JP2008226670A - Copper-nickel-containing paste, laminated ceramic electronic component, and manufacturing method of copper-nickel-containing paste - Google Patents

Copper-nickel-containing paste, laminated ceramic electronic component, and manufacturing method of copper-nickel-containing paste Download PDF

Info

Publication number
JP2008226670A
JP2008226670A JP2007063964A JP2007063964A JP2008226670A JP 2008226670 A JP2008226670 A JP 2008226670A JP 2007063964 A JP2007063964 A JP 2007063964A JP 2007063964 A JP2007063964 A JP 2007063964A JP 2008226670 A JP2008226670 A JP 2008226670A
Authority
JP
Japan
Prior art keywords
nickel
copper
paste
precursor
containing paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007063964A
Other languages
Japanese (ja)
Other versions
JP4872085B2 (en
Inventor
Katsuyasu Sugawara
勝康 菅原
Takuo Sugawara
拓男 菅原
Satoru Tairyo
知 泰良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2007063964A priority Critical patent/JP4872085B2/en
Publication of JP2008226670A publication Critical patent/JP2008226670A/en
Application granted granted Critical
Publication of JP4872085B2 publication Critical patent/JP4872085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an external electrode paste formed into a thin film in a micron range by using a copper-nickel-containing paste without using an electrode paste using metal fine particles. <P>SOLUTION: Copper acetate (CuAc) and tetraethylene glycol (TEG) are mixed with each other, agitated over a long time until a viscosity increase phenomenon is exhibited, and heat-treated, whereby a copper precursor is provided. Similarly, nickel acetate (NiAc) and tetraethylene glycol (TEG) are mixed with each other, agitated over a long time until a viscosity increase phenomenon is exhibited, and heat-treated, whereby a nickel precursor is provided. The copper precursor and the nickel precursor are mixed with each other, whereby a copper-nickel-containing paste is provided. In addition, the copper-nickel-containing paste is applied to a substrate, and heat-treated in a nitrogen gas flow, whereby a copper-nickel alloy film is formed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、積層セラミックコンデンサ(以下、MLCCという。)の外部電極用Cu‐Ni含有ペーストに関する。また、本発明は、該ペーストを用いて形成したMLCCの外部電極、及び、該外部電極を備えたMLCC、及び、積層セラミック部品の外部電極用銅−ニッケル含有ペーストの製造方法に関するものである。   The present invention relates to a Cu-Ni-containing paste for external electrodes of a multilayer ceramic capacitor (hereinafter referred to as MLCC). Moreover, this invention relates to the manufacturing method of the MLCC external electrode formed using this paste, the MLCC provided with this external electrode, and the copper-nickel containing paste for the external electrodes of a laminated ceramic component.

MLCCを含む積層セラミック部品は、電子部品として欠く事の出来ないものであり、その数量は、全世界で1000億個/月もの生産量に達している。現在、さらにその生産量が拡大する中で、製品の小型化、高機能化、高性能化、高信頼性化が求められている。
本発明は、MLCCを含む積層セラミック部品の外部電極として使用することを目的としており、外部電極の薄層化、高密度均一化、高信頼性を実現するものである。
現状のMLCCの電極構成は、内部電極としてNi金属を使用し、外部電極としてNi、もしくはCuを用いている。これらの電極形成には、金属微粒子をベースとし、溶剤とバインダーとからなる高分子材料を混合分散したペーストを得て、印刷などの塗布技術を持って形成し、焼成して外部電極とする手法などがある。
Multilayer ceramic parts including MLCC are indispensable as electronic parts, and the number of them reaches a production volume of 100 billion pieces / month worldwide. Currently, as the production volume further expands, miniaturization, high functionality, high performance, and high reliability of products are required.
The present invention is intended to be used as an external electrode of a multilayer ceramic component including MLCC, and realizes thinning, high density uniformity, and high reliability of the external electrode.
The current MLCC electrode configuration uses Ni metal as the internal electrode and Ni or Cu as the external electrode. In forming these electrodes, a paste is obtained by mixing and dispersing a polymer material consisting of metal fine particles, a solvent and a binder, then forming with a coating technique such as printing, and firing to form an external electrode. and so on.

MLCCを含む積層セラミック部品の一層の小型化、高機能化、高性能化、高信頼性化を実現しようとする時、内部電極、外部電極とも、薄く高密度で欠陥の無い金属皮膜を形成する事が必要とされる。しかし、金属微粒子を元にしたペースト電極液を用いた電極形成では、1μm以下のようなサブミクロンの薄層金属皮膜形成が困難である。
さらに、内部電極Ni金属、外部電極Cuの構成では、焼結時に合金化過程において、物質移動が発生し、MLCCの外部電極と内部電極接合部に空隙が発生し、信頼性の低下をもたらす原因となっている。信頼性の低下となる主たる原因は、発生した空隙に、生産工程で侵入する湿式めっき液がもたらす絶縁抵抗の劣化などである。この欠陥をカバーするため、外部電極厚みを厚く形成する方法などで回避している。そのため、内部電極形成では2μm以下の厚みに対して、外部電極は50〜100μmもの厚さを形成する事になる。
特開2005−340666号公報 特開2004−265826号公報 特開2006−286145号公報 特開平10‐072673号公報 特開平11‐39944号公報 Masahiro Kitamura, Michinori Komagata, Hideki Takamatsu, Ken-Ichi Suzuki; Proceedings of IPACK'01, The Pacific Rim/ASME Electronic Packaging Technical Conference and Exhibition July8-13,2001,Kauai.Hawaii, USA. pp 207-211
When trying to achieve further miniaturization, higher functionality, higher performance, and higher reliability of multilayer ceramic parts including MLCC, a thin, high-density, defect-free metal film is formed on both the internal and external electrodes. Things are needed. However, in the electrode formation using the paste electrode solution based on the metal fine particles, it is difficult to form a submicron thin metal film having a thickness of 1 μm or less.
Furthermore, in the configuration of the internal electrode Ni metal and the external electrode Cu, mass transfer occurs in the alloying process during sintering, and voids are generated in the MLCC external electrode and internal electrode joint, causing a decrease in reliability. It has become. The main cause of the decrease in reliability is the deterioration of insulation resistance caused by the wet plating solution entering the generated voids in the production process. In order to cover this defect, it is avoided by a method of forming a thick external electrode. Therefore, in the formation of the internal electrode, the external electrode has a thickness of 50 to 100 μm with respect to a thickness of 2 μm or less.
Japanese Patent Laid-Open No. 2005-340666 JP 2004-265826 A JP 2006-286145 A Japanese Patent Laid-Open No. 10-072673 JP-A-11-39944 Masahiro Kitamura, Michinori Komagata, Hideki Takamatsu, Ken-Ichi Suzuki; Proceedings of IPACK'01, The Pacific Rim / ASME Electronic Packaging Technical Conference and Exhibition July8-13,2001, Kauai.Hawaii, USA.pp 207-211

本発明の課題解決手段は、金属微粒子を用いた電極ペーストを用いることなく、銅-ニッケル含有ペーストを用いてミクロン単位の薄膜となる外部電極ペーストを提供することである。
さらに、本発明は、該ペーストを用いて形成したMLCCを含む積層セラミック部品を提供する事である。
The problem-solving means of the present invention is to provide an external electrode paste that becomes a thin film of a micron unit using a copper-nickel-containing paste without using an electrode paste using metal fine particles.
Furthermore, this invention is providing the laminated ceramic component containing MLCC formed using this paste.

有機金属化合物として酢酸銅と酢酸ニッケルからなり、媒体としてテトラエチレングリコール(TEG)を用いる金属ペーストによる手段である。
具体的には、酢酸銅とテトラエチレングリコール(TEG)を混合分散して得られる銅含有前駆体と、酢酸ニッケルとテトラエチレングリコール(TEG)を混合して得られるニッケル含有前駆体とを個別に作成し、それぞれ加熱処理により、増粘化と結晶水除去プロセスを加え、安定な銅含有前駆体とニッケル含有前駆体として、その後、銅含有前駆体とニッケル含有前駆体とを混合分散してなる銅-ニッケル含有ペーストとする。さらに、セラミック積層コンデンサ等積層セラミック電子部品に銅-ニッケル含有ペーストを塗布し、焼成してCu‐Ni合金として用いる外部電極、及び、積層セラミックコンデンサ(MLCC)を含む積層セラミック部品とするものである。
It is a means by a metal paste which consists of copper acetate and nickel acetate as an organometallic compound and uses tetraethylene glycol (TEG) as a medium.
Specifically, a copper-containing precursor obtained by mixing and dispersing copper acetate and tetraethylene glycol (TEG) and a nickel-containing precursor obtained by mixing nickel acetate and tetraethylene glycol (TEG) are individually provided. Create and add thickening and crystal water removal processes by heat treatment, respectively, and then mix and disperse copper-containing precursor and nickel-containing precursor as stable copper-containing precursor and nickel-containing precursor A paste containing copper-nickel is used. Furthermore, a multilayer ceramic component including a multilayer ceramic capacitor (MLCC) including an external electrode used as a Cu-Ni alloy by applying a copper-nickel-containing paste to a multilayer ceramic electronic component such as a ceramic multilayer capacitor and firing the paste. .

このプロセスを持って外部電極生成を行う事により、次の効果が得られる。
(1)[薄膜合金電極の形成] 有機金属化合物とテトラエチレングリコール(TEG)を用いる金属ペーストによる膜形成によって、真空製膜技術によることなくミクロンからサブミクロン(1μm以下)のCu‐Ni合金、薄膜外部電極が形成できる。金属材料の有効利用率を1/10以下にする事が出来る。
(2)[信頼性の改善]Cu‐Ni合金となる外部電極を形成する事により、従来発生していた、焼結時に発生するMLCC等積層セラミック電子部品の外部電極と内部電極接合部に空隙の発生を抑制する事が出来るため、信頼性の低下をもたらす原因を解決する事となる。
(3)[工程の短縮]金属微粉末を用いた電極ペーストによる外部電極形成の工程より短縮された製造工程とする事が出来る。
The following effects can be obtained by generating the external electrode with this process.
(1) [Formation of thin-film alloy electrode] By forming a film with a metal paste using an organometallic compound and tetraethylene glycol (TEG), a Cu-Ni alloy of micron to submicron (1 μm or less) without using a vacuum film forming technique, Thin film external electrodes can be formed. The effective utilization rate of the metal material can be reduced to 1/10 or less.
(2) [Improvement of reliability] By forming an external electrode to be a Cu-Ni alloy, there is a gap in the joint between the external electrode and the internal electrode of the multilayer ceramic electronic component, such as MLCC, which has occurred in the past, which occurs during sintering. Therefore, the cause of deterioration in reliability is solved.
(3) [Shortening of process] The manufacturing process can be shortened from the process of forming the external electrode by the electrode paste using the metal fine powder.

以下に示す条件を持って発明の基本構成とする。
(1)外部電極材料となるCu‐Ni成分を、有機金属化合物として酢酸銅と酢酸ニッケルを用いる事。
(2)混合媒体としてテトラエチレングリコール(TEG)を用いる事。有機金属化合物として酢酸銅(CuAc)と酢酸ニッケル(NiAc)とからなり、媒体としてテトラエチレングリコール(TEG)を用い、その酢酸塩と媒体のモル比が1:1から1:5となる混合体を用いる事。
(3)さらに、重要な事は酢酸銅とテトラエチレングリコール(TEG)の混合分散体を加熱処理して、増粘化と結晶水除去プロセスを加えて得られる安定な銅含有前駆体と、酢酸ニッケルとテトラエチレングリコール(TEG)の混合分散体を加熱処理して、増粘化と結晶水除去プロセスを加えて得られる安定なニッケル含有前駆体とを個別に作成すること。
(4)個別に作成した、安定な銅含有前駆体と安定なニッケル含有前駆体とを所望の割合に混合分散してなる銅-ニッケル含有ペーストを得ること。
(5)さらに、セラミック積層コンデンサに銅-ニッケル−含有ペーストを塗布し、焼成してCu‐ Ni合金の外部電極とすること、及び、積層セラミックコンデンサ(MLCC)とするものである。
The basic configuration of the present invention is as follows.
(1) Using Cu-Ni component as an external electrode material, copper acetate and nickel acetate as organometallic compounds.
(2) Use tetraethylene glycol (TEG) as the mixing medium. A mixture comprising copper acetate (CuAc) and nickel acetate (NiAc) as the organometallic compound, tetraethylene glycol (TEG) as the medium, and a molar ratio of the acetate to the medium being 1: 1 to 1: 5 Use that.
(3) Furthermore, the important thing is that a stable copper-containing precursor obtained by heat-treating a mixed dispersion of copper acetate and tetraethylene glycol (TEG) and adding a thickening process and a crystallization water removal process; Heating a mixed dispersion of nickel and tetraethylene glycol (TEG) to individually create a stable nickel-containing precursor obtained by adding a thickening and water removal process.
(4) To obtain a copper-nickel-containing paste prepared by mixing and dispersing a separately prepared stable copper-containing precursor and a stable nickel-containing precursor in a desired ratio.
(5) Further, a copper-nickel-containing paste is applied to the ceramic multilayer capacitor and fired to form an external electrode of a Cu-Ni alloy, and a multilayer ceramic capacitor (MLCC) is obtained.

此処で示す「安定した前駆体」とは、酢酸銅とテトラエチレングリコール(TEG)の混合分散、及び、酢酸ニッケルとテトラエチレングリコール(TEG)の混合分散において、増粘現象が見られるまで均一混合分散を行い、加熱処理して増粘と結晶化除去プロセスを加えて得られる混合物のことをいう。
それぞれの混合分散時間が短く、増粘現象が発生しない段階での混合物を用いた場合は、焼結工程で金属成分が酸化物となり良好な電極皮膜形成が困難となる。
さらに、安定な前駆体の工程を経ることなく酢酸銅、酢酸ニッケル、及び、テトラエチレングリコール(TEG)を同時に一括して混合した場合は、焼結工程で金属成分が酸化物となり良好な電極皮膜形成が困難である。
The "stable precursor" shown here is a uniform dispersion until a thickening phenomenon is observed in the mixed dispersion of copper acetate and tetraethylene glycol (TEG) and the mixed dispersion of nickel acetate and tetraethylene glycol (TEG). This refers to a mixture obtained by dispersing and heating to add a thickening and crystallization removal process.
When a mixture at a stage where the mixing and dispersion time is short and the thickening phenomenon does not occur is used, the metal component becomes an oxide in the sintering process, and it is difficult to form a good electrode film.
Furthermore, when copper acetate, nickel acetate, and tetraethylene glycol (TEG) are mixed together at the same time without going through a stable precursor process, the metal component becomes an oxide during the sintering process, and a good electrode film It is difficult to form.

本発明における積層セラミック部品の外部電極形成を目的とした薄層Cu‐Ni合金を得る湿式合成プロセスを、以下の実施例によって、さらに詳細に説明する。図1にプロセスの流れを示す。
フロー図左側では、酢酸銅(CuAc)とテトラエチレングリコール(TEG)を混合し、増粘現象が見られるまで長時間撹拌を行い、加熱処理することにより銅前駆体を得る。一方、フロー図右側では、同様に酢酸ニッケル(NiAc)とテトラエチレングリコール(TEG)を混合し、増粘現象が見られるまで長時間撹拌を行い、加熱処理することによりニッケル前駆体を得る。
前記銅前駆体と前記ニッケル前駆体を混合し、銅‐ニッケル含有ペーストを得る。さらに、前記銅‐ニッケル含有ペーストを基板に塗布し、窒素気流中で熱処理し、銅‐ニッケル合金膜を形成する。
The wet synthesis process for obtaining a thin layer Cu—Ni alloy for the purpose of forming the external electrode of the multilayer ceramic component in the present invention will be described in more detail by the following examples. FIG. 1 shows the process flow.
On the left side of the flow diagram, copper acetate (CuAc) and tetraethylene glycol (TEG) are mixed, stirred for a long time until a thickening phenomenon is observed, and heat-treated to obtain a copper precursor. On the other hand, on the right side of the flow chart, nickel acetate (NiAc) and tetraethylene glycol (TEG) are similarly mixed, stirred for a long time until a thickening phenomenon is observed, and heat-treated to obtain a nickel precursor.
The copper precursor and the nickel precursor are mixed to obtain a copper-nickel-containing paste. Further, the copper-nickel-containing paste is applied to a substrate and heat-treated in a nitrogen stream to form a copper-nickel alloy film.

酢酸銅(CuAc)とテトラエチレングリコール(TEG)をモル比1:4の割合で混合し、マグネチックスターラーにより室温で120時間撹拌を行うことによりCuAc‐TEG混合分散体を得た。同様に、酢酸ニッケル(NiAc)とテトラエチレングリコール(TEG)をモル比1:4の割合で混合し、マグネチックスターラーにより室温で120時間撹拌を行うことによりNiAc‐TEG混合分散体を得た。   Copper acetate (CuAc) and tetraethylene glycol (TEG) were mixed at a molar ratio of 1: 4, and stirred at room temperature for 120 hours with a magnetic stirrer to obtain a CuAc-TEG mixed dispersion. Similarly, nickel acetate (NiAc) and tetraethylene glycol (TEG) were mixed at a molar ratio of 1: 4, and stirred with a magnetic stirrer at room temperature for 120 hours to obtain a NiAc-TEG mixed dispersion.

前記CuAc‐TEG混合分散体および前記NiAc‐TEG混合分散体を、それぞれ120℃において1時間加熱処理することにより銅前駆体ならびにニッケル前駆体を得た。   The CuAc-TEG mixed dispersion and the NiAc-TEG mixed dispersion were each heat-treated at 120 ° C. for 1 hour to obtain a copper precursor and a nickel precursor.

調製した銅前駆体ならびにニッケル前駆体を、銅とニッケルの割合がモル比1:1になる割合で混合し、1時間以上マグネチックスターラーによる撹拌を行い、銅‐ニッケル含有ペーストを得た。   The prepared copper precursor and nickel precursor were mixed in such a ratio that the molar ratio of copper and nickel was 1: 1, and stirred with a magnetic stirrer for 1 hour or more to obtain a copper-nickel-containing paste.

前記銅-ニッケル含有ペーストの塗布は、5×10mmの大きさに穴をあけたメンディングテープ(厚さ58μm)を基板(スライドガラス)に貼ることにより作成した溝にペーストを垂らして、ガラス棒で均一に引き伸ばすことにより行った。そして、テープを剥がすことにより溝の大きさに保たれたペースト膜を得た。   The copper-nickel-containing paste is applied to a glass rod by dropping the paste into a groove created by sticking a mending tape (thickness: 58 μm) having a size of 5 × 10 mm to a substrate (slide glass). It was carried out by uniformly stretching with. And the paste film | membrane maintained by the magnitude | size of the groove | channel was obtained by peeling off a tape.

このペーストを塗布した基板は、赤外線反射炉(真空理工株式会社製 RHL-E44VHT)に入れ、石英反応管内へ20分窒素を流して置換した後、窒素気流中(1リットル/分)にて、120℃/分で昇温し500℃において60分保持し、銅‐ニッケル合金膜(Cu−Ni film)を形成し、終了後自然冷却した。   The substrate on which this paste was applied was placed in an infrared reflecting furnace (RHL-E44VHT manufactured by Vacuum Riko Co., Ltd.) and replaced by flowing nitrogen into the quartz reaction tube for 20 minutes, and then in a nitrogen stream (1 liter / minute). The temperature was raised at 120 ° C./min and held at 500 ° C. for 60 minutes to form a copper-nickel alloy film (Cu—Ni film), and then naturally cooled after completion.

調製したCu‐Ni合金膜は、図2の写真に示すように金属光沢が確認されるとともに図3のX線回析図に示すように酸化物の存在は確認されなかった。
また、図4のFE−SEM写真に示すように、緻密な膜形成状況を確認した。さらに、共焦点レーザー顕微鏡による測定結果は、平均膜厚0.75μmであった。
The prepared Cu—Ni alloy film was confirmed to have a metallic luster as shown in the photograph of FIG. 2, and the presence of oxide was not confirmed as shown in the X-ray diffraction diagram of FIG.
Moreover, as shown in the FE-SEM photograph of FIG. 4, the dense film formation situation was confirmed. Furthermore, the measurement result with a confocal laser microscope was an average film thickness of 0.75 μm.

本発明における薄層Cu‐Ni合金合成での酢酸塩とテトラエチレングリコール(TEG)の均一混合分散の重要性を、以下の実施例によって、さらに詳細に説明する。   The importance of homogeneous mixing and dispersion of acetate and tetraethylene glycol (TEG) in the synthesis of the thin layer Cu—Ni alloy in the present invention will be explained in more detail by the following examples.

酢酸銅(CuAc)とテトラエチレングリコール(TEG)をモル比1:4の割合で混合し、マグネチックスターラーにより室温で1、24、120時間撹拌を行うことにより3つのCuAc‐TEG混合分散体Cu‐1ならびにCu‐24、Cu‐120を得た。同様に、酢酸ニッケル(NiAc)と テトラエチレングリコール(TEG)をモル比 1:4の割合で混合し、マグネチックスターラーにより室温で1、24、120時間撹拌を行うことにより3つのNiAc‐TEG混合分散体Ni‐1ならびにNi‐24、Ni‐120を得た。   Copper acetate (CuAc) and tetraethylene glycol (TEG) are mixed at a molar ratio of 1: 4, and stirred for 1, 24, 120 hours at room temperature with a magnetic stirrer to obtain three CuAc-TEG mixed dispersion Cu -1 and Cu-24 and Cu-120 were obtained. Similarly, nickel acetate (NiAc) and tetraethylene glycol (TEG) are mixed at a molar ratio of 1: 4, and the mixture is stirred for 1, 24, 120 hours at room temperature with a magnetic stirrer to mix three NiAc-TEG. Dispersions Ni-1 and Ni-24, Ni-120 were obtained.

それぞれ3つのCuAc‐TEG混合分散体およびNiAc‐TEG混合分散体を、それぞれ120℃において1時間加熱処理することによりそれぞれ3つの銅前駆体ならびにニッケル前駆体を得た。   Three CuAc-TEG mixed dispersions and three NiAc-TEG mixed dispersions were respectively heat-treated at 120 ° C. for 1 hour to obtain three copper precursors and nickel precursors, respectively.

Cu‐1から得た銅前駆体とNi‐1から得たニッケル前駆体を、銅とニッケルの割合がモル比1:1になる割合で混合し、1時間以上マグネチックスターラーによる撹拌を行い、銅-ニッケル含有ペーストCu‐Ni‐1を得た。同様の操作で、Cu‐24とNi‐24からCu‐Ni‐24、Cu‐120とNi‐120からCu‐Ni‐120を得た。   The copper precursor obtained from Cu-1 and the nickel precursor obtained from Ni-1 were mixed at a ratio in which the ratio of copper and nickel was 1: 1, and stirred with a magnetic stirrer for 1 hour or more. A copper-nickel-containing paste Cu-Ni-1 was obtained. In the same manner, Cu-Ni-24 was obtained from Cu-24 and Ni-24, and Cu-Ni-120 was obtained from Cu-120 and Ni-120.

銅-ニッケル含有ペーストの塗布は、5×10mmの大きさに穴をあけたメンディングテープ(厚さ58μm)を基板(スライドガラス)に貼ることにより作成した溝にペーストを垂らして、ガラス棒で均一に引き伸ばすことにより行った。そして、テープを剥がすことにより溝の大きさに保たれたペースト膜を得た。   The copper-nickel-containing paste is applied by hanging a paste in a groove created by pasting a mending tape (thickness 58 μm) with a hole of 5 × 10 mm on a substrate (slide glass), and using a glass rod. Performed by uniformly stretching. And the paste film | membrane maintained by the magnitude | size of the groove | channel was obtained by peeling off a tape.

このペーストを塗布した基板は、赤外線反射炉に入れ、石英反応管内へ20分窒素を流して置換した後、窒素気流中(1リットル/分)にて、120℃/分で昇温し500℃において所定の時間保持し、終了後自然冷却した。   The substrate on which this paste was applied was placed in an infrared reflection furnace and replaced by flowing nitrogen into the quartz reaction tube for 20 minutes, and then heated at 120 ° C./minute in a nitrogen stream (1 liter / minute) to 500 ° C. The sample was held for a predetermined time and naturally cooled after completion.

表1に3つのCuAc‐TEG混合分散体ならびに、それをもとに合成した銅膜の状態を記した。   Table 1 shows the state of three CuAc-TEG mixed dispersions and the copper film synthesized based on them.

Figure 2008226670
同様に、表2には3つのNiAc‐TEG混合分散体ならびに、それをもとに合成したニッケル膜の状態を記した。
Figure 2008226670
Similarly, Table 2 shows three NiAc-TEG mixed dispersions and the state of a nickel film synthesized based on them.

Figure 2008226670
表3には3つの銅-ニッケル含有ペーストならびに、それをもとに調製した膜について記した。
Figure 2008226670
Table 3 shows three copper-nickel-containing pastes and films prepared based thereon.

Figure 2008226670
撹拌時間を短くして調製した銅-ニッケル含有ペーストCu‐Ni‐1およびCu‐Ni‐24は粘性が低いものであり、それを用いて作成した膜は、片寄りが見られるほか酸化物の形成が確認されたが、撹拌時間を長くして調製した銅‐ニッケル含有ペーストCu‐Ni‐120は粘性が高く、それを用いて作成した膜は均一であり、酸化物の形成が無かった。
Figure 2008226670
The copper-nickel-containing pastes Cu-Ni-1 and Cu-Ni-24 prepared by shortening the stirring time are low in viscosity, and the film made using the paste is not only offset but also has oxides. Although formation was confirmed, the copper-nickel-containing paste Cu-Ni-120 prepared by increasing the stirring time was highly viscous, and the film produced using the paste was uniform and no oxide was formed.

本発明における銅前駆体とニッケル前駆体とを所定の組成比で混合分散して得られる銅-ニッケル含有ペーストにより、薄膜Ni‐Cu合金合成が可能であることを以下の実施例によって、さらに詳細に説明する。   The thin film Ni-Cu alloy can be synthesized by the copper-nickel-containing paste obtained by mixing and dispersing the copper precursor and the nickel precursor at a predetermined composition ratio according to the present invention. Explained.

酢酸銅(CuAc)とテトラエチレングリコール(TEG)をモル比1:3の割合で混合し、マグネチックスターラーにより室温で120時間撹拌を行うことによりCuAc‐TEG混合分散体を得た。同様に、酢酸ニッケル(NiAc)とテトラエチレングリコール(TEG)をモル比1:3の割合で混合し、マグネチックスターラーにより室温で120時間撹拌を行うことによりNiAc‐TEG混合分散体を得た。   Copper acetate (CuAc) and tetraethylene glycol (TEG) were mixed at a molar ratio of 1: 3, and stirred with a magnetic stirrer at room temperature for 120 hours to obtain a CuAc-TEG mixed dispersion. Similarly, nickel acetate (NiAc) and tetraethylene glycol (TEG) were mixed at a molar ratio of 1: 3, and stirred with a magnetic stirrer at room temperature for 120 hours to obtain a NiAc-TEG mixed dispersion.

CuAc‐TEG混合分散体およびNiAc‐TEG混合分散体を、120℃において1時間加熱処理することにより銅前駆体ならびにニッケル前駆体を得た。   The CuAc-TEG mixed dispersion and the NiAc-TEG mixed dispersion were heat-treated at 120 ° C. for 1 hour to obtain a copper precursor and a nickel precursor.

調製した銅前駆体ならびにニッケル前駆体を所定の組成比(表4に示す)(試料A1=2:1、試料A2=1:1、試料A3=1:2)で混合し、1時間以上マグネチックスターラーによる撹拌を行い、3つの銅-ニッケル含有ペーストを得た。   The prepared copper precursor and nickel precursor were mixed at a predetermined composition ratio (shown in Table 4) (sample A1 = 2: 1, sample A2 = 1: 1, sample A3 = 1: 2), and magnetized for 1 hour or more. Stirring with a tic stirrer was performed to obtain three copper-nickel-containing pastes.

Figure 2008226670
Figure 2008226670

銅-ニッケル含有ペーストの塗布は、5×10mmの大きさに穴をあけたメンディングテープ(厚さ58μm)を基板(スライドガラス)に貼ることにより作成した溝に、ペーストを垂らしてガラス棒で均一に引き伸ばすことにより行った。そして、テープを剥がすことにより溝の大きさに保たれたペースト膜を得た。   The copper-nickel-containing paste is applied with a glass rod by dropping the paste into a groove created by pasting a mending tape (thickness 58 μm) with a hole of 5 × 10 mm on the substrate (slide glass). Performed by uniformly stretching. And the paste film | membrane maintained by the magnitude | size of the groove | channel was obtained by peeling off a tape.

このペーストを塗布した基板は、赤外線反射炉に入れ、石英反応管内へ20分窒素を流して置換した後、窒素気流中(1リットル/分)にて、120℃/分で昇温し500℃において10分保持し、終了後自然冷却した。   The substrate coated with this paste was placed in an infrared reflection furnace and replaced by flowing nitrogen into the quartz reaction tube for 20 minutes, and then heated at 120 ° C./minute in a nitrogen stream (1 liter / minute) to 500 ° C. Was held for 10 minutes, and naturally cooled after completion.

合成したCu‐Ni合金膜A1、A2、A3には、図5の写真に示すように金属光沢が確認された。また、これらの組成は、図6の合金膜のX線回折図に示すように、調製に用いた銅-ニッケル含有ペーストの金属比率と同様に、A1が銅リッチ組成、A2がニッケルと銅がほぼ同率の組成、A3がニッケルリッチ組成であることを確認した。   As shown in the photograph of FIG. 5, metallic luster was confirmed in the synthesized Cu—Ni alloy films A1, A2, and A3. In addition, as shown in the X-ray diffraction diagram of the alloy film in FIG. 6, these compositions are similar to the metal ratio of the copper-nickel-containing paste used for the preparation, A1 is a copper-rich composition, A2 is nickel and copper It was confirmed that the composition of almost the same ratio and A3 was a nickel-rich composition.

[比較例1]
本発明における合成プロセスに従わない場合に生じる不具合について、以下の比較例により、さらに詳細に説明する。図7に実施プロセスの流れを示す。
[Comparative Example 1]
The problems that occur when the synthesis process according to the present invention is not followed will be described in more detail by the following comparative example. FIG. 7 shows the flow of the implementation process.

NiAcおよびCuAc、TEGをモル比1:1:4で混合し、NiAc‐CuAc‐TEG混合物とした。   NiAc, CuAc, and TEG were mixed at a molar ratio of 1: 1: 4 to obtain a NiAc-CuAc-TEG mixture.

NiAc‐CuAc‐TEG混合物を120℃において1時間加熱還流することにより、銅-ニッケル含有ペーストを得た。   The NiAc-CuAc-TEG mixture was heated to reflux at 120 ° C. for 1 hour to obtain a copper-nickel-containing paste.

銅-ニッケル含有ペーストの塗布は、5×10mmの大きさに穴をあけたメンディングテープ(厚さ58μm)を基板(スライドガラス)に貼ることにより作成した溝に、ペーストを垂らしてガラス棒で均一に引き伸ばすことにより行った。そして、テープを剥がすことによりペースト膜を得た。   The copper-nickel-containing paste is applied with a glass rod by dropping the paste into a groove created by pasting a mending tape (thickness 58 μm) with a hole of 5 × 10 mm on the substrate (slide glass). Performed by uniformly stretching. And the paste film | membrane was obtained by peeling off a tape.

このペーストを塗布した基板は、横型管状炉に入れ、石英反応管内へ20分窒素を流して置換した後、窒素気流中(1リットル/分)にて、500℃まで10℃/分として昇温し、到達と同時にただちに自然冷却させた。   The substrate coated with this paste was placed in a horizontal tube furnace and replaced by flowing nitrogen into the quartz reaction tube for 20 minutes, and then heated up to 500 ° C. at 10 ° C./minute in a nitrogen stream (1 liter / minute). As soon as it arrived, it was allowed to cool naturally.

図7に示した手順により調製した銅-ニッケル含有ペーストは、粘性が低いほか沈降した粒子が目視される程の大きさとなる不均一混同体であった。また、これを用いて調製した膜は、図8のX線回折図に示すように、Cu‐Ni合金および酸化された合金形態が確認された。   The copper-nickel-containing paste prepared by the procedure shown in FIG. 7 was a non-homogeneous mixture having a low viscosity and a size such that the settled particles were visually observed. In addition, as shown in the X-ray diffraction pattern of FIG. 8, the film prepared using this was confirmed to have a Cu—Ni alloy and an oxidized alloy form.

実施例1により作製した外部電極用銅-ニッケル含有ペーストを用いて、MLCCとなる積層セラミックコンデンサの焼結体に塗布し、過熱焼成してCu‐ Ni合金の外部電極を形成した。
形成した外部電極は1μm以下Cu‐Ni合金を形成することを確認した。その後、スズめっきを行い、積層セラミックコンデンサとしての特性評価、及び、信頼性評価を行ない、信頼性結果に問題ないことを確認した。
Using the copper-nickel-containing paste for external electrodes produced in Example 1, it was applied to the sintered body of the multilayer ceramic capacitor to be MLCC, and overheated to form Cu-Ni alloy external electrodes.
It was confirmed that the formed external electrode formed a Cu—Ni alloy of 1 μm or less. Thereafter, tin plating was performed, and characteristics evaluation and reliability evaluation as a multilayer ceramic capacitor were performed, and it was confirmed that there was no problem in reliability results.

本発明の外部電極用銅-ニッケル含有ペースト及び銅-ニッケル合金膜の製造方法は、MLCCの外部電極形成に当たって、ミクロンからサブミクロン(1μm以下)のCu‐Ni合金、薄膜外部電極が形成でき、金属材料の有効利用率を高めることが出来る。
さらに、信頼性低下の原因となる外部電極と内部電極接合部の空隙の発生を解決するとともに、短縮された製造工程とする事が出来るものであり、産業上極めて有用なものである。
The copper-nickel-containing paste for external electrodes and the copper-nickel alloy film manufacturing method of the present invention can form micron to submicron (1 μm or less) Cu-Ni alloys and thin film external electrodes in forming MLCC external electrodes. The effective utilization rate of the metal material can be increased.
Further, it is possible to solve the generation of the gap between the external electrode and the internal electrode joint, which causes a decrease in reliability, and to achieve a shortened manufacturing process, which is extremely useful industrially.

本発明における薄層Cu‐Ni合金合成の実施プロセスを示すフロー図である。It is a flowchart which shows the implementation process of the thin layer Cu-Ni alloy synthesis | combination in this invention. Cu‐Ni合金膜の写真である。It is a photograph of a Cu-Ni alloy film. Cu‐Ni合金膜のX線回折図である。It is an X-ray diffraction pattern of a Cu-Ni alloy film. Cu‐Ni合金膜のFE‐SEM写真である。It is a FE-SEM photograph of a Cu-Ni alloy film. Cu‐Ni合金膜の写真(A1、A2、A3)である。It is a photograph (A1, A2, A3) of a Cu-Ni alloy film. 合金膜のX線回折図(A1、A2、A3)である。It is an X-ray diffraction diagram (A1, A2, A3) of the alloy film. 良好なCu‐Ni合金膜とならなかった実施プロセスを示すフロー図である。It is a flowchart which shows the implementation process which did not become a favorable Cu-Ni alloy film. 良好なCu‐Ni合金膜とならなかったX線回折図である。FIG. 6 is an X-ray diffraction diagram that does not provide a good Cu—Ni alloy film.

Claims (3)

有機金属化合物として酢酸銅と酢酸ニッケルからなり、媒体としてテトラエチレングリコールを用い、その酢酸化合物とテトラエチレングリコールの割合がモル比1:1〜1:5の範囲の混合体となり、Cu‐ Ni合金となる組成において、Cu(1‐x)‐Nix(X=1、及び、X=0を除く)組成範囲の銅−ニッケル含有ペースト。   Cu-Ni alloy consisting of copper acetate and nickel acetate as the organometallic compound, tetraethylene glycol as the medium, and a mixture of the acetic acid compound and tetraethylene glycol in a molar ratio range of 1: 1 to 1: 5 A copper-nickel-containing paste having a composition range of Cu (1-x) -Nix (excluding X = 1 and X = 0). 積層セラミックコンデンサに銅−ニッケル含有ペーストを塗布し、焼成してCu‐ Ni合金として用いる外部電極を備えた積層セラミック電子部品。   A multilayer ceramic electronic component comprising an external electrode that is applied as a Cu-Ni alloy by applying a copper-nickel-containing paste to a multilayer ceramic capacitor and firing it. 酢酸銅とテトラエチレングリコールを混合分散し、長時間撹拌し加熱処理して得られる銅含有前駆体と、酢酸ニッケルとテトラエチレングリコールを混合分散し、長時間撹拌し加熱処理して得られるニッケル含有前駆体とを個別に作成し、前記銅含有前駆体と前記ニッケル含有前駆体とを混合分散してなることを特徴とする銅−ニッケル含有ペーストの製造方法。   Copper-containing precursor obtained by mixing and dispersing copper acetate and tetraethylene glycol, stirring for a long time and heat treatment, and nickel containing obtained by mixing and dispersing nickel acetate and tetraethylene glycol, stirring for a long time and heat treatment A method for producing a copper-nickel-containing paste, wherein a precursor is prepared separately, and the copper-containing precursor and the nickel-containing precursor are mixed and dispersed.
JP2007063964A 2007-03-13 2007-03-13 Copper-nickel-containing paste, multilayer ceramic electronic component, and method for producing copper-nickel-containing paste Active JP4872085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063964A JP4872085B2 (en) 2007-03-13 2007-03-13 Copper-nickel-containing paste, multilayer ceramic electronic component, and method for producing copper-nickel-containing paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063964A JP4872085B2 (en) 2007-03-13 2007-03-13 Copper-nickel-containing paste, multilayer ceramic electronic component, and method for producing copper-nickel-containing paste

Publications (2)

Publication Number Publication Date
JP2008226670A true JP2008226670A (en) 2008-09-25
JP4872085B2 JP4872085B2 (en) 2012-02-08

Family

ID=39845036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063964A Active JP4872085B2 (en) 2007-03-13 2007-03-13 Copper-nickel-containing paste, multilayer ceramic electronic component, and method for producing copper-nickel-containing paste

Country Status (1)

Country Link
JP (1) JP4872085B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105954A (en) * 2009-01-28 2011-06-22 株式会社村田制作所 Multilayer electronic component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214258A (en) * 1998-01-23 1999-08-06 Murata Mfg Co Ltd Non-linear dielectric element
JP2002246258A (en) * 2001-02-20 2002-08-30 Daiken Kagaku Kogyo Kk Ceramic electronic component and its manufacturing method
JP2005340289A (en) * 2004-05-24 2005-12-08 Sekisui Chem Co Ltd Manufacturing method of laminated ceramic element
JP2006041371A (en) * 2004-07-29 2006-02-09 Kyocera Corp Laminated ceramic capacitor, and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214258A (en) * 1998-01-23 1999-08-06 Murata Mfg Co Ltd Non-linear dielectric element
JP2002246258A (en) * 2001-02-20 2002-08-30 Daiken Kagaku Kogyo Kk Ceramic electronic component and its manufacturing method
JP2005340289A (en) * 2004-05-24 2005-12-08 Sekisui Chem Co Ltd Manufacturing method of laminated ceramic element
JP2006041371A (en) * 2004-07-29 2006-02-09 Kyocera Corp Laminated ceramic capacitor, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105954A (en) * 2009-01-28 2011-06-22 株式会社村田制作所 Multilayer electronic component
JP5099609B2 (en) * 2009-01-28 2012-12-19 株式会社村田製作所 Multilayer electronic components

Also Published As

Publication number Publication date
JP4872085B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
KR100711505B1 (en) Silver paste for forming conductive layers
TWI536877B (en) Via-holed ceramic substrate,metallized via-holed ceramic substrate,and method for manufacture thereof
TW201511036A (en) Thick print copper pastes for aluminum nitride substrates
JP3629783B2 (en) Circuit board
KR102097820B1 (en) Preparation method for Heat Pipe
JP2017063109A (en) Via filling substrate, manufacturing method thereof, and precursor
JP5376255B2 (en) Firing type conductive copper paste
JPS58213070A (en) Manufacture of surface coated with conductive pigment
JP5732520B1 (en) Silver particle production method and silver particles produced by the method
JP7205974B2 (en) Film manufacturing method
JP2004323866A (en) Method for manufacturing nickel powder, and nickel powder
JP5707885B2 (en) Power module substrate, power module substrate with cooler, power module, and method of manufacturing power module substrate
JP2009158441A (en) Conductive paste, and formation method of copper film using the same
JP4872085B2 (en) Copper-nickel-containing paste, multilayer ceramic electronic component, and method for producing copper-nickel-containing paste
JP3563832B2 (en) Method for metallizing ferrite using surface reduction
JP2011034732A (en) Conductive composition, conductor and method of manufacturing the same
KR20070079548A (en) Conductive paste and multi-layer printed circuit board using the same
JP3414502B2 (en) Noble metal powder and conductor paste for high temperature firing
JP2005005054A (en) Conductive paste
JP2010218958A (en) Copper-tin-containing paste, manufacturing method of copper-tin-containing paste, electrode for lithium ion secondary battery, and kit for forming copper-tin-containing paste
JP3918450B2 (en) Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component
JP2016072622A (en) SUBSTRATE FOR POWER MODULE WITH Ag SUBSTRATE LAYER AND POWER MODULE
JP5267487B2 (en) Printed wiring board substrate and method for manufacturing printed wiring board substrate
JP2018049939A (en) Bonding material and bonded body
JP2017201686A (en) Metallized substrate and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

A977 Report on retrieval

Effective date: 20110607

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110801

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110928

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20111021

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150