抑えることで、誘電体磁器全体についての平坦な容量温度特性や優れたDCバイアス特性を得ている。 According to this publication, in a dielectric particle mainly composed of BaTiO 3 , when a particle size becomes 1 μm or less, formation of a crystal particle called a core-shell structure, which realizes a flat capacity-temperature characteristic and an excellent DC bias characteristic, is realized. In this way, the dielectric particles having a particle size of 1 μm or less are further atomized to suppress the dielectric activity so that the flat capacitance-temperature characteristics and the excellent characteristics of the dielectric ceramic as a whole are excellent. DC bias characteristics are obtained.

特許文献3では、誘電体磁器を構成するBaTiOのBaの一部をCaで置換したBa1−xCaTiOとすることにより、これも平坦な容量温度特性や優れたDCバイアス特性が得られると記載されている。
特開2001−230149号公報 特開平9−241075号公報 特開2000−58378号公報
In Patent Document 3, by using Ba 1−x Ca x TiO 3 in which part of BaTiO 3 constituting the dielectric ceramic is replaced with Ca, this also has flat capacitance temperature characteristics and excellent DC bias characteristics. It is described that it is obtained.
JP 2001-230149 A JP-A-9-241075 JP 2000-58378 A

しかしながら、上記特許文献1に開示された積層セラミックコンデンサは、BaTiOとMgOを予め混合し仮焼するという予備的な工程を採用していることから、誘電体磁器の比誘電率を高くでき、かつ容量温度特性についてもB特性(温度範囲:−25℃〜85℃、容量変化率±10%以内)を満足することができるものの、容量温度特性について温度範囲の広いX7R(温度範囲:−55℃〜125℃、容量変化率±15%以内)を満足できるものではなかった。 However, since the multilayer ceramic capacitor disclosed in Patent Document 1 employs a preliminary process of pre-mixing BaTiO 3 and MgO and calcining, the dielectric constant of the dielectric ceramic can be increased, In addition, the capacity temperature characteristic can satisfy the B characteristic (temperature range: −25 ° C. to 85 ° C., capacity change rate within ± 10%), but the capacity temperature characteristic is wide X7R (temperature range: −55). C.-125.degree. C., capacity change rate within ± 15%).

次に、特許文献2に記載された誘電体磁器では、誘電体粒子の微粒化のために、比誘電率がせいぜい2100程度までしか上がらないものであった。   Next, in the dielectric ceramic described in Patent Document 2, the relative permittivity increases only to about 2100 at most due to the atomization of the dielectric particles.

特許文献3に記載された誘電体磁器についても、Ba1−xCaTiOでは、Ca置換による比誘電率の低下が大きく、比誘電率を2000より高くすることは困難であった。 Also for the dielectric ceramic described in Patent Document 3, in Ba 1-x Ca x TiO 3 , the relative permittivity decreased greatly due to Ca substitution, and it was difficult to make the relative permittivity higher than 2000.

特に、前記特許文献1〜3に記載された誘電体層を具備するコンデンサでは、0.002〜1Vrms/μmの交流電界強度範囲で比誘電率が低いものであった。   In particular, the capacitor having the dielectric layer described in Patent Documents 1 to 3 has a low relative dielectric constant in an AC electric field strength range of 0.002 to 1 Vrms / μm.

従って、本発明は、誘電体層を薄層化しても、0.002〜1Vrms/μmの交流電界強度範囲で比誘電率が高く、かつ容量温度特性および高温負荷寿命等の信頼性に優れた小型高容量の積層セラミックコンデンサおよびその製法を提供することを目的とする。   Therefore, even if the dielectric layer is thinned, the present invention has a high relative dielectric constant in the AC electric field strength range of 0.002 to 1 Vrms / μm and excellent reliability such as capacity-temperature characteristics and high-temperature load life. An object of the present invention is to provide a small-sized and high-capacity multilayer ceramic capacitor and a method for manufacturing the same.

本発明の積層セラミックコンデンサは、(1)Baを除くアルカリ土類成分濃度が0.2原子%以下のチタン酸バリウム粒子(BMTL)と、Baを除くアルカリ土類成分濃度が0.5〜2.5原子%のチタン酸バリウム粒子(BMTH)とが共存するとともに、BMTLの平均粒径をDL、BMTHの平均粒径をDHとしたときに、DL/DH=1.1〜2である誘電体層と、内部電極層とが交互に積層されたコンデンサ本体を具備してなることを特徴とする。 The multilayer ceramic capacitor of the present invention has (1) barium titanate particles (BMTL) having an alkaline earth component concentration of 0.2 atomic% or less excluding Ba, and an alkaline earth component concentration of 0.5 to 2 excluding Ba. with .5 atomic% of barium titanate particles and (BMTH) coexist, an average particle size of BMTL DL, an average particle size of BMTH when DH, and is the DL / DH = 1.1 to 2 It is characterized by comprising a capacitor body in which dielectric layers and internal electrode layers are alternately laminated.

即ち、本発明によれば、アルカリ土類成分濃度の異なる2種以上のチタン酸バリウム粒子が共存することにより、アルカリ土類成分濃度が低く、平均粒径の大きいチタン酸バリウム粒子により高い比誘電率を発現できるとともに、アルカリ土類成分濃度の高いチタン酸バリウム粒子により比誘電率の温度特性を平坦化でき、さらに、これらのチタン酸バリウム粒子が複合化することにより、0.002〜1Vrms/μmの交流電界強度範囲で高い比誘電率でかつ比誘電率の温度特性がより平坦化でき、しかもアルカリ土類成分濃度の低い誘電体粒子とアルカリ土類成分濃度の高い誘電体粒子とが共存するために誘電体層を高絶縁化できる。   That is, according to the present invention, when two or more kinds of barium titanate particles having different alkaline earth component concentrations coexist, the barium titanate particles having a low alkaline earth component concentration and a large average particle size have a higher relative dielectric constant. The temperature characteristics of the dielectric constant can be flattened by the barium titanate particles having a high alkaline earth component concentration, and the barium titanate particles can be combined to form 0.002 to 1 Vrms / High dielectric constant in the AC electric field strength range of μm, temperature characteristics of dielectric constant can be flattened, and dielectric particles with low alkaline earth component concentration and dielectric particles with high alkaline earth component concentration coexist Therefore, the dielectric layer can be highly insulated.

この場合、比誘電率を高く維持でき比誘電率の温度特性を平坦化できるという点で、(2)アルカリ土類成分が、Mg、Ca、Srから選ばれる少なくとも1種であることが望ましく、また、(3)BMTLおよびBMTHの平均粒径をいずれも7μm以下とすることにより、誘電体層中における粒界を増やすことができ、誘電体層全体の絶縁性を高めることができる。さらに本発明によれば、(4)BMTLおよびBMTHは、いずれも希土類元素を含み、その濃度勾配は、粒子表面を最高濃度として、表面から内部にかけて、0.05原子%/nm以上であることが望ましく、誘電体層の薄層化、高容量化および高絶縁化に対して、(5)誘電体層の厚みが4μm以下であることがより望ましく、また、(6)高積層化しても内部電極材料コストを低減できるという点で内部電極層は卑金属を主成分とすることが望ましい。   In this case, it is desirable that (2) the alkaline earth component is at least one selected from Mg, Ca, and Sr in that the relative permittivity can be maintained high and the temperature characteristics of the relative permittivity can be flattened. Further, (3) by setting the average particle diameters of BMTL and BMTH to 7 μm or less, the grain boundaries in the dielectric layer can be increased, and the insulation of the entire dielectric layer can be improved. Further, according to the present invention, (4) BMTL and BMTH both contain rare earth elements, and the concentration gradient is 0.05 atomic% / nm or more from the surface to the inside, with the particle surface being the highest concentration. It is desirable that the thickness of the dielectric layer is reduced, the capacity is increased, and the insulation is increased. (5) The thickness of the dielectric layer is more preferably 4 μm or less. The internal electrode layer is preferably composed mainly of a base metal in that the internal electrode material cost can be reduced.

次に、上記した積層セラミックコンデンサは、以下の製法により製造されることを特徴とするものである。即ち、本発明の積層セラミックコンデンサの製法は、(7)(a)平均粒径が0.05〜0.5μmのBaTiO粉末、および、平均粒径が前記BaTiO粉末よりも小さいBa1−xTiO粉末(M:Mg、Ca、Sr、X=0.01〜0.2)を準備する工程と、(b)前記BaTiO粉末およびBa1−xTiO粉末(M:Mg、Ca、Sr、X=0.01〜0.2)、それぞれに、Baを除くアルカリ土類酸化物を添加し、それぞれ850℃以下の温度で仮焼して、BaTiO仮焼粉末およびBa1−xTiO仮焼粉末を調製する工程と、(c)該BaTiO仮焼粉末およびBa1−xTiO仮焼粉末と、希土類元素化合物、Mn化合物およびアルカリ土類酸化物と、有機ビヒクルとを所定の割合で混合してスラリを調製し、成形して誘電体グリーンシートを形成する工程と、(d)該誘電体グリーンシートの主面上に、内部電極パターンを形成する工程と、(e)内部電極パターンが形成された誘電体グリーンシートを複数積層してコンデンサ本体成形体を形成し、焼成する工程と、を具備することを特徴とする。 Next, the multilayer ceramic capacitor described above is manufactured by the following manufacturing method. That is, the manufacturing method of the multilayer ceramic capacitor of the present invention includes (7) (a) BaTiO 3 powder having an average particle diameter of 0.05 to 0.5 μm, and Ba 1− having an average particle diameter smaller than that of the BaTiO 3 powder. x M x TiO 3 powder (M: Mg, Ca, Sr , X = 0.01~0.2) a step of preparing a, (b) the BaTiO 3 powder and Ba 1-x M x TiO 3 powder (M : Mg, Ca, Sr, X = 0.01 to 0.2), alkaline earth oxides excluding Ba were added to each, and calcined at a temperature of 850 ° C. or less, respectively, and BaTiO 3 calcined powder And Ba 1-x M x TiO 3 calcined powder, (c) the BaTiO 3 calcined powder and Ba 1-x M x TiO 3 calcined powder, rare earth element compound, Mn compound and alkaline earth Oxide and organic behaviour And a step of preparing a slurry by mixing slurry at a predetermined ratio and forming the slurry to form a dielectric green sheet; and (d) a step of forming an internal electrode pattern on the main surface of the dielectric green sheet; And (e) forming a capacitor body molded body by laminating a plurality of dielectric green sheets on which internal electrode patterns are formed, and firing.

即ち、本発明の製法によれば、誘電体磁器を形成するための原料粉末として、最初の出発原料の段階で異なる平均粒径を有し、しかも異なる焼結性および粒成長速度を有するBaTiO粉末及びBa1−xTiO粉末を用いる場合、焼成時に、これらの粉末どうしの反応を抑制するために、これらの粉末に、予め、Baを除くアルカリ土類元素を、850℃以下の低い温度で一部固溶させる手法を採り、これらの仮焼粉末の、特に表面層付近に、アルカリ土類元素を固溶させておくことにより、アルカリ土類元素を含むBa1−xTiO粉末側から、アルカリ土類元素の少ないBaTiO側へのアルカリ土類元素の拡散を抑制でき、誘電体層内におけるアルカリ土類成分濃度の異なる誘電体粒子の共存状態を維持できる。 That is, according to the manufacturing method of the present invention, BaTiO 3 having a different average particle size at the initial starting material stage and different sinterability and grain growth rate as a raw material powder for forming a dielectric ceramic. When using powder and Ba 1-x M x TiO 3 powder, in order to suppress the reaction between these powders during firing, alkaline earth elements excluding Ba are previously added to these powders at 850 ° C. or lower. Ba 1-x M x containing an alkaline earth element is obtained by taking a method of partially dissolving at a low temperature and by dissolving an alkaline earth element in the calcined powder, particularly in the vicinity of the surface layer. from TiO 3 powder side, it can suppress the diffusion of alkaline earth elements to less BaTiO 3 side of alkaline earth elements, in maintaining the coexistence of different dielectric particles alkaline earth component concentration in the dielectric layer That.

また、上記した両原料粉末にアルカリ土類成分を850℃以下の低い温度で一部固溶させておく手法によれば、後に添加する希土類元素やその他の添加物の両原料粉末に対する固溶をも抑制できる。   In addition, according to the technique in which the alkaline earth component is partially dissolved in both raw material powders at a low temperature of 850 ° C. or less, the solid solution of rare earth elements and other additives to be added later to both raw material powders is reduced. Can also be suppressed.

この場合、(8)(b)工程において添加するアルカリ土類元素の酸化物の割合が、モル比で、(b)(c)工程で添加する全アルカリ土類元素の酸化物の30〜60%とすることにより、アルカリ土類元素の添加効果を高めることができ、特に、本発明によれば、(9)アルカリ土類元素の酸化物が、例えばMgOであれば、BaTiOのBaイオンとのイオン半径に大きな差があることから、BaTiOへのイオンの固溶量を小さくできる。 In this case, the ratio of the alkaline earth element oxide added in the step (8) (b) is 30 to 60% of the oxide of all the alkaline earth elements added in the step (b) (c). In particular, according to the present invention, (9) if the oxide of the alkaline earth element is MgO, for example, the Ba ion of BaTiO 3 can be increased. Therefore, the solid solution amount of ions in BaTiO 3 can be reduced.

一方、(10)Ba1−xTiO粉末におけるMをCaとすると、BaTiO中に予めMgのような前記Mよりも小さい元素が固溶しているために、後で拡散してくるCaなど大きなイオン半径を有するアルカリ土類元素の拡散を抑制できる。つまり、本発明におけるBaTiO粉末に対するアルカリ土類元素の添加効果は、BaTiO粉末に先に添加するアルカリ土類元素のイオン半径の小さい元素を用いるほど、Ba1−xTiO粉末側からのアルカリ土類成分の拡散を抑制できる。さらに、上記の製法における内部電極パターンは低コストという点で卑金属を主成分とすることが望ましく、より薄層化できるという点でめっき膜製の導体パターンを用いることが望ましい。 On the other hand, (10) When M in the Ba 1-x M x TiO 3 powder is Ca, an element smaller than M such as Mg is dissolved in the BaTiO 3 in advance, so that it diffuses later. Diffusion of alkaline earth elements having a large ionic radius such as coming Ca can be suppressed. In other words, the effect of adding the alkaline earth element to the BaTiO 3 powder in the present invention is such that the smaller the ion radius of the alkaline earth element previously added to the BaTiO 3 powder is, the more Ba 1-x M x TiO 3 powder side is. The diffusion of alkaline earth components from can be suppressed. Furthermore, the internal electrode pattern in the above manufacturing method is preferably composed mainly of a base metal in terms of low cost, and it is desirable to use a conductive pattern made of a plating film in that it can be made thinner.

(積層セラミックコンデンサ構造)
本発明の積層セラミックコンデンサについて、図1の概略断面図をもとに詳細に説明する。本発明の積層セラミックコンデンサは、コンデンサ本体1の両端部に外部電極3を形成して構成されている。この外部電極3は、例えば、CuもしくはCuとNiの合金ペーストを焼き付けて形成されている。
(Multilayer ceramic capacitor structure)
The multilayer ceramic capacitor of the present invention will be described in detail based on the schematic sectional view of FIG. The multilayer ceramic capacitor of the present invention is configured by forming external electrodes 3 at both ends of a capacitor body 1. The external electrode 3 is formed, for example, by baking Cu or an alloy paste of Cu and Ni.

コンデンサ本体1は誘電体層5と内部電極層7とを交互に積層してなるものである。この誘電体層5はM濃度の低い、Ba及びTiを主成分とする誘電体粒子11と、M濃度の高い、Ba及びTiを主成分とする誘電体粒子13と粒界相15とからなり、その厚みは4μm以下が望ましく、特に、静電容量を高めるという点で3μm以下、一方、絶縁性を高く維持するという点で0.5μm以上、特に1μm以上が望ましい。さらに本発明では、静電容量のばらつきおよび容量温度特性の安定化のために、誘電体層5の厚みばらつきが10%以内であることがより望ましい。   The capacitor body 1 is formed by alternately laminating dielectric layers 5 and internal electrode layers 7. The dielectric layer 5 is composed of dielectric particles 11 having Ba and Ti as main components with a low M concentration, dielectric particles 13 having Ba and Ti as main components and a grain boundary phase 15 having a high M concentration. The thickness is preferably 4 μm or less, particularly 3 μm or less from the viewpoint of increasing the capacitance, and 0.5 μm or more, particularly 1 μm or more from the viewpoint of maintaining high insulation. Furthermore, in the present invention, it is more desirable that the thickness variation of the dielectric layer 5 is within 10% in order to stabilize the capacitance variation and capacitance temperature characteristics.

内部電極層7は、高積層化しても製造コストを抑制できるという点で、NiやCuなどの卑金属が望ましく、特に、本発明の誘電体層との同時焼成を図るという点でNiがより望ましい。この内部電極層7の厚みは平均2μm以下が好ましい。   The internal electrode layer 7 is preferably a base metal such as Ni or Cu from the viewpoint that the manufacturing cost can be suppressed even if the internal electrode layer 7 is made highly laminated, and particularly Ni is more preferable from the viewpoint of simultaneous firing with the dielectric layer of the present invention. . The thickness of the internal electrode layer 7 is preferably 2 μm or less on average.

特に本発明では、(1)Baを除くアルカリ土類成分濃度が0.2原子%以下のBaTiO粒子(BMTL)と、Baを除くアルカリ土類成分濃度が0.5〜2.5原子%のBaTiO粒子(BMTH)とが共存するとともに、BMTLの平均粒径をDL、BMTHの平均粒径をDHとしたときに、DL/DH=1.1〜2であることが重要である。 In particular, in the present invention, (1) BaTiO 3 particles (BMTL) having an alkaline earth component concentration excluding Ba of 0.2 atomic% or less and an alkaline earth component concentration excluding Ba of 0.5 to 2.5 atomic%. with the BaTiO 3 particles and (BMTH) coexist, DL an average particle size of BMTL, an average particle size of BMTH DH, and were at the time, it is important that the DL / DH = 1.1 to 2 .

アルカリ土類成分濃度の低いBMTL粒子のアルカリ土類成分濃度が0.3原子%以上、一方、BMTHのアルカリ土類成分濃度が0.4原子%以下では、BMTLとBMTHとのアルカリ土類元素濃度が重なってしまい、アルカリ土類元素の濃度差による誘電体粒子の比誘電率や温度特性の特徴が発現しにくくなり、両誘電体粒子の共存効果が低下する。また、BMTHのアルカリ土類成分濃度が2.5原子%以上ではBMTHの比誘電率の低下が大きくなる。   When the alkaline earth component concentration of the BMTL particles having a low alkaline earth component concentration is 0.3 atomic% or more, while the alkaline earth component concentration of BMTH is 0.4 atomic% or less, the alkaline earth elements of BMTL and BMTH Concentrations overlap, and it becomes difficult to express the characteristics of the dielectric constant and temperature characteristics of the dielectric particles due to the difference in alkaline earth element concentration, and the coexistence effect of both dielectric particles decreases. Further, when the alkaline earth component concentration of BMTH is 2.5 atomic% or more, the decrease in the relative dielectric constant of BMTH becomes large.

さらに、DL/DH比が1.1より小さい場合には、0.002〜1Vrms/μmの交流電界における比誘電率の増加が大きくなく、一方、DBMTL/DBMTH比が2より大きい場合には、容量温度特性が大きくなる。そして、上記比誘電率およびその温度特性をさらに向上させるという点で、BL/BH=1〜1.5がより望ましい。   Further, when the DL / DH ratio is smaller than 1.1, the increase in the relative dielectric constant in the AC electric field of 0.002 to 1 Vrms / μm is not large, while when the DBMTL / DBMTH ratio is larger than 2, Capacitance-temperature characteristics increase. Further, BL / BH = 1 to 1.5 is more preferable in terms of further improving the relative dielectric constant and its temperature characteristics.

また、本発明におけるアルカリ土類元素の高い比率を有するBMTH粒子に固溶しているアルカリ土類成分は、Mg、Ca、Srから選ばれる少なくとも1種であることが望ましいが、特に、BaTiOへの固溶率が高く、BaTiOの比誘電率向上およびその温度特性向上という点でCaがより望ましい。 The alkaline earth component dissolved in the BMTH particles having a high ratio of alkaline earth elements in the present invention is preferably at least one selected from Mg, Ca, and Sr. In particular, BaTiO 3 Ca is more desirable in that it has a high solid solution ratio, improves the relative dielectric constant of BaTiO 3 and improves its temperature characteristics.

また本発明によれば、BMTLおよびBMTHの平均粒径はいずれも0.7μm以下、特に0.6μm以下であることが高絶縁性化という点でより望ましく、比誘電率を高めるという点で0.2μm以上が望ましい。   In addition, according to the present invention, the average particle diameters of BMTL and BMTH are both 0.7 μm or less, particularly 0.6 μm or less, which is more desirable in terms of achieving high insulation, and 0 in terms of increasing the relative dielectric constant. .2 μm or more is desirable.

さらには、誘電体層5の厚みが4μm以下、内部電極層7は卑金属(Cu、Ni、Coなど)のうち、特に、金属の焼結温度が上記誘電体材料の焼結温度と一致するという点でNiが好ましい。   Furthermore, the dielectric layer 5 has a thickness of 4 μm or less, and the internal electrode layer 7 is made of a base metal (Cu, Ni, Co, etc.), in particular, the sintering temperature of the metal matches the sintering temperature of the dielectric material. Ni is preferable in this respect.

また、本発明にかかる誘電体層5では、希土類元素は粒子表面である粒界相15を最高濃度として結晶粒子表面から粒子内部にかけて濃度勾配を有するとともに、0.05原子%/nm以上であることが好ましい。   Further, in the dielectric layer 5 according to the present invention, the rare earth element has a concentration gradient from the crystal grain surface to the inside of the grain with the grain boundary phase 15 which is the grain surface as the maximum concentration, and is 0.05 atomic% / nm or more. It is preferable.

つまり、希土類元素の濃度勾配がこのような条件であれば、比誘電率および高温負荷寿命の向上とともに容量温度特性としてもX7R規格を満たすものを得ることができる。   That is, when the concentration gradient of the rare earth element is in such a condition, it is possible to obtain a capacitor that satisfies the X7R standard as a capacity temperature characteristic as well as an improvement in relative permittivity and high temperature load life.

ここで本発明における希土類元素としては、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Y、Er、Tm、Yb、Lu、Scのうち少なくとも1種が好ましく、特にYが好ましい。   Here, as the rare earth element in the present invention, at least one of La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Y, Er, Tm, Yb, Lu, Sc is preferable, and Y is particularly preferable. preferable.

さらに、本発明のBaTiO結晶粒子は、前記したように、仮焼により、Mgが表面領域に固溶されたものであるが、BaTiO結晶粒子の表面領域におけるMgの濃度勾配は、希土類元素の拡散固溶の抑制を高めるという点で、粒界部を高濃度側として、粒内へ向けて0.003原子%/nm以上、望ましくは0.01原子%/nm以上であることが望ましい。 Further, as described above, the BaTiO 3 crystal particles of the present invention have Mg dissolved in the surface region by calcination, but the Mg concentration gradient in the surface region of the BaTiO 3 crystal particles is rare earth element. In view of enhancing the suppression of diffusion solid solution, it is desirable that the grain boundary part is set to a high concentration side and 0.003 atomic% / nm or more, desirably 0.01 atomic% / nm or more toward the grain. .

(製法)
本発明の製法は、(a)平均粒径が0.05〜0.5μmのBaTiO粉末、および平均粒径が前記BaTiO粉末よりも小さいBa1−xTiO(M:Mg、Ca、Sr、X=0.01〜0.2)粉末を準備する工程と、(b)前記BaTiO粉末およびBa1−xTiO粉末に、それぞれに、Baを除くアルカリ土類元素の酸化物を添加し、それぞれ850℃以下の温度で仮焼して、BaTiOおよびBa1−xTiO(M:Mg、Ca、Sr、X=0.01〜0.2)の仮焼粉末を調製する工程と、を具備することを特徴とする。ここで、BaTiO粉末及びBa1−xTiO粉末に対して、850℃以下の温度で仮焼して、アルカリ土類元素の酸化物が両粉末表面に固溶形成された粉末を調製することが重要であり、アルカリ土類元素の酸化物は両粉末の表面に存在していることが望ましい。
(Manufacturing method)
The production method of the present invention comprises: (a) BaTiO 3 powder having an average particle diameter of 0.05 to 0.5 μm, and Ba 1-x M x TiO 3 (M: Mg, which has an average particle diameter smaller than that of the BaTiO 3 powder). (Ca, Sr, X = 0.01-0.2) a step of preparing a powder, and (b) an alkaline earth element excluding Ba in the BaTiO 3 powder and Ba 1-x M x TiO 3 powder, respectively. Of BaTiO 3 and Ba 1-x M x TiO 3 (M: Mg, Ca, Sr, X = 0.01 to 0.2). And a step of preparing a calcined powder. Here, a BaTiO 3 powder and a Ba 1-x M x TiO 3 powder were calcined at a temperature of 850 ° C. or less, and a powder in which an oxide of an alkaline earth element was formed as a solid solution on both powder surfaces was obtained. It is important to prepare, and it is desirable that the alkaline earth element oxide is present on the surfaces of both powders.

ここで用いる主原料のBaTiO粉末およびBa1−xTiO粉末としては粒度分布が狭く結晶性が高いという理由から水熱合成法により得られた粉末が望ましく、その平均粒径は0.2μm以上、0.4μm以下が望ましい。また、このように微細な粉末の比表面積としては1.7〜6.6(m/g)が好ましい。一方、Ba1−xTiO粉末の平均粒径は、前記BaTiO粉末よりも小さいことが重要であり、0.04〜0.4μm、特に、0.15〜0.35μmであることがより好ましい。 As the main raw material BaTiO 3 powder and Ba 1-x M x TiO 3 powder used here, a powder obtained by a hydrothermal synthesis method is desirable because the particle size distribution is narrow and the crystallinity is high. .2 μm or more and 0.4 μm or less are desirable. In addition, the specific surface area of such a fine powder is preferably 1.7 to 6.6 (m 2 / g). On the other hand, it is important that the average particle size of the Ba 1-x M x TiO 3 powder is smaller than that of the BaTiO 3 powder, and is 0.04 to 0.4 μm, particularly 0.15 to 0.35 μm. Is more preferable.

即ち、本発明においては、低温仮焼により、例えば、MgOが表面に固溶したBaTiO粉末を形成し、焼成後における交流電界特性を高めるという理由から適正な粒成長を伴い、高い反応性を有する粉末としておくことが必要であることから、平均粒径とともに比表面積までも上記の範囲に規定しておくことが望ましい。 That is, in the present invention, for example, BaTiO 3 powder in which MgO is solid-dissolved on the surface is formed by low-temperature calcination, and due to the reason that the AC electric field characteristics after firing are enhanced, it is accompanied by appropriate grain growth and has high reactivity. Since it is necessary to make it into the powder which has, it is desirable to prescribe | regulate the above-mentioned range also to a specific surface area with an average particle diameter.

本発明の製法における仮焼温度としては、上記したようにMgOが表面固溶したBaTiO粉末およびBa1−xTiO(M:Mg、Ca、Sr、X=0.01〜0.2)粉末におけるMgOの固溶を抑制するという理由から、850℃以下、特に750℃以下が望ましいが、一方、BaTiO粉末表面へのMgOの拡散固溶を確実なものにするという理由から600℃以上、特には、650℃以上が望ましい。尚、ここで用いるMgO粉末の平均粒径は、BaTiO粉末表面へのコート率が高まるという点で、0.3μm以下が望ましい。本発明では、このように予めアルカリ土類元素の酸化物との仮焼を行ったBaTiO粉を用いることにより、希土類元素の拡散固溶を抑制することができ、粒成長も抑制できる。 As the calcining temperature in the production method of the present invention, BaTiO 3 powder in which MgO is solid-dissolved as described above and Ba 1-x M x TiO 3 (M: Mg, Ca, Sr, X = 0.01-0. 2) 850 ° C. or lower, particularly 750 ° C. or lower is desirable for suppressing MgO solid solution in the powder. On the other hand, 600 is used for ensuring reliable diffusion solid solution of MgO on the BaTiO 3 powder surface. It is desirable that the temperature be 650 ° C. or higher. The average particle diameter of the MgO powder used here is preferably 0.3 μm or less in view of increasing the coating rate on the surface of the BaTiO 3 powder. In the present invention, by using BaTiO 3 powder preliminarily calcined with an oxide of an alkaline earth element as described above, diffusion solid solution of rare earth elements can be suppressed and grain growth can also be suppressed.

これに対して、BaTiOおよびBa1−xTiO粉末に、例えば、MgOなどのアルカリ土類元素の酸化物を固溶させるための仮焼温度が850℃よりも高いと、粒界近傍でのアルカリ土類元素の酸化物が拡散固溶しやすくなり、そのため希土類元素の拡散固溶が進んでしまうため、M濃度の低い、チタン酸バリウムを主成分とする誘電体粒子の粒成長が生じやすく、静電容量の温度特性が所望の特性を満足できなくなる。 On the other hand, when the calcination temperature for dissolving an oxide of an alkaline earth element such as MgO in the BaTiO 3 and Ba 1-x M x TiO 3 powder is higher than 850 ° C., the grain boundary Oxidation of alkaline earth elements in the vicinity is easy to diffuse and dissolve, so that the diffusion and solid solution of rare earth elements progresses, so the grain growth of dielectric particles having a low M concentration and mainly composed of barium titanate As a result, the temperature characteristics of the capacitance cannot satisfy the desired characteristics.

また、本発明の上記処理に対して、BaTiO粉末およびBa1−xTiO粉末に、例えば、MgOを先に固溶させる処理をしないで、BaTiO粉末やBa1−xTiO3、希土類元素などの添加物とともに一括で添加した場合には、BaTiOの表面層に、MgOが固溶したものを形成しにくくなるために、Ba1−xTiOからのM成分などの拡散が多くなり、BaTiO本来の比誘電率を維持できず静電容量の低下をきたす。また、粒成長が起こりやすくなる。Ba1−xTiO3において、MはCaが好ましく、X=0.02〜0.1の範囲であることが比誘電率を高め、かつ容量温度特性を平坦化できるという理由から望ましい。 Further, for the above-described treatment of the present invention, BaTiO 3 powder and Ba 1-x M x TiO 3 powder and Ba 1-x M x TiO 3 powder are not subjected to, for example, a treatment in which MgO is first solid-dissolved, and BaTiO 3 powder or Ba 1-x M x When added together with additives such as TiO 3 and rare earth elements , it is difficult to form a solid solution of MgO on the surface layer of BaTiO 3 , so M from Ba 1-x M x TiO 3 The diffusion of components and the like increases, and the inherent dielectric constant of BaTiO 3 cannot be maintained, resulting in a decrease in capacitance. In addition, grain growth tends to occur. In Ba 1-x M x TiO 3, M is preferably Ca, and X is preferably in the range of 0.02 to 0.1 because the relative permittivity can be increased and the capacitance-temperature characteristics can be flattened.

本製法の(b)工程において添加するBaを除くアルカリ土類元素の酸化物の割合は、モル比で、(b)(c)工程で添加する全アルカリ土類元素の酸化物の30〜60%が好ましく、アルカリ土類元素としてはMgOが好ましく、さらに、Ba1−xTiOにおけるM成分はCaが好ましい。また、本発明にかかる誘電体層はガラス相を含むものであるが、このガラス相として、Si―Li−Ca系のガラス粉末が好適である。 The ratio of the alkaline earth element oxides excluding Ba added in the step (b) of this production method is 30 to 60% of the total alkaline earth element oxide added in the steps (b) and (c). % Is preferred, MgO is preferred as the alkaline earth element, and Ca is preferred as the M component in Ba 1-x M x TiO 3 . Moreover, although the dielectric material layer concerning this invention contains a glass phase, Si-Li-Ca type | system | group glass powder is suitable as this glass phase.

次に、(c)該BaTiO仮焼粉末と、前記Ba1−xTiO仮焼粉末と、希土類元素化合物、Mn化合物、および、残りのアルカリ土類元素酸化物と、有機ビヒクルとを所定の割合で混合してスラリを調製し、成形して誘電体グリーンシートを形成する。上記したスラリを用いた成形はダイコータなどのシート成形法が好適であり、このような成形法により形成される誘電体グリーンシートの厚みは5μm以下、特に、4μm以下が好ましい。 Next, (c) the BaTiO 3 calcined powder, the Ba 1-x M x TiO 3 calcined powder, a rare earth element compound, a Mn compound, the remaining alkaline earth element oxide, and an organic vehicle Are mixed at a predetermined ratio to prepare a slurry, which is then molded to form a dielectric green sheet. The molding using the above-described slurry is preferably a sheet molding method such as a die coater, and the thickness of the dielectric green sheet formed by such a molding method is preferably 5 μm or less, and particularly preferably 4 μm or less.

次に、(d)該誘電体グリーンシートの主面上に内部電極パターンを形成する。内部電極パターンは、例えば、NiやCuなどの卑金属粉末を有機樹脂や溶剤とともにペースト化したものをスクリーン印刷により形成する。内部電極パターンの厚みは、誘電体グリーンシート上における段差を小さくするという点で、誘電体グリーンシートの厚みよりも薄く4μm以下であることが望ましい。   Next, (d) an internal electrode pattern is formed on the main surface of the dielectric green sheet. The internal electrode pattern is formed, for example, by screen printing of a base metal powder such as Ni or Cu that is pasted together with an organic resin or a solvent. The thickness of the internal electrode pattern is preferably smaller than the thickness of the dielectric green sheet and 4 μm or less in terms of reducing the level difference on the dielectric green sheet.

次に、(e)内部電極パターンが形成された誘電体グリーンシートを複数積層してコンデンサ本体成形体を形成し、この後、コンデンサ本体を大気中で40〜80℃/hの昇温速度で400〜500℃にて脱バインダ処理を行い、その後、還元雰囲気中で500℃からの昇温速度を100〜400℃/hとし、1100〜1300℃の温度で2〜5時間焼成し、続いて80〜400℃/hの降温速度で冷却し、大気雰囲気中750〜1100℃で再酸化処理を行う。   Next, (e) a plurality of dielectric green sheets on which internal electrode patterns are formed are laminated to form a capacitor body molded body, and then the capacitor body is heated in the atmosphere at a rate of 40 to 80 ° C./h. The binder removal treatment is performed at 400 to 500 ° C., and then the temperature rise rate from 500 ° C. is set to 100 to 400 ° C./h in a reducing atmosphere, followed by baking at a temperature of 1100 to 1300 ° C. for 2 to 5 hours. Cooling is performed at a temperature drop rate of 80 to 400 ° C./h, and reoxidation is performed at 750 to 1100 ° C. in an air atmosphere.

最後に、焼成したコンデンサ本体の両端面に、外部電極用ペーストを塗布して窒素中で焼き付けることによって、外部電極3を形成し、本発明の積層セラミックコンデンサを得ることができる。   Finally, the external electrode 3 is formed by applying an external electrode paste on both end faces of the fired capacitor body and baking it in nitrogen, whereby the multilayer ceramic capacitor of the present invention can be obtained.

本発明の積層セラミックコンデンサを以下のようにして作製した。まず、予め表1に示す平均粒径のBaTiO(BT)+(Ba0.95Ca0.05)TiO(BCT)100モル部に対し、MgOを0.25モル部を秤量し、十分混合し、表1に示す温度で2時間加熱した。次に、この仮焼したBaTiO+(Ba0.95Ca0.05)TiOとした混合粉末100モル部に対して、希土類元素を表1に示す量、MnCOを0.3モル部、MgOを0.25モル部混合した。 The multilayer ceramic capacitor of the present invention was produced as follows. First, with respect to 100 mol parts of BaTiO 3 (BT) + (Ba 0.95 Ca 0.05 ) TiO 3 (BCT) having an average particle diameter shown in Table 1, 0.25 mol parts of MgO are weighed sufficiently. Mix and heat at the temperature shown in Table 1 for 2 hours. Next, the amount of rare earth elements shown in Table 1 and 0.3 mol part of MnCO 3 with respect to 100 mol parts of the mixed powder of BaTiO 3 + (Ba 0.95 Ca 0.05 ) TiO 3 calcinated. , 0.25 mol part of MgO was mixed.

次に、BaTiO+(Ba0.95Ca0.05)TiO100質量部に対してLiOとSiOとCaOからなる添加成分を0.5質量部混合して、この混合粉末を直径5mmφのZrOボールを用いたボールミルにて湿式粉砕し有機バインダを加えてスラリーを調製した。次に、このスラリーを用いてドクターブレードにより厚み4μmの誘電体グリーンシートを作製した。 Next, 0.5 part by mass of additive components composed of Li 2 O, SiO 2 and CaO is mixed with 100 parts by mass of BaTiO 3 + (Ba 0.95 Ca 0.05 ) TiO 3 , and this mixed powder is mixed. A slurry was prepared by wet grinding with a ball mill using ZrO 2 balls having a diameter of 5 mmφ and adding an organic binder. Next, using this slurry, a dielectric green sheet having a thickness of 4 μm was prepared by a doctor blade.

次に、この誘電体グリーンシート上に、Ni金属を含む導体ペーストをスクリーン印刷して内部電極パターンを形成した。   Next, a conductive paste containing Ni metal was screen printed on the dielectric green sheet to form an internal electrode pattern.

次に、内部電極パターンを形成した誘電体グリーンシートを388枚積層し、その上下面に、内部電極パターンを形成していない誘電体グリーンシートをそれぞれ20枚積層しプレス機を用いて一体化し母体積層体を得た。   Next, 388 dielectric green sheets on which internal electrode patterns are formed are stacked, and 20 dielectric green sheets on which internal electrode patterns are not formed are stacked on the upper and lower surfaces, and are integrated using a press. A laminate was obtained.

この後、母体積層体を格子状に切断して、2.3mm×1.5mm×1.5mmのコンデンサ本体成形体を作製した。   Thereafter, the base laminate was cut into a lattice shape to produce a capacitor body molded body of 2.3 mm × 1.5 mm × 1.5 mm.

次に、このコンデンサ本体成形体を50℃/hの昇温速度で大気中500℃にて脱バインダ処理を行い、500℃からの昇温速度が200℃/hの昇温速度で、1240℃(酸素分圧10−11atm)で2時間焼成し、200℃/hの降温速度で800℃まで冷却し、続いて、大気雰囲気中800℃で4時間再酸化処理をし、200℃/hの降温速度で冷却しコンデンサ本体を作製した。誘電体層の厚みは2.3μmであった。 Next, this capacitor body molded body was subjected to binder removal treatment at 500 ° C. in the atmosphere at a temperature increase rate of 50 ° C./h, and the temperature increase rate from 500 ° C. was 1240 ° C. at a temperature increase rate of 200 ° C./h. (Oxygen partial pressure 10 −11 atm) calcination for 2 hours, cooling to 800 ° C. at a temperature decrease rate of 200 ° C./h, followed by re-oxidation treatment at 800 ° C. for 4 hours in air atmosphere, The capacitor body was manufactured by cooling at a temperature drop rate of. The thickness of the dielectric layer was 2.3 μm.

次に、焼成したコンデンサ本体をバレル研磨した後、その両端部にCu粉末とガラスを含んだ外部電極ペーストを塗布し、850℃、窒素中で焼き付けを行い、外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiおよびSnメッキを行い、積層セラミックコンデンサを作製した。   Next, the fired capacitor body was barrel-polished, and then an external electrode paste containing Cu powder and glass was applied to both ends thereof, and baked in nitrogen at 850 ° C. to form external electrodes. Then, using an electrolytic barrel machine, Ni and Sn plating were sequentially performed on the surface of the external electrode to produce a multilayer ceramic capacitor.

次に、作製した積層セラミックコンデンサであるこれらの試料を、LCRメーター4284Aを用いて周波数1.0kHz、入力信号レベル0.5Vにて静電容量、誘電損失を測定した。比誘電率は、静電容量と内部電極層の有効面積、誘電体層の厚みから算出した。   Next, the capacitance and dielectric loss of these samples, which were the produced multilayer ceramic capacitors, were measured at a frequency of 1.0 kHz and an input signal level of 0.5 V using an LCR meter 4284A. The relative dielectric constant was calculated from the capacitance, the effective area of the internal electrode layer, and the thickness of the dielectric layer.

続いて、静電容量の温度特性を25℃の時の静電容量を基準として、−55〜125℃の範囲において測定した。高温負荷試験は、温度125℃、電圧は9.45Vの条件で、1000時間行い、試料数30個につき絶縁抵抗の変化を測定した。この場合不良なきものを良とした。また、結晶粒子径およびそのばらつきはインターセプト法により電子顕微鏡にて撮影した写真を用いて測定した。   Subsequently, the temperature characteristics of the capacitance were measured in a range of −55 to 125 ° C. with reference to the capacitance at 25 ° C. The high temperature load test was performed for 1000 hours under the conditions of a temperature of 125 ° C. and a voltage of 9.45 V, and the change in insulation resistance was measured for 30 samples. In this case, a non-defective one was considered good. In addition, the crystal particle diameter and its variation were measured using photographs taken with an electron microscope by the intercept method.

また、誘電体層を構成する結晶粒子中の希土類元素の存在については断面研磨した試料について透過電子顕微鏡と制限視野電子回折像解析を用いて評価した。   In addition, the presence of rare earth elements in the crystal grains constituting the dielectric layer was evaluated using a transmission electron microscope and limited-field electron diffraction image analysis on a cross-polished sample.

また、Ca濃度に関しては、透過電子顕微鏡及びEDSを用いて、中心部近傍の任意の場所を分析した。その際、Ca濃度が0.3at%よりも高いもの(小数点2位四捨五入)に関して、Ca濃度の高い誘電体粒子とした。この分析は、主結晶粒子100〜150個に関して行った。   Moreover, regarding the Ca concentration, an arbitrary place in the vicinity of the central portion was analyzed using a transmission electron microscope and EDS. At that time, those having a Ca concentration higher than 0.3 at% (rounded to the second decimal place) were made dielectric particles having a high Ca concentration. This analysis was performed on 100 to 150 main crystal particles.

本発明の試料における結晶粒子の平均結晶粒径は、Ca濃度の低いBa及びTiを主成分とする誘電体粒子(BMTL)は0.4μm、Ca濃度の高い、Ba及びTiを主成分とする誘電体粒子(BMTH)は0.3μmであった。また、これらBMTLおよびBMTH粒子共に平均結晶粒径のばらつき(CV値)は、0.5以下であった。   The average crystal grain size of the crystal particles in the sample of the present invention is 0.4 μm for dielectric particles (BMTL) mainly composed of Ba and Ti having a low Ca concentration, and mainly composed of Ba and Ti having a high Ca concentration. The dielectric particle (BMTH) was 0.3 μm. Further, both of the BMTL and BMTH particles had an average crystal grain size variation (CV value) of 0.5 or less.

また、比較例として、原料粒径をBaTiOが0.4μm、(Ba0.95Ca0.05)TiOが0.35μmとした場合で、BaTiOへのMgOの仮焼温度を1150℃とし、これ以外の添加物組成や手順は上記本発明の工程と同じとしたものを作製した(No.1)。また、比較例として、BaTiO粉末のみで、もしくは、(Ba0.95Ca0.05)TiO粉末のみで、これ以外の添加物組成や手順は上記本発明の工程と同じとした。(No.2、3)

Figure 2006041371
As a comparative example, when the raw material particle size is 0.4 μm for BaTiO 3 and 0.35 μm for (Ba 0.95 Ca 0.05 ) TiO 3, the calcining temperature of MgO to BaTiO 3 is 1150 ° C. The other additive compositions and procedures were the same as those in the process of the present invention (No. 1). In addition, as a comparative example, only BaTiO 3 powder or (Ba 0.95 Ca 0.05 ) TiO 3 powder was used, and the other additive compositions and procedures were the same as those in the above-described process of the present invention. (No. 2, 3)
Figure 2006041371

Figure 2006041371
Figure 2006041371

表1、2から明らかなように、本発明の製法を用いて作製した試料No.4〜No.11では、交流電界0.02〜1Vrms/μmの範囲において、比誘電率が3100以上となり、容量温度特性がX7R規格を満足し、絶縁抵抗も10GΩを満足するものであった。   As is apparent from Tables 1 and 2, sample Nos. Produced using the production method of the present invention. 4-No. 11, the relative dielectric constant was 3100 or more in the range of the AC electric field of 0.02 to 1 Vrms / μm, the capacitance-temperature characteristic satisfied the X7R standard, and the insulation resistance also satisfied 10 GΩ.

一方、1150℃で一括仮焼した試料No.1においては、DL/DH=0.9となり、静電容量の温度特性が大きくなり、X7R特性を満たすものではなかった。また、BMTL単独の場合についてもX7R特性を満たすものではなかった。また、BMTH単独の誘電体粒子の場合には絶縁抵抗が0.2GΩと低かった。   On the other hand, sample No. 1 calcined at 1150 ° C. In No. 1, DL / DH = 0.9, the temperature characteristics of the capacitance were increased, and the X7R characteristics were not satisfied. Also, BMTL alone did not satisfy the X7R characteristics. In addition, in the case of dielectric particles of BMTH alone, the insulation resistance was as low as 0.2 GΩ.

本発明の積層セラミックコンデンサの概略断面図である。It is a schematic sectional drawing of the multilayer ceramic capacitor of this invention.

符号の説明Explanation of symbols

1・・・コンデンサ本体
5・・・誘電体層
7・・・内部電極層
11・・M濃度の低い、Ba及びTiを主成分とする誘電体粒子
13・・M濃度の高い、Ba及びTiを主成分とする誘電体粒子
15・・粒界相
DESCRIPTION OF SYMBOLS 1 ... Capacitor main body 5 ... Dielectric layer 7 ... Internal electrode layer 11 ... Dielectric particle | grains 13 which have a low M density | concentration and which have Ba and Ti as a main component ... A high M density | concentration Ba and Ti Dielectric particle 15 with grain as the main component ...

Claims (11)

Baを除くアルカリ土類成分濃度が0.2原子%以下のチタン酸バリウム粒子(BMTL)と、Baを除くアルカリ土類成分濃度が0.5〜2.5原子%のチタン酸バリウム粒子(BMTH)とが共存するとともに、
BMTLの平均粒径をDL、
BMTHの平均粒径をDH
としたときに、
DL/DH=1.1〜2である誘電体層と、内部電極層とが交互に積層されたコンデンサ本体を具備してなることを特徴とする積層セラミックコンデンサ。
Barium titanate particles (BMTL) having an alkaline earth component concentration of 0.2 atomic percent or less excluding Ba, and barium titanate particles (BMTH) having an alkaline earth component concentration of 0.5 to 2.5 atomic percent excluding Ba ) Coexist with
The average particle size of BMTL is DL,
The average particle size of BMTH is DH ,
And when
A multilayer ceramic capacitor comprising a capacitor body in which dielectric layers having DL / DH = 1.1 to 2 and internal electrode layers are alternately stacked.
アルカリ土類成分が、Mg、Ca、Srから選ばれる少なくとも1種である請求項1記載の積層セラミックコンデンサ。 2. The multilayer ceramic capacitor according to claim 1, wherein the alkaline earth component is at least one selected from Mg, Ca, and Sr. BMTLおよびBMTHの平均粒径がいずれも0.7μm以下である請求項1または2に記載の積層セラミックコンデンサ。 3. The multilayer ceramic capacitor according to claim 1, wherein the average particle diameters of BMTL and BMTH are both 0.7 μm or less. BMTLおよびBMTHは、いずれも希土類元素を含み、その濃度勾配は、粒子表面を最高濃度として、表面から内部にかけて、0.05原子%/nm以上である請求項1乃至3のうちいずれか記載の積層セラミックコンデンサ。 The BMTL and the BMTH both contain a rare earth element, and the concentration gradient is 0.05 atomic% / nm or more from the surface to the inside with the particle surface being the highest concentration. Multilayer ceramic capacitor. 誘電体層の厚みが4μm以下である請求項1乃至4のうちいずれか記載の積層セラミックコンデンサ。 The multilayer ceramic capacitor according to claim 1, wherein the dielectric layer has a thickness of 4 μm or less. 内部電極層が卑金属を主成分とする請求項1乃至5のうちいずれか記載の積層セラミックコンデンサ。 The multilayer ceramic capacitor according to claim 1, wherein the internal electrode layer contains a base metal as a main component. (a)平均粒径が0.05〜0.5μmのBaTiO粉末、および、平均粒径が前記BaTiO粉末よりも小さいBa1−xTiO粉末(M:Mg、Ca、Sr、X=0.01〜0.2)を準備する工程と、
(b)前記BaTiO粉末およびBa1−xTiO粉末(M:Mg、Ca、Sr、X=0.01〜0.2)、それぞれに、Baを除くアルカリ土類酸化物を添加し、それぞれ850℃以下の温度で仮焼して、BaTiO仮焼粉末およびBa1−xTiO仮焼粉末を調製する工程と、
(c)該BaTiO仮焼粉末およびBa1−xTiO仮焼粉末と、希土類元素化合物、Mn化合物およびアルカリ土類酸化物と、有機ビヒクルとを所定の割合で混合してスラリを調製し、成形して誘電体グリーンシートを形成する工程と、
(d)該誘電体グリーンシートの主面上に、内部電極パターンを形成する工程と、
(e)内部電極パターンが形成された誘電体グリーンシートを複数積層してコンデンサ本体成形体を形成し、焼成する工程と、を具備することを特徴とする積層セラミックコンデンサの製法。
(A) BaTiO 3 powder having an average particle size of 0.05 to 0.5 [mu] m, and an average particle size of the BaTiO 3 small Ba 1-x M x TiO 3 powder than powder (M: Mg, Ca, Sr , Preparing X = 0.01-0.2);
(B) To each of the BaTiO 3 powder and Ba 1-x M x TiO 3 powder (M: Mg, Ca, Sr, X = 0.01 to 0.2), an alkaline earth oxide excluding Ba is added. And calcining at a temperature of 850 ° C. or less to prepare BaTiO 3 calcined powder and Ba 1-x M x TiO 3 calcined powder,
(C) The BaTiO 3 calcined powder and Ba 1-x M x TiO 3 calcined powder, rare earth element compound, Mn compound and alkaline earth oxide, and organic vehicle are mixed at a predetermined ratio to obtain a slurry. Preparing and molding to form a dielectric green sheet;
(D) forming an internal electrode pattern on the main surface of the dielectric green sheet;
And (e) forming a capacitor body molded body by laminating a plurality of dielectric green sheets on which internal electrode patterns are formed, and firing the multilayer ceramic capacitor.
(b)工程において添加するアルカリ土類元素の酸化物の割合が、モル比(質量比)で、(b)(c)工程で添加する全アルカリ土類元素の酸化物の30〜60%である請求項7に記載の積層セラミックコンデンサの製法。 The ratio of the alkaline earth element oxide added in the step (b) is a molar ratio (mass ratio), and is 30 to 60% of the total alkaline earth element oxide added in the steps (b) and (c). A method for producing a multilayer ceramic capacitor according to claim 7. アルカリ土類元素の酸化物がMgOである請求項7または8に記載の積層セラミックコンデンサの製法。 The method for producing a multilayer ceramic capacitor according to claim 7 or 8, wherein the oxide of the alkaline earth element is MgO. Ba1−xTiO粉末におけるMがCaである請求項7に記載の積層セラミックコンデンサの製法。 The method for producing a multilayer ceramic capacitor according to claim 7, wherein M in the Ba 1-x M x TiO 3 powder is Ca. 内部電極パターンが卑金属を主成分とする請求項7乃至10のうちいずれか記載の積層セラミックコンデンサの製法。 The method for producing a multilayer ceramic capacitor according to claim 7, wherein the internal electrode pattern contains a base metal as a main component.
JP2004221994A 2004-07-29 2004-07-29 Multilayer ceramic capacitor and manufacturing method thereof Active JP4502741B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004221994A JP4502741B2 (en) 2004-07-29 2004-07-29 Multilayer ceramic capacitor and manufacturing method thereof
US11/193,284 US7057876B2 (en) 2004-07-29 2005-07-28 Multilayer ceramic capacitor and manufacturing method thereof
TW094125615A TWI347624B (en) 2004-07-29 2005-07-28 Laminated ceramic condenser and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221994A JP4502741B2 (en) 2004-07-29 2004-07-29 Multilayer ceramic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006041371A true JP2006041371A (en) 2006-02-09
JP4502741B2 JP4502741B2 (en) 2010-07-14

Family

ID=35906012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221994A Active JP4502741B2 (en) 2004-07-29 2004-07-29 Multilayer ceramic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4502741B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038722A1 (en) * 2006-09-27 2008-04-03 Kyocera Corporation Multilayer ceramic capacitor and method for production thereof
JP2008109120A (en) * 2006-09-27 2008-05-08 Kyocera Corp Multilayer ceramic capacitor and its fabrication process
WO2008066140A1 (en) * 2006-11-29 2008-06-05 Kyocera Corporation Multilayered ceramic capacitor
JP2008226670A (en) * 2007-03-13 2008-09-25 Akita Univ Copper-nickel-containing paste, laminated ceramic electronic component, and manufacturing method of copper-nickel-containing paste
JP2008273754A (en) * 2007-04-25 2008-11-13 Kyocera Corp Dielectric ceramics and multilayered ceramic capacitor
JP2009155117A (en) * 2007-12-25 2009-07-16 Kyocera Corp Dielectric ceramic and capacitor
US8208240B2 (en) 2007-07-27 2012-06-26 Kyocera Corporation Laminated ceramic capacitor
JP2014072203A (en) * 2012-09-27 2014-04-21 Taiyo Yuden Co Ltd Multilayer ceramic capacitor and method for manufacturing the same
JP2015053530A (en) * 2014-12-15 2015-03-19 太陽誘電株式会社 Multilayer ceramic capacitor and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230149A (en) * 2000-02-16 2001-08-24 Taiyo Yuden Co Ltd Laminated ceramic capacitor and method of manufacturing it
JP2001313225A (en) * 2000-04-28 2001-11-09 Taiyo Yuden Co Ltd Ceramic capacitor
JP2002274935A (en) * 2001-03-16 2002-09-25 Kyocera Corp Dielectric ceramic and laminated electronic part
JP2002362970A (en) * 2001-06-12 2002-12-18 Taiyo Yuden Co Ltd Dielectric ceramic composition and ceramic capacitor
JP2003040671A (en) * 2001-07-30 2003-02-13 Kyocera Corp Dielectric and laminated electronic parts and manufacturing method of laminated electronic parts
JP2003063863A (en) * 2001-08-29 2003-03-05 Kyocera Corp Dielectric porcelain and laminated electronic part and method for producing the latter
JP2003068559A (en) * 2001-08-29 2003-03-07 Kyocera Corp Laminated ceramic capacitor and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230149A (en) * 2000-02-16 2001-08-24 Taiyo Yuden Co Ltd Laminated ceramic capacitor and method of manufacturing it
JP2001313225A (en) * 2000-04-28 2001-11-09 Taiyo Yuden Co Ltd Ceramic capacitor
JP2002274935A (en) * 2001-03-16 2002-09-25 Kyocera Corp Dielectric ceramic and laminated electronic part
JP2002362970A (en) * 2001-06-12 2002-12-18 Taiyo Yuden Co Ltd Dielectric ceramic composition and ceramic capacitor
JP2003040671A (en) * 2001-07-30 2003-02-13 Kyocera Corp Dielectric and laminated electronic parts and manufacturing method of laminated electronic parts
JP2003063863A (en) * 2001-08-29 2003-03-05 Kyocera Corp Dielectric porcelain and laminated electronic part and method for producing the latter
JP2003068559A (en) * 2001-08-29 2003-03-07 Kyocera Corp Laminated ceramic capacitor and method of manufacturing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101517672B (en) * 2006-09-27 2012-05-16 京瓷株式会社 Multilayer ceramic capacitor and method for production thereof
JP2008109120A (en) * 2006-09-27 2008-05-08 Kyocera Corp Multilayer ceramic capacitor and its fabrication process
WO2008038722A1 (en) * 2006-09-27 2008-04-03 Kyocera Corporation Multilayer ceramic capacitor and method for production thereof
TWI399766B (en) * 2006-09-27 2013-06-21 Kyocera Corp Multilayer ceramic capacitor and production method of the same
KR101053945B1 (en) 2006-09-27 2011-08-04 쿄세라 코포레이션 Multilayer Ceramic Capacitor and its Manufacturing Method
WO2008066140A1 (en) * 2006-11-29 2008-06-05 Kyocera Corporation Multilayered ceramic capacitor
US8059388B2 (en) 2006-11-29 2011-11-15 Kyocera Corporation Multilayered ceramic capacitor
JP4814342B2 (en) * 2006-11-29 2011-11-16 京セラ株式会社 Multilayer ceramic capacitor
JP2008226670A (en) * 2007-03-13 2008-09-25 Akita Univ Copper-nickel-containing paste, laminated ceramic electronic component, and manufacturing method of copper-nickel-containing paste
JP2008273754A (en) * 2007-04-25 2008-11-13 Kyocera Corp Dielectric ceramics and multilayered ceramic capacitor
US8208240B2 (en) 2007-07-27 2012-06-26 Kyocera Corporation Laminated ceramic capacitor
JP2009155117A (en) * 2007-12-25 2009-07-16 Kyocera Corp Dielectric ceramic and capacitor
JP2014072203A (en) * 2012-09-27 2014-04-21 Taiyo Yuden Co Ltd Multilayer ceramic capacitor and method for manufacturing the same
KR101414981B1 (en) 2012-09-27 2014-07-04 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor and manufacturing thereof
US9105407B2 (en) 2012-09-27 2015-08-11 Taiyo Yuden Co., Ltd. Multi-layer ceramic capacitor and method of manufacturing the same
US9406441B2 (en) 2012-09-27 2016-08-02 Taiyo Yuden Co., Ltd. Multi-layer ceramic capacitor and method of manufacturing the same
JP2015053530A (en) * 2014-12-15 2015-03-19 太陽誘電株式会社 Multilayer ceramic capacitor and method for manufacturing the same

Also Published As

Publication number Publication date
JP4502741B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4965435B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4805938B2 (en) Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor
JP4809152B2 (en) Multilayer ceramic capacitor
US7057876B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5121311B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5483825B2 (en) Dielectric porcelain and multilayer ceramic capacitor
WO2008066140A1 (en) Multilayered ceramic capacitor
JP2005277393A (en) Laminated ceramic capacitor and its manufacturing method
JP5354867B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP2004214539A (en) Dielectric ceramic and laminated ceramic capacitor
JP5558249B2 (en) Multilayer ceramic capacitor
JP2008135638A (en) Multilayer ceramic capacitor
JP4502740B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4771818B2 (en) Multilayer ceramic capacitor
WO2009119613A1 (en) Multilayer ceramic capacitor
JP4423052B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4502741B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4511323B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2002265260A (en) Dielectric ceramic and lamination type electronic part
JP4508858B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4463093B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4557708B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4463095B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4753860B2 (en) Multilayer ceramic capacitor
JP5534976B2 (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100420

R150 Certificate of patent or registration of utility model

Ref document number: 4502741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4