JP2001080959A - Dielectric ceramic composition and laminated ceramic parts - Google Patents

Dielectric ceramic composition and laminated ceramic parts

Info

Publication number
JP2001080959A
JP2001080959A JP25355399A JP25355399A JP2001080959A JP 2001080959 A JP2001080959 A JP 2001080959A JP 25355399 A JP25355399 A JP 25355399A JP 25355399 A JP25355399 A JP 25355399A JP 2001080959 A JP2001080959 A JP 2001080959A
Authority
JP
Japan
Prior art keywords
oxide
dielectric
glass
component
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25355399A
Other languages
Japanese (ja)
Other versions
JP3678072B2 (en
Inventor
Hiroaki Matoba
弘明 的場
Harunobu Sano
晴信 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP25355399A priority Critical patent/JP3678072B2/en
Priority to DE10043882A priority patent/DE10043882B4/en
Priority to GB0022008A priority patent/GB2353995B/en
Priority to KR10-2000-0053068A priority patent/KR100379204B1/en
Priority to TW089118322A priority patent/TW455885B/en
Priority to US09/657,198 priority patent/US6385035B1/en
Publication of JP2001080959A publication Critical patent/JP2001080959A/en
Application granted granted Critical
Publication of JP3678072B2 publication Critical patent/JP3678072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a ceramic having high dielectric constant and Q value, almost free form fluctuation of the characteristics and capable of being sintered at a low temperature by incorporating, as a first sub-component, SiO2 glass free from a Pb oxide in a specific ratio and, as a second sub-component, an Mn oxide in a specified ratio into a particular main component. SOLUTION: This composition is expressed by the formula x(BaαCaβ Srγ)O- y[TiO2)1-m(ZrO2)m]-zRe2O3 (wherein, x+y+z=100; α+β+γ=1; 0<=β+γ<0.8; 0<=m<0.15; and Re is at least one rare earth element). The content (a) of the first sub-component is >=0.1 and <=25 pts.wt. and the content (b) of the second sub-component is >1.5 and <=20 pts.wt. expressed in terms of MnO, each content being based on 100 pts.wt. of the main component whose molar composition ratio (BaαCaβSrγ)O, [(TiO2)1-m(ZrO2)m], Re2O3} of (BaαCaβSrγ)O, [(TiO2)1-m] and Re2O3 is contained in a region surrounded by points A (7, 85, 8), B (7, 59, 34), C (0, 59, 41) and D (0, 85, 15).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、温度補償用の誘電
体セラミック組成物、及びそれを用いた積層セラミック
コンデンサや積層LCフィルタ等の積層セラミック部品
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition for temperature compensation and a multilayer ceramic component using the same, such as a multilayer ceramic capacitor or a multilayer LC filter.

【0002】[0002]

【従来の技術】従来から、温度補償用のセラミックコン
デンサは各種電子機器の中で、同調、共振用などとして
広く用いられ、小型でかつ誘電損失が小さく誘電特性の
安定したコンデンサが求められている。このための誘電
体セラミックの条件としては、小型化の要求に対して比
誘電率が大きいことと、誘電損失が小さい(すなわち、
Q値が大きい)ことなどがあげられる。
2. Description of the Related Art Conventionally, ceramic capacitors for temperature compensation have been widely used for tuning, resonance and the like in various electronic devices, and there has been a demand for a capacitor having a small size, a small dielectric loss and a stable dielectric characteristic. . For this purpose, the dielectric ceramic is required to have a large relative dielectric constant and a small dielectric loss in response to a demand for miniaturization (that is, a small dielectric loss).
Q value is large).

【0003】このような誘電体セラミックとして、Ba
O−TiO2系の誘電体セラミック組成物が提案されて
いる[H.M.O'Brayan,J.Am.Cera
m.Soc.,57(1974)450;特公昭58−
20905号公報など]。そして、これらの誘電体セラ
ミック組成物を用いた積層セラミックコンデンサが実用
化されているが、焼成温度が1300℃〜1400℃と
高いため、内部電極として高温に耐えるパラジウム(P
d)や白金(Pt)などを使用しなくてはならない。
As such a dielectric ceramic, Ba is used.
O-TiO 2 based dielectric ceramic compositions have been proposed [H. M. O'Brayan, J .; Am. Cera
m. Soc. , 57 (1974) 450;
20905, etc.]. Multilayer ceramic capacitors using these dielectric ceramic compositions have been put to practical use. However, since the firing temperature is as high as 1300 ° C. to 1400 ° C., palladium (P
d) or platinum (Pt) must be used.

【0004】ところが、近年、低温焼成が可能な誘電体
セラミック組成物として、BaO−TiO2−Nd23
系の主成分にPbO−ZnO−B23−Al23−Si
2系のガラスを添加した誘電体セラミック組成物(特
開平5−234420号公報)や、BaO−TiO2
Nd23系の主成分にPbO−V25−B23−SiO
2系のガラスを添加した誘電体セラミック組成物(特開
平8−239262号公報)や、BaO−TiO2−N
23−Sm23系の主成分にPbO−ZnO−B23
系などの軟化点が500℃以下のガラスを添加した誘電
体セラミック組成物(特開平9−71462号公報)が
提案されている。
However, in recent years, BaO—TiO 2 —Nd 2 O 3 has been used as a dielectric ceramic composition that can be fired at a low temperature.
The main component of the system PbO-ZnO-B 2 O 3 -Al 2 O 3 -Si
Dielectric ceramic compositions to which O 2 -based glass is added (JP-A-5-234420), BaO-TiO 2-
Nd 2 O 3 based main component PbO-V 2 O 5 -B 2 O 3 -SiO of
Dielectric ceramic compositions (Japanese Patent Application Laid-Open No. 8-239262) to which a two- system glass is added, BaO-TiO 2 -N
d 2 O 3 -Sm 2 O 3 based PbO-ZnO-B 2 O 3 as a main component of
A dielectric ceramic composition to which glass having a softening point of 500 ° C. or lower such as a system is added (Japanese Patent Application Laid-Open No. 9-71462) has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
特開平5−234420号公報、特開平8−23926
2号公報、及び特開平9−71462号公報に開示され
た誘電体セラミック組成物は、低温焼結化のために、い
ずれもPb酸化物成分を含んだガラスが添加されてい
る。
However, Japanese Patent Application Laid-Open Nos. Hei 5-234420 and Hei 8-23926 describe the above.
In each of the dielectric ceramic compositions disclosed in JP-A No. 2 and JP-A-9-71462, glass containing a Pb oxide component is added for low-temperature sintering.

【0006】ところが、このPb酸化物成分は焼成時の
揮発性が高く、ガラス作製時やセラミック焼成時に、ロ
ット内あるいはロット間で含有量にばらつきを生じ、そ
の結果得られるセラミックの特性が変動しやすいという
問題点を有していた。
However, this Pb oxide component has a high volatility at the time of sintering, and the content thereof varies within a lot or between lots at the time of producing a glass or sintering a ceramic. There was a problem that it was easy.

【0007】一方、特開平9−71462号公報に記載
されているように、Pb成分を含まないガラスは軟化点
が500℃よりも高いものが多く、低温焼成には不利で
あるという問題点を有していた。
On the other hand, as described in JP-A-9-71462, glass containing no Pb component often has a softening point higher than 500 ° C., which is disadvantageous for low-temperature firing. Had.

【0008】そこで、本発明の目的は、比誘電率及びQ
値が高く、低温焼結が可能であって、焼成によるセラミ
ックの特性変動の少ない、高い信頼性を有する温度補償
用の誘電体セラミック組成物、及びそれを用いた積層セ
ラミックコンデンサや積層LCフィルタ等の積層セラミ
ック部品を提供することにある。
Accordingly, an object of the present invention is to provide a dielectric constant and a Q value.
Highly reliable dielectric ceramic composition for temperature compensation having high value, capable of low-temperature sintering, and having little variation in ceramic characteristics due to firing, and multilayer ceramic capacitors and multilayer LC filters using the same. To provide a multilayer ceramic component.

【0009】[0009]

【課題を解決するための手段】以上の目的を達成するた
め、請求項1において、本発明の誘電体セラミック組成
物は、式x(BaαCaβSrγ)O−y[(Ti
21-m(ZrO2m ]−zRe23(但し、式中、
x+y+z=100、α+β+γ=1、0≦β+γ<
0.8、0≦m<0.15であって、Reは少なくとも
1種以上の希土類元素。)で表わされ、これら(Baα
CaβSrγ)Oと[(TiO21-m(ZrO2m
とRe23のモル組成比{(BaαCaβSrγ)O,
[(TiO2 1-m(ZrO2m ],Re23}が、添
付の図1に示す3元組成図において、点A(7,85,
8),点B(7,59,34),点C(0,59,4
1),点D(0,85,15)で囲まれた領域内(但
し、点A,点Bを結ぶ線上は含まない。)にある主成分
100重量部に対して、第1の副成分としてガラスを含
有しており、該ガラスはSiO2系のガラス(但し、P
b酸化物を含まず)であって、その含有量a(重量部)
は0.1≦a≦25であり、かつ、第2の副成分として
Mn酸化物を含有しており、該Mn酸化物の含有量b
(重量部)はMnOに換算して0.5<b≦20である
ことを特徴とする。
[MEANS FOR SOLVING THE PROBLEMS]
According to claim 1, the dielectric ceramic composition of the present invention
The product has the formula x (BaαCaβSrγ) Oy [(Ti
OTwo)1-m(ZrOTwo)m ] -ZReTwoOThree(However, in the formula,
x + y + z = 100, α + β + γ = 1, 0 ≦ β + γ <
0.8, 0 ≦ m <0.15, and Re is at least
One or more rare earth elements. ), And these (Baα
CaβSrγ) O and [(TiOTwo)1-m(ZrOTwo)m ]
And ReTwoOThreeThe molar composition ratio of {(BaαCaβSrγ) O,
[(TiOTwo) 1-m(ZrOTwo)m ], ReTwoOThree},
In the ternary composition diagram shown in FIG. 1 attached, the point A (7,85,
8), point B (7, 59, 34), point C (0, 59, 4)
1), within the area surrounded by point D (0, 85, 15) (however,
However, it does not include on the line connecting the points A and B. )
Glass is included as the first subcomponent with respect to 100 parts by weight.
The glass is SiOTwoSystem glass (however, P
b containing no oxide), and having a content a (parts by weight)
Is 0.1 ≦ a ≦ 25, and as a second subcomponent
Mn oxide is contained, and the content b of the Mn oxide
(Parts by weight) is 0.5 <b ≦ 20 in terms of MnO.
It is characterized by the following.

【0010】また、請求項2において、本発明の誘電体
セラミック組成物は、前記第1の副成分としてのガラス
が、B23−SiO2系のガラス(但し、Pb酸化物を
含まず)であることを特徴とする。
According to a second aspect of the present invention, in the dielectric ceramic composition of the present invention, the glass as the first subcomponent is a B 2 O 3 —SiO 2 glass (but not containing a Pb oxide. ).

【0011】また、請求項3において、本発明の誘電体
セラミック組成物は、前記第1及び第2の副成分に加え
て、前記主成分100重量部に対して、第3の副成分と
してCu酸化物を含有しており、該Cu酸化物の含有量
c(重量部)はCuOに換算してc≦10であることを
特徴とする。
According to a third aspect of the present invention, in addition to the first and second subcomponents, the dielectric ceramic composition of the present invention further comprises Cu as a third subcomponent based on 100 parts by weight of the main component. An oxide is contained, and the content c (parts by weight) of the Cu oxide is c ≦ 10 in terms of CuO.

【0012】また、請求項4において、本発明の積層セ
ラミック部品は、複数の誘電体セラミック層と、該誘電
体セラミック層間に形成された内部電極と、該内部電極
に電気的に接続された外部電極とを備え、前記誘電体セ
ラミック層が請求項1〜3のいずれかに記載の誘電体セ
ラミック組成物で構成され、前記内部電極がCuまたは
Agを主成分として構成されていることを特徴とする。
According to a fourth aspect of the present invention, there is provided a multilayer ceramic component according to the present invention, wherein a plurality of dielectric ceramic layers, an internal electrode formed between the dielectric ceramic layers, and an external electrode electrically connected to the internal electrode. And an electrode, wherein the dielectric ceramic layer is composed of the dielectric ceramic composition according to any one of claims 1 to 3, and the internal electrode is composed mainly of Cu or Ag. I do.

【0013】なお、本発明でいう希土類元素Reとは、
La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、T
b、Dy、Ho、Er、Tm、YbまたはLuのことを
いう。
The rare earth element Re in the present invention is:
La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, T
b, Dy, Ho, Er, Tm, Yb or Lu.

【0014】[0014]

【発明の実施の形態】まず、本発明の一実施形態による
積層セラミックコンデンサの基本構造を図面により説明
する。図2は積層セラミックコンデンサの一例を示す断
面図、図3は図2の積層セラミックコンデンサのうち、
内部電極を有する誘電体セラミック層部分を示す平面
図、図4は図2の積層セラミックコンデンサのうち、セ
ラミック積層体部分を示す分解斜視図である。
First, the basic structure of a multilayer ceramic capacitor according to an embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a cross-sectional view showing an example of the multilayer ceramic capacitor, and FIG.
FIG. 4 is a plan view showing a dielectric ceramic layer portion having internal electrodes, and FIG. 4 is an exploded perspective view showing a ceramic laminate portion of the multilayer ceramic capacitor of FIG.

【0015】本実施形態による積層セラミックコンデン
サ1は、図2に示すように、内部電極4を介して複数枚
の誘電体セラミック層2a、2bを積層して得られた直
方体形状のセラミック積層体3を備える。このセラミッ
ク積層体3の両端面上には、内部電極4の特定の電極に
電気的に接続されるように、外部電極5がそれぞれ形成
され、その上には、必要に応じて、第1のメッキ層6、
第2のメッキ層7が形成されている。
As shown in FIG. 2, a multilayer ceramic capacitor 1 according to the present embodiment has a rectangular parallelepiped ceramic laminate 3 obtained by laminating a plurality of dielectric ceramic layers 2a and 2b via internal electrodes 4. Is provided. External electrodes 5 are respectively formed on both end surfaces of the ceramic laminate 3 so as to be electrically connected to a specific electrode of the internal electrode 4. Plating layer 6,
A second plating layer 7 is formed.

【0016】次に、この積層セラミックコンデンサ1の
製造方法について製造工程順に説明する。
Next, a method of manufacturing the multilayer ceramic capacitor 1 will be described in the order of manufacturing steps.

【0017】まず、誘電体セラミック層2a及び2bの
成分となる、所定比率に秤量し混合した原料粉末を用意
する。すなわち、BaO−TiO2−Re23系の主成
分(但し、BaをCa,Srで置換したもの、 TiO2
をZrO2で置換した場合を含む。)と、第1の副成分
としてSiO2系またはB23−SiO2系のガラス(但
し、いずれもPb酸化物を含まず)と、第2の副成分と
してMn酸化物とを含有する誘電体セラミック組成物を
生成し得る原料粉末を用意する。さらに好ましくは、第
3の副成分としてCu酸化物を含有する誘電体セラミッ
ク組成物を生成し得る原料粉末を用意する。
First, raw material powders, which are components of the dielectric ceramic layers 2a and 2b and are weighed and mixed at a predetermined ratio, are prepared. That is, a main component of BaO—TiO 2 —Re 2 O 3 system (however, Ba is replaced by Ca or Sr, TiO 2
Is replaced with ZrO 2 . ), A SiO 2 -based or B 2 O 3 —SiO 2 -based glass (but not containing any Pb oxide) as a first subcomponent, and a Mn oxide as a second subcomponent. A raw material powder capable of producing a dielectric ceramic composition is prepared. More preferably, a raw material powder capable of producing a dielectric ceramic composition containing a Cu oxide as a third subcomponent is prepared.

【0018】次に、この原料粉末に有機バインダを加え
てスラリー化し、このスラリーをシート状に成形して、
誘電体セラミック層2a、2bのためのグリーンシート
を得る。その後、図3に示すように、誘電体セラミック
層2bとなるグリーンシートの一方の主面上にCuまた
はAgを主成分とする内部電極4を形成する。なお、内
部電極4を形成する方法は、スクリーン印刷などによる
形成でも、蒸着、メッキ法による形成でもどちらでも構
わない。
Next, an organic binder is added to the raw material powder to form a slurry, and the slurry is formed into a sheet.
Green sheets for the dielectric ceramic layers 2a and 2b are obtained. Thereafter, as shown in FIG. 3, an internal electrode 4 containing Cu or Ag as a main component is formed on one main surface of the green sheet to be the dielectric ceramic layer 2b. The method for forming the internal electrodes 4 may be either screen printing or the like, or may be deposition or plating.

【0019】次に、図4に示すように、内部電極4を有
する誘電体セラミック層2bのためのグリーンシートを
必要枚数積層した後、内部電極を有しない誘電体セラミ
ック層2aのための各グリーンシートの間に挟んで圧着
し、グリーンシートの積層体とする。その後、この積層
体を所定の温度にて焼成し、図2に示すセラミック積層
体3を得る。
Next, as shown in FIG. 4, after laminating a required number of green sheets for the dielectric ceramic layer 2b having the internal electrodes 4, each green sheet for the dielectric ceramic layer 2a having no internal electrodes is formed. The sheet is sandwiched between the sheets and pressed to form a green sheet laminate. Thereafter, the laminate is fired at a predetermined temperature to obtain a ceramic laminate 3 shown in FIG.

【0020】次に、得られたセラミック積層体3の両端
面に、内部電極4と電気的に接続するように、外部電極
5を形成する。この外部電極5の材料としては、内部電
極4と同じ材料を使用することができ、例えば、銀−パ
ラジウム合金などが使用可能である。また、これらの金
属粉末に、B23−SiO2−BaO系のガラス、Li2
O−SiO2−BaO系のガラスなどのガラスフリット
を添加したものも使用されるが、積層セラミックコンデ
ンサの用途、使用場所などを考慮に入れて適当な材料が
選択される。また、外部電極5は、材料となる金属粉末
ペーストを、焼成により得られたセラミック積層体3に
塗布して焼き付けることによって形成されるが、使用す
る電極材料により、焼成前にグリーンシート積層体に塗
布して、セラミック積層体3と同時に形成してもよい。
Next, external electrodes 5 are formed on both end surfaces of the obtained ceramic laminate 3 so as to be electrically connected to the internal electrodes 4. As the material of the external electrode 5, the same material as that of the internal electrode 4 can be used, and for example, a silver-palladium alloy or the like can be used. In addition, B 2 O 3 —SiO 2 —BaO-based glass, Li 2
Although a glass frit such as an O—SiO 2 —BaO-based glass is also used, an appropriate material is selected in consideration of the use and place of use of the multilayer ceramic capacitor. Further, the external electrode 5 is formed by applying a metal powder paste as a material to the ceramic laminate 3 obtained by firing and baking, but depending on an electrode material to be used, a green sheet laminate is formed before firing. It may be applied and formed simultaneously with the ceramic laminate 3.

【0021】次に、外部電極5の表面上にニッケル、銅
などのメッキを施し、第1のメッキ層6を形成し、最後
に、この第1のメッキ層6の上に、はんだ、錫などの第
2のメッキ層7を形成し、積層セラミックコンデンサ1
を完成させる。なお、このように外部電極5の表面上
に、さらにメッキなどで導体層を形成することは、積層
セラミックコンデンサの用途や使用場所によっては省略
することもできる。
Next, the surface of the external electrode 5 is plated with nickel, copper, or the like to form a first plating layer 6, and finally, on the first plating layer 6, solder, tin, or the like is formed. No.
2 is formed, and the multilayer ceramic capacitor 1 is formed.
To complete. It should be noted that forming a conductor layer on the surface of the external electrode 5 by plating or the like may be omitted depending on the use and place of use of the multilayer ceramic capacitor.

【0022】以上のように、積層セラミックコンデンサ
の誘電体として用いる本発明のセラミック組成物は、C
uやAgの融点よりも低温で焼成することが可能であ
る。そして、得られるセラミックの比誘電率は30以上
と高く、Q値は1MHzで1000以上と高く、静電容
量温度係数(TCC)が±30ppm/℃以内と小さ
い。また、第1の副成分のガラスをB23−SiO2
のガラス(但し、Pb酸化物を含まず)とすることによ
り、低温焼結を促進することができる。さらに、第3の
副成分として、所定量のCu酸化物をセラミック組成物
中に含有させることにより、より低温焼結化が可能にな
る。
As described above, the ceramic composition of the present invention used as the dielectric of the multilayer ceramic capacitor has the following characteristics:
It is possible to fire at a temperature lower than the melting point of u or Ag. The relative permittivity of the obtained ceramic is as high as 30 or more, the Q value is as high as 1000 or more at 1 MHz, and the capacitance temperature coefficient (TCC) is as small as ± 30 ppm / ° C. Also, by placing the glass of the first subcomponent B 2 O 3 -SiO 2 glass (but not including Pb oxide), can facilitate the low-temperature sintering. Furthermore, by including a predetermined amount of Cu oxide as a third subcomponent in the ceramic composition, sintering at a lower temperature can be performed.

【0023】[0023]

【実施例】次に、本発明を実施例にもとづき、さらに具
体的に説明する。
Next, the present invention will be described more specifically based on examples.

【0024】(実施例1)本発明の誘電体セラミック組
成物とそれを用いたセラミックコンデンサを以下のよう
にして作製した。
(Example 1) A dielectric ceramic composition of the present invention and a ceramic capacitor using the same were produced as follows.

【0025】まず、出発原料として、炭酸バリウム(B
aCO3)、炭酸カルシウム(CaCO3)、炭酸ストロ
ンチウム(SrCO3)、酸化チタン(TiO2)、酸化
ジルコニウム(ZrO2)、希土類酸化物(Re
23)、炭酸マンガン(MnCO3)、及び酸化銅(C
uO)を用意した。
First, as a starting material, barium carbonate (B
aCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), rare earth oxide (Re
2 O 3 ), manganese carbonate (MnCO 3 ), and copper oxide (C
uO) was prepared.

【0026】その後、これらの原料粉末を、表1,表2
に示す各組成物(但し、第1の副成分としてのガラス成
分を除く。)が得られるように秤量し、エタノールと共
にボールミルに入れて16時間湿式混合し、乾燥後、粉
砕し、1040℃で仮焼して仮焼済み粉末を得た。この
とき得られた仮焼粉体の平均粒径は0.9μmであっ
た。なお、第2の副成分としてのMnOの含有量、並び
に第3の副成分としてのCuOの含有量は、主成分であ
る{x(BaαCaβSrγ)O−y[(TiO 21-m
(ZrO2m ]−zRe23}(但し、式中、x+y
+z=100、α+β+γ=1、0≦β+γ<0.8、
0≦m<0.15であって、Reは少なくとも1種以上
の希土類元素 。)100重量部に対する部数を示す。
また、表1,表2において、試料番号に*印を付したも
のは本発明の範囲外のものであり、その他は本発明の範
囲内のものである。
After that, these raw material powders were used in Tables 1 and 2
Each composition shown in the following (however, the glass component as the first subcomponent)
Excluding minutes. ), And weigh with ethanol.
Into a ball mill and wet-mix for 16 hours.
Crushed and calcined at 1040 ° C. to obtain calcined powder. this
The average particle size of the obtained calcined powder was 0.9 μm.
Was. In addition, the content of MnO as the second subcomponent,
The content of CuO as the third subcomponent is the main component.
{X (BaαCaβSrγ) Oy [(TiO Two)1-m
(ZrOTwo)m ] -ZReTwoOThree} (Where x + y
+ Z = 100, α + β + γ = 1, 0 ≦ β + γ <0.8,
0 ≦ m <0.15, and Re is at least one or more
Rare earth elements. ) Shows the number of parts per 100 parts by weight.
In Tables 1 and 2, the sample number was marked with *.
Are outside the scope of the present invention, and the others are within the scope of the present invention.
It is in the box.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】また、第1の副成分として、表3に示すガ
ラス種A〜G,及びIのSiO2系またはB23−Si
2系のガラス粉末(但し、係数は重量%)を準備し
た。
Further, as the first subcomponent, glass types A to G and I shown in Table 3 and SiO 2 or B 2 O 3 --Si
An O 2 -based glass powder (with a coefficient of% by weight) was prepared.

【0030】[0030]

【表3】 [Table 3]

【0031】次に、このガラス粉末と先に得た仮焼済み
粉末とを、表1,表2に示す割合で秤量し、ポリビニル
ブチラール溶液を加えて混合してスラリー化し、このス
ラリーをドクターブレード法でシート状に成形して、厚
み50μmのグリーンシートを得た。なお、ガラスの含
有量は、主成分である{x(BaαCaβSrγ)O−
y[(TiO21-m(ZrO2m ]−zRe23
(但し、式中、x+y+z=100、α+β+γ=1、
0≦β+γ<0.8、0≦m<0.15であって、Re
は少なくとも1種以上の希土類元素 。)100重量部
に対する部数を示す。
Next, the glass powder and the calcined powder obtained above were weighed at the ratios shown in Tables 1 and 2, and a polyvinyl butyral solution was added and mixed to form a slurry. A green sheet having a thickness of 50 μm was obtained by molding into a sheet by the method. In addition, the content of the glass is represented by the following formula: Δx (BaαCaβSrγ) O-
y [(TiO 2 ) 1-m (ZrO 2 ) m ] -zRe 2 O 3
(Where x + y + z = 100, α + β + γ = 1,
0 ≦ β + γ <0.8, 0 ≦ m <0.15, and Re
Is at least one or more rare earth elements. ) Indicates the number of parts per 100 parts by weight.

【0032】次に、得られたグリーンシートを複数枚
(13枚)積み重ねて圧着した後、打ち抜いて、直径1
4mm、厚さ0.5mmの成形体を得た。その後、この
成形体をN2雰囲気中で350℃で熱処理してバインダ
ーを除去した後、 H2−N2−H 2Oガスからなる還元雰
囲気中において、表4,表5に示す焼成温度で2時間焼
成して円板状のセラミックを得た。そして、得られたセ
ラミックの両主面にIn−Ga電極を塗布して単層の円
板型セラミックコンデンサとした。
Next, a plurality of green sheets are obtained.
(13 pieces) After stacking and crimping, punching out, diameter 1
A molded product having a thickness of 4 mm and a thickness of 0.5 mm was obtained. Then this
NTwoBinder after heat treatment at 350 ° C in atmosphere
After removingTwo-NTwo-H TwoReducing atmosphere made of O gas
In an atmosphere, bake for 2 hours at the baking temperature shown in Tables 4 and 5.
Thus, a disk-shaped ceramic was obtained. And the obtained security
A single-layer circle formed by coating In-Ga electrodes on both main surfaces of the lamic
A plate-type ceramic capacitor was used.

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】次に、これらセラミックコンデンサの電気
特性を測定した。静電容量及びQは、20℃で周波数1
MHz、電圧1Vrmsにて測定し、試料の直径
(D)、厚み(T)の寸法を測定し、静電容量から比誘
電率(εr)を算出した。また、TCC(静電容量温度
係数)は、20℃と85℃の各静電容量を測定して下記
の数式1に従って算出した。但し、式中、Cap20は
20℃における静電容量[pF]を表わし、Cap85は8
5℃における静電容量[pF]を表わす。
Next, the electrical characteristics of these ceramic capacitors were measured. Capacitance and Q are frequency 1 at 20 ° C.
The sample was measured at MHz and a voltage of 1 Vrms, the dimensions of the sample diameter (D) and thickness (T) were measured, and the relative dielectric constant (εr) was calculated from the capacitance. The TCC (capacitance temperature coefficient) was calculated according to the following formula 1 by measuring each capacitance at 20 ° C. and 85 ° C. Here, in the formula, Cap20 represents the capacitance [pF] at 20 ° C., and Cap85 is 8
Indicates the capacitance [pF] at 5 ° C.

【0036】[0036]

【数式1】 以上の結果を表4,表5に示す。なお、表4,表5にお
いて、試料番号に*印を付したものは本発明の範囲外の
ものであり、その他は本発明の範囲内のものである。
[Formula 1] Tables 4 and 5 show the above results. In Tables 4 and 5, samples marked with an asterisk (*) are out of the scope of the present invention, and others are within the scope of the present invention.

【0037】表1,表4から明らかなように、試料番号
5〜7,9,10,16〜18,20,21,23〜2
5,27,28に示す本発明の請求項1の範囲内の組成
のセラミックは、主成分{x(BaαCaβSrγ)O
−y[(TiO21-m(ZrO2m ]−zRe23
(但し、式中、x+y+z=100、α+β+γ=1、
0≦β+γ<0.8、0≦m<0.15であって、Re
は少なくとも1種以上の希土類元素 。)に対し、第1
の副成分としてのSiO2系のガラス(但し、Pb酸化
物を含まず)と、第2の副成分としてのMn酸化物とを
含有することにより、比誘電率が30以上と高く、Q値
も1MHzで1000以上と高く、また、静電容量温度
係数(TCC)が±30ppm/℃以内と小さい誘電体
セラミックが得られ、しかもCuの融点(1083℃)
より低い1060℃以下で焼結する。
As is clear from Tables 1 and 4, sample numbers 5 to 7, 9, 10, 16 to 18, 20, 21, 21 and 2
The ceramic having the composition within the scope of claim 1 of the present invention as shown in 5, 27, and 28 has a main component of Δx (BaαCaβSrγ) O
-Y [(TiO 2) 1- m (ZrO 2) m] -zRe 2 O 3}
(Where x + y + z = 100, α + β + γ = 1,
0 ≦ β + γ <0.8, 0 ≦ m <0.15, and Re
Is at least one or more rare earth elements. ), The first
By containing a SiO 2 -based glass (but not including a Pb oxide) as a subcomponent of Mn oxide and a Mn oxide as a second subcomponent, the dielectric constant is as high as 30 or more, and the Q value is high. At 1 MHz, a dielectric ceramic having a small temperature coefficient of capacitance (TCC) of ± 30 ppm / ° C. or less, and the melting point of Cu (1083 ° C.)
Sinter below 1060 ° C, which is lower.

【0038】また、このような構成においては、試料番
号21と23、試料番号27と28から明らかなよう
に、請求項2にいう、ガラスがB23−SiO2系のガ
ラス(但し、Pb酸化物を含まず)であることにより、
より低温焼結が可能となる。
Further, in such a configuration, as apparent from Sample Nos. 21 and 23 and Sample Nos. 27 and 28, the glass described in claim 2 is a glass of B 2 O 3 —SiO 2 system (however, Pb oxide is not included)
Lower temperature sintering becomes possible.

【0039】さらに、表2,表5の試料番号35,36
のように、請求項3にいう、主成分に対し、第1、第2
の副成分に加えて第3の副成分のCu酸化物を含有させ
ることにより、さらに低温焼結させることが可能にな
る。しかも、組成中に蒸発しやすいPb酸化物成分を含
まないため、焼成によるセラミックの特性変動が抑えら
れる。
Further, sample numbers 35 and 36 in Tables 2 and 5
As described in claim 3, the first and second components are
By containing the third sub-component Cu oxide in addition to the sub-component, sintering can be further performed at low temperature. In addition, since the composition does not contain a Pb oxide component that is easily evaporated, fluctuations in ceramic characteristics due to firing are suppressed.

【0040】ここで、本発明の組成を限定した理由につ
いて説明する。
Here, the reason for limiting the composition of the present invention will be described.

【0041】表1、表4の試料番号1〜4のように、主
成分{x(BaαCaβSrγ)O−y[(TiO2
1-m(ZrO2m ]−zRe23}(但し、式中、x+
y+z=100、α+β+γ=1、0≦β+γ<0.
8、0≦m<0.15であって、Reは少なくとも1種
以上の希土類元素 。)が、図1に示す3元組成図にお
いて、点A(7,85,8)、点B(7,59,3
4)、点C(0,59,41)、点D(0,85,1
5)で囲まれた領域外の場合には、静電容量温度係数
(TCC)が±30ppm/℃の範囲を外れるか、焼結
性が低下してCuの融点である1083℃以下の106
0℃で焼結しないか、Q値が劣化して1000未満とな
る。したがって、主成分は、図1の3元組成図の点、
A,B,C,Dで囲まれた領域内(但し、点A,点Bを
結ぶ線上は含まない。)が好ましい。具体的には、B
a,Ca及びSrの合計含有量xについては、7以上で
は静電容量温度係数(TCC)が±30ppm/℃の範
囲を外れる。したがって、0≦x<7が好ましい。ま
た、TiとZrの合計含有量yについては、59未満で
は焼結性が低下してCuの融点である1083℃以下の
1060℃で焼結せず、85を超えるとQ値が劣化して
1000未満となる。したがって、59≦y≦85が好
ましい。
As shown in sample numbers 1 to 4 in Tables 1 and 4, the main component Δx (BaαCaβSrγ) Oy [(TiO 2 )
1-m (ZrO 2 ) m ] -zRe 2 O 3 } (where x +
y + z = 100, α + β + γ = 1, 0 ≦ β + γ <0.
8, 0 ≦ m <0.15, and Re is at least one or more rare earth elements. ) Are points A (7, 85, 8) and points B (7, 59, 3) in the ternary composition diagram shown in FIG.
4), point C (0, 59, 41), point D (0, 85, 1)
Outside the region enclosed by 5), the temperature coefficient of capacitance (TCC) is out of the range of ± 30 ppm / ° C., or the sinterability is reduced, and the temperature is lower than 1083 ° C. which is the melting point of Cu.
It does not sinter at 0 ° C., or its Q value deteriorates to less than 1,000. Therefore, the main components are the points in the ternary composition diagram of FIG.
It is preferable to be within an area surrounded by A, B, C, and D (however, it does not include a line connecting points A and B). Specifically, B
When the total content x of a, Ca and Sr is 7 or more, the capacitance temperature coefficient (TCC) is out of the range of ± 30 ppm / ° C. Therefore, it is preferable that 0 ≦ x <7. When the total content y of Ti and Zr is less than 59, the sinterability is reduced, and sintering is not performed at 1060 ° C., which is lower than 1083 ° C., which is the melting point of Cu. It becomes less than 1000. Therefore, it is preferable that 59 ≦ y ≦ 85.

【0042】試料番号5〜7のように、BaOの一部を
CaやSrで置換すると比誘電率を高める効果がある
が、試料番号8のように、Ca酸化物とSr酸化物の置
換量の和、β+γが0.8以上になると、焼結性が低下
してCuの融点以下の1060℃で焼結しない。したが
って、0≦β+γ<0.8が好ましい。
As shown in Sample Nos. 5 to 7, when a part of BaO is replaced with Ca or Sr, there is an effect of increasing the relative dielectric constant. However, as shown in Sample No. 8, the replacement amount of Ca oxide and Sr oxide is increased. If the sum of β and γ is 0.8 or more, the sinterability is reduced, and sintering is not performed at 1060 ° C., which is lower than the melting point of Cu. Therefore, it is preferable that 0 ≦ β + γ <0.8.

【0043】また、TiO2の一部をZrO2で置換する
と主成分組成物の還元防止をする効果があるため、還元
雰囲気中においてCu導体等と同時焼成を有利に実現で
きる。しかし、試料番号11のように、ZrO2の置換
量mが0.15以上になると、焼結性が低下してCuの
融点以下である1060℃で焼結しない。したがって、
0≦m<0.15が好ましい。
Further, when a part of TiO 2 is replaced by ZrO 2 , the effect of preventing reduction of the main component composition is obtained, so that simultaneous firing with a Cu conductor or the like can be advantageously achieved in a reducing atmosphere. However, when the substitution amount m of ZrO 2 is 0.15 or more, as in the sample No. 11, the sinterability is reduced and sintering is not performed at 1060 ° C., which is lower than the melting point of Cu. Therefore,
0 ≦ m <0.15 is preferred.

【0044】また、試料番号16〜18のように、第1
の副成分であるガラス(但し、Pb酸化物を含まず)を
含有することは、焼結性を向上させる効果があるが、試
料番号15のように、ガラスの含有量a(重量部)が
0.1未満では、焼結性が低下してCuの融点以下の1
060℃で焼結しない。一方、試料番号19のように、
含有量aが25を超えると、Q値が劣化して1000未
満と低くなる。したがって、0.1≦a≦25が好まし
い。
As shown in sample numbers 16 to 18, the first
Including glass (but not containing Pb oxide) as an auxiliary component of has the effect of improving sinterability, but as shown in sample No. 15, the glass content a (parts by weight) is If it is less than 0.1, the sinterability is reduced, and 1 below the melting point of Cu.
Does not sinter at 060 ° C. On the other hand, like sample number 19,
If the content a exceeds 25, the Q value deteriorates and becomes as low as less than 1,000. Therefore, it is preferable that 0.1 ≦ a ≦ 25.

【0045】また、試料番号23〜25のように、第2
の副成分であるMn酸化物を含有することは、焼結性を
向上させ、さらに静電容量温度係数(TCC)を小さく
してプラス側にシフトさせる効果がある。しかしなが
ら、試料番号22のように、Mn酸化物をMnOに換算
した含有量b(重量部)が0.5以下では、静電容量温
度係数(TCC)が±30ppm/℃の範囲を外れる。
また、試料番号26のように、含有量bが20を超える
場合はQ値が1000未満と低くなる。したがって、
0.5<b≦20が好ましい。
As shown in Sample Nos. 23 to 25, the second
The inclusion of the Mn oxide, which is a subcomponent of, has the effect of improving sinterability, further reducing the temperature coefficient of capacitance (TCC), and shifting to the plus side. However, when the content b (parts by weight) of Mn oxide converted to MnO is 0.5 or less as in Sample No. 22, the capacitance temperature coefficient (TCC) is out of the range of ± 30 ppm / ° C.
When the content b exceeds 20, as in sample No. 26, the Q value is as low as less than 1,000. Therefore,
0.5 <b ≦ 20 is preferred.

【0046】第3の副成分としてCu酸化物を含有する
ことは、焼結性を向上させる効果があるが、表2,表5
の試料番号37のように、Cu酸化物をCuOに換算し
た含有量c(重量部)が10を超えると、Qが劣化して
1000より小さくなる。したがって、c≦10が好ま
しい。
The inclusion of Cu oxide as the third subcomponent has the effect of improving the sinterability.
When the content c (parts by weight) of Cu oxide converted to CuO exceeds 10, as shown in sample No. 37, Q deteriorates and becomes smaller than 1,000. Therefore, c ≦ 10 is preferred.

【0047】(実施例2)本発明の一実施例による積層
セラミックコンデンサを以下のようにして作製した。
Example 2 A multilayer ceramic capacitor according to one example of the present invention was manufactured as follows.

【0048】すなわち、まず、出発原料として、炭酸バ
リウム(BaCO3)、炭酸カルシウム(CaCO3)、
炭酸ストロンチウム(SrCO3)、酸化チタン(Ti
2)、酸化ジルコニウム(ZrO2)、希土類酸化物
(Re23)、炭酸マンガン(MnCO3)、及び酸化
銅(CuO )を用意した。
That is, first, barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ),
Strontium carbonate (SrCO 3 ), titanium oxide (Ti
O 2 ), zirconium oxide (ZrO 2 ), rare earth oxide (Re 2 O 3 ), manganese carbonate (MnCO 3 ), and copper oxide (CuO 2) were prepared.

【0049】その後、これらの原料粉末を表6の試料番
号41に示す組成物(但し、第1の副成分のガラス成分
を除く。)が得られるように秤量し、エタノールと共に
ボールミルに入れて16時間湿式混合した後、1040
℃で仮焼して仮焼済み粉末を得た。なお、第2の副成分
としてのMnOの含有量と第3の副成分としてのCuO
の含有量は、主成分である{x(BaαCaβSrγ)
O−y[(TiO21 -m(ZrO2m ]−zRe
23}(但し、式中、x+y+z=100、α+β+γ
=1、0≦β+γ<0.8、0≦m<0.15であっ
て、Reは少なくとも1種以上の希土類元素 。)10
0重量部に対する部数である。また、表6において、試
料番号に*印を付したものは本発明の範囲外のものであ
る。
Thereafter, these raw material powders were weighed so as to obtain the composition shown in Sample No. 41 of Table 6 (however, excluding the glass component as the first subcomponent), and placed in a ball mill together with ethanol to obtain a composition. After 10 hours wet mixing
Calcination at ℃ gave a calcined powder. The content of MnO as the second subcomponent and CuO as the third subcomponent were
Of the main component, Δx (BaαCaβSrγ)
Oy [(TiO 2 ) 1 -m (ZrO 2 ) m ] -zRe
2 O 3 } (where x + y + z = 100, α + β + γ
= 1, 0 ≦ β + γ <0.8, 0 ≦ m <0.15, and Re is at least one or more rare earth elements. ) 10
The number is based on 0 parts by weight. In Table 6, those marked with an asterisk (*) are out of the scope of the present invention.

【0050】[0050]

【表6】 [Table 6]

【0051】また、第1の副成分として、表3に示すガ
ラス種H、即ち、15B23−85SiO2(但し、係
数は重量%)のガラス粉末を準備した。
As a first subcomponent, a glass powder of glass type H shown in Table 3, ie, 15B 2 O 3 -85SiO 2 (the coefficient is% by weight) was prepared.

【0052】次に、先に得られた仮焼済み粉末100重
量部に対して、このガラス粉末10重量部とポリビニル
ブチラール溶液とを加えて混合してスラリー化し、この
スラリーをドクターブレード法でシート状に成形してグ
リーンシートを得た。
Next, 10 parts by weight of this glass powder and a polyvinyl butyral solution were added to 100 parts by weight of the calcined powder obtained above and mixed to form a slurry, and the slurry was sheet-formed by a doctor blade method. To obtain a green sheet.

【0053】続いて、このグリーンシート上に、Cuを
主成分とする導電ペーストを印刷し、内部電極を構成す
るための導電ペースト層を形成した。その後、この導電
ペースト層が形成されたグリーンシートを、導電ペース
ト層が引き出されている側が互い違いになるように複数
枚積層し、さらに、この積層体の導電ペースト層が露出
している両端面に、Cuを主成分とした導電ペーストを
塗布して積層体を得た。
Subsequently, a conductive paste containing Cu as a main component was printed on the green sheet to form a conductive paste layer for forming internal electrodes. Thereafter, a plurality of green sheets on which the conductive paste layer is formed are stacked such that the side from which the conductive paste layer is drawn out is alternated, and further, on both end surfaces of the laminate where the conductive paste layer is exposed. Then, a conductive paste containing Cu as a main component was applied to obtain a laminate.

【0054】そして、この積層体を、N2雰囲気中にて
350℃で熱処理してバインダーを除去した後、H2
2−H2Oガスからなる還元雰囲気中において、100
0℃で2時間保持して焼成して、積層セラミックコンデ
ンサを得た。
Then, the laminate was heat-treated at 350 ° C. in an N 2 atmosphere to remove the binder, and then the H 2
In a reducing atmosphere consisting of N 2 -H 2 O gas, 100
This was held at 0 ° C. for 2 hours and fired to obtain a multilayer ceramic capacitor.

【0055】このようにして得た積層セラミックコンデ
ンサの外形寸法は、幅1.6mm、長さ3.2mm、厚
さ1.2mmであり、内部電極間に介在する誘電体セラ
ミック層の厚みは6μmで、有効誘電体セラミック層の
総数は150層であった。
The external dimensions of the multilayer ceramic capacitor thus obtained are 1.6 mm in width, 3.2 mm in length and 1.2 mm in thickness, and the thickness of the dielectric ceramic layer interposed between the internal electrodes is 6 μm. The total number of effective dielectric ceramic layers was 150.

【0056】また、比較例として、表6の試料番号42
に示す組成物を誘電体とした積層セラミックコンデンサ
を作製した。
As a comparative example, sample No. 42 in Table 6 was used.
A multilayer ceramic capacitor using the composition shown in (1) as a dielectric was produced.

【0057】即ち、まず、出発原料として、炭酸バリウ
ム(BaCO3)、炭酸カルシウム(CaCO3)、炭酸
ストロンチウム(SrCO3)、酸化チタン(Ti
2)、酸化ジルコニウム(ZrO2)、希土類酸化物
(Re23)、炭酸マンガン(MnCO3)、酸化銅
(CuO )、酸化ホウ素(B23)、酸化珪素(Si
2)を用意した。
First, as starting materials, barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (Ti
O 2 ), zirconium oxide (ZrO 2 ), rare earth oxide (Re 2 O 3 ), manganese carbonate (MnCO 3 ), copper oxide (CuO 2), boron oxide (B 2 O 3 ), silicon oxide (Si
O 2 ) was prepared.

【0058】その後、これらの原料粉末を表6の試料番
号42に示す組成物(但し、B23及びSiO2を除
く)が得られるように秤量し、エタノールと共にボール
ミルに入れて16時間湿式混合した後、1040℃で仮
焼して仮焼済み粉末を得た。なお、第2の副成分として
のMnOと第3の副成分としてのCuOの含有量は、主
成分である{x(BaαCaβSrγ)O−y[(Ti
21-m(ZrO2m]−zRe23}(但し、式中、
x+y+z=100、α+β+γ=1、0≦β+γ<
0.8、0≦m<0.15であって、Reは少なくとも
1種以上の希土類元素 。)100重量部に対する部数
である。
Thereafter, these raw material powders were weighed so as to obtain a composition (except for B 2 O 3 and SiO 2 ) shown in Sample No. 42 of Table 6, placed in a ball mill together with ethanol, and wet-processed for 16 hours. After mixing, the mixture was calcined at 1040 ° C. to obtain a calcined powder. The content of MnO as the second subcomponent and CuO as the third subcomponent is determined by the following formula: {x (BaαCaβSrγ) Oy [(Ti
O 2 ) 1-m (ZrO 2 ) m ] -zRe 2 O 3 } (wherein,
x + y + z = 100, α + β + γ = 1, 0 ≦ β + γ <
0.8, 0 ≦ m <0.15, and Re is at least one or more rare earth elements. ) 100 parts by weight.

【0059】次に、これら仮焼済み粉末100重量部に
対して、酸化ホウ素(B23)1.5重量部と酸化珪素
(SiO2)8.5重量部と、ポリビニルブチラール溶
液とを加えて混合してスラリー化し、このスラリーをド
クターブレード法でシート状に成形してグリーンシート
を得た。その後、上記試料番号41と同様にして積層セ
ラミックコンデンサを作製した。
Next, 1.5 parts by weight of boron oxide (B 2 O 3 ), 8.5 parts by weight of silicon oxide (SiO 2 ), and a polyvinyl butyral solution were added to 100 parts by weight of the calcined powder. In addition, the mixture was mixed to form a slurry, and this slurry was formed into a sheet by a doctor blade method to obtain a green sheet. Thereafter, a multilayer ceramic capacitor was manufactured in the same manner as in Sample No. 41 described above.

【0060】次に、このようにして得られた表6の試料
番号41,42の積層セラミックコンデンサについて、
耐湿負荷試験を行った。すなわち、コンデンサに、圧力
2気圧、相対湿度100%、温度121℃の雰囲気中
で、直流電圧16Vを250時間連続印加した。そし
て、その間にコンデンサの絶縁抵抗が1×106Ω以下
になった場合に、故障(不良)と判定した。この結果を
表7に示す。なお、表7において、試料番号に*印を付
したものは本発明の範囲外のものである。
Next, the multilayer ceramic capacitors of Sample Nos. 41 and 42 in Table 6 thus obtained were
A moisture resistance load test was performed. That is, a DC voltage of 16 V was continuously applied to the capacitor for 250 hours in an atmosphere at a pressure of 2 atm, a relative humidity of 100%, and a temperature of 121 ° C. Then, if the insulation resistance of the capacitor became 1 × 10 6 Ω or less during that time, it was determined to be failure (defective). Table 7 shows the results. In Table 7, those marked with an asterisk (*) are out of the scope of the present invention.

【0061】[0061]

【表7】 [Table 7]

【0062】表6,表7の試料番号41から明らかなよ
うに、B成分及びSi成分をガラスとして含有させた本
発明の積層セラミックコンデンサは、耐湿負荷試験によ
る不良の発生がなく、耐湿特性に優れている。これに対
して、試料番号42のように、B成分及びSi成分を酸
化ホウ素(B23)及び酸化珪素(SiO2)として含
有させた、誘電体組成中にガラスを含有しない本発明の
範囲外のコンデンサは、耐湿負荷試験により不良が発生
し、耐湿特性に劣る。このことは、B23−SiO2
のガラスの存在が耐湿性の向上に効果があることを示し
ている。
As is clear from the sample No. 41 in Tables 6 and 7, the multilayer ceramic capacitor of the present invention containing the B component and the Si component as glass has no defect due to a moisture resistance load test and has a good moisture resistance characteristic. Are better. On the other hand, as shown in Sample No. 42, according to the present invention in which the B component and the Si component are contained as boron oxide (B 2 O 3 ) and silicon oxide (SiO 2 ) and the dielectric composition does not contain glass. A capacitor out of the range is defective due to a moisture resistance load test and has poor moisture resistance characteristics. This indicates that the presence of B 2 O 3 —SiO 2 glass is effective in improving the moisture resistance.

【0063】以上、上記各実施例では、炭酸バリウム
(BaCO3)、炭酸カルシウム(CaCO3)、炭酸ス
トロンチウム(SrCO3)、酸化チタン(TiO2)、
酸化ジルコニウム(ZrO2)、希土類酸化物(Re2
3)、炭酸マンガン(MnCO3)及び酸化銅(CuO)
を一度に混合し仮焼した。しかしながら、予め、炭酸バ
リウム(BaCO3)、炭酸カルシウム(CaCO3)、
炭酸ストロンチウム(SrCO3)、酸化チタン(Ti
2)、酸化ジルコニウム(ZrO2)及び希土類酸化物
(Re23)を混合し仮焼したものを作製した後に、炭
酸マンガン(MnCO3)及び酸化銅(CuO )を添加
しても同様の効果が得られる。
In each of the above embodiments, barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ),
Zirconium oxide (ZrO 2 ), rare earth oxide (Re 2 O
3 ), manganese carbonate (MnCO 3 ) and copper oxide (CuO)
Were mixed at once and calcined. However, barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ),
Strontium carbonate (SrCO 3 ), titanium oxide (Ti
O 2 ), zirconium oxide (ZrO 2 ) and rare earth oxide (Re 2 O 3 ) are mixed and calcined to produce manganese carbonate (MnCO 3 ) and copper oxide (CuO). The effect of is obtained.

【0064】また、出発原料として、炭酸バリウム(B
aCO3)、炭酸カルシウム(CaCO3)、炭酸ストロ
ンチウム(SrCO3)、酸化チタン(TiO2)、酸化
ジルコニウム(ZrO2)、希土類酸化物(Re
23)、炭酸マンガン(MnCO3)及び酸化銅(Cu
O )を使用したが、本発明はこれらの化合物形態に限
定されるものではない。例えば、BaTiO3、Ba2
920、Ba4Ti1330、BaZrO3、CaTi
3、CaZrO3、SrTiO3、SrZrO3、Re2
Ti27(但し、Reは希土類元素を示す。)などの化
合物、または、炭酸塩、蓚酸塩、水酸化物、アルコキシ
ドなどを使用しても同程度の特性を得ることができる。
As a starting material, barium carbonate (B
aCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), rare earth oxide (Re
2 O 3 ), manganese carbonate (MnCO 3 ) and copper oxide (Cu
Although O 2) was used, the invention is not limited to these compound forms. For example, BaTiO 3 , Ba 2 T
i 9 O 20 , Ba 4 Ti 13 O 30 , BaZrO 3 , CaTi
O 3 , CaZrO 3 , SrTiO 3 , SrZrO 3 , Re 2
Similar properties can be obtained by using a compound such as Ti 2 O 7 (where Re indicates a rare earth element), or a carbonate, oxalate, hydroxide, alkoxide, or the like.

【0065】また、仮焼温度についても1040℃で実
施したが、900〜1049℃であれば、同様の特性を
得ることができる。また、得られた仮焼物の平均粒径に
ついても0.9μmであったが、0.81〜5.0μm
であれば、同様の特性を得ることができる。
Although the calcining temperature was also set at 1040 ° C., the same characteristics can be obtained at 900 to 1049 ° C. Further, the average particle size of the obtained calcined product was 0.9 μm, but was 0.81 to 5.0 μm.
Then, similar characteristics can be obtained.

【0066】さらに、また、ガラスとしては、SiO2
系またはB23−SiO2系として構成された、Pb酸
化物を含まないガラスであればよく、特に限定されるも
のではない。
Further, as the glass, SiO 2
Configured as a system or B 2 O 3 -SiO 2 -based, long glass containing no Pb oxide, it is not particularly limited.

【0067】そして、本発明に係る誘電体磁器組成物か
らなるコンデンサで構成される積層LCフィルタ等にお
いても、上記実施例と同様に優れた効果が得られる。
Further, even in a laminated LC filter or the like composed of a capacitor made of the dielectric ceramic composition according to the present invention, excellent effects can be obtained in the same manner as in the above embodiment.

【0068】[0068]

【発明の効果】以上の説明で明らかなように、本発明に
係る誘電体磁器組成物によれば、1060℃以下で焼結
し、比誘電率が30以上、1MHzのQ値が1000以
上あり、また、静電容量温度係数(TCC)が±30p
pm/℃以内と小さい等の諸特性が得られる。そして、
Pb酸化物成分の揮発がないため、特性のばらつきが小
さい誘電体磁器組成物を得ることができる。
As is clear from the above description, according to the dielectric porcelain composition of the present invention, it sinters at 1060 ° C. or less, has a relative dielectric constant of 30 or more, and has a Q value of 1000 or more at 1 MHz. , And the temperature coefficient of capacitance (TCC) is ± 30p
Various characteristics such as as small as pm / ° C. or less are obtained. And
Since there is no volatilization of the Pb oxide component, it is possible to obtain a dielectric ceramic composition with small variations in characteristics.

【0069】したがって、この誘電体磁器組成物を誘電
体セラミック層として、積層セラミックコンデンサや積
層LCフィルタ等を構成すれば、優れた耐湿特性を示す
とともに、電極材料として安価なCuやAgを用いるこ
とができるので、積層セラミック部品のコストダウンを
図ることができる。
Therefore, when this dielectric ceramic composition is used as a dielectric ceramic layer to constitute a multilayer ceramic capacitor, a multilayer LC filter, or the like, excellent moisture resistance can be obtained, and inexpensive Cu or Ag can be used as an electrode material. Therefore, the cost of the multilayer ceramic component can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の組成物中の主成分の好ましい範囲を示
す{(BaαCaβSrγ)O, [(TiO2
1-m(ZrO2m ],Re23}3元組成図である。
FIG. 1 shows a preferable range of a main component in a composition of the present invention. {(BaαCaβSrγ) O, [(TiO 2 )
1-m (ZrO 2 ) m ], Re 2 O 3 } ternary composition diagram.

【図2】本発明の一実施形態による積層セラミックコン
デンサを示す断面図である。
FIG. 2 is a sectional view showing a multilayer ceramic capacitor according to an embodiment of the present invention.

【図3】図2の積層セラミックコンデンサのうち、内部
電極を有する誘電体セラミック層を示す平面図である。
FIG. 3 is a plan view showing a dielectric ceramic layer having an internal electrode in the multilayer ceramic capacitor of FIG. 2;

【図4】図2の積層セラミックコンデンサのうち、セラ
ミック積層体部分を示す分解斜視図である。
FIG. 4 is an exploded perspective view showing a ceramic laminate portion of the multilayer ceramic capacitor of FIG. 2;

【符号の説明】[Explanation of symbols]

1 積層セラミックコンデンサ 2a,2b 誘電体セラミック層 3 セラミック積層体 4 内部電極 5 外部電極 6,7 メッキ層 DESCRIPTION OF SYMBOLS 1 Multilayer ceramic capacitor 2a, 2b Dielectric ceramic layer 3 Ceramic laminated body 4 Internal electrode 5 External electrode 6,7 Plating layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 3/12 311 H01B 3/12 311 326 326 H01G 4/12 358 H01G 4/12 358 4/30 301 4/30 301E Fターム(参考) 4G031 AA04 AA05 AA06 AA07 AA11 AA12 AA19 AA25 AA28 AA30 AA39 BA09 CA03 5E001 AB03 AC04 AC09 AE00 AE01 AE02 AE03 AE04 AF00 AF06 AH01 AH05 AH09 AJ01 AJ02 5E082 AA01 AB03 BC15 BC19 EE04 EE23 EE26 EE35 FG06 FG22 FG26 FG27 FG54 GG10 GG11 GG26 GG28 JJ03 JJ05 JJ12 JJ21 JJ23 LL02 MM22 MM24 PP03 5G303 AA01 AB06 AB08 AB11 AB15 BA12 CA03 CB02 CB03 CB06 CB11 CB15 CB18 CB22 CB26 CB30 CB32 CB35 CB39 CB41 CB43 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 3/12 311 H01B 3/12 311 326 326 H01G 4/12 358 H01G 4/12 358 4/30 301 4 / 30 301E F-term (reference) 4G031 AA04 AA05 AA06 AA07 AA11 AA12 AA19 AA25 AA28 AA30 AA39 BA09 CA03 5E001 AB03 AC04 AC09 AE00 AE01 AE02 AE03 AE04 AF00 AF06 AH01 AH05 AH09 AJ01 AJ02 EB03 AE04 FG27 FG54 GG10 GG11 GG26 GG28 JJ03 JJ05 JJ12 JJ21 JJ23 LL02 MM22 MM24 PP03 5G303 AA01 AB06 AB08 AB11 AB15 BA12 CA03 CB02 CB03 CB06 CB11 CB15 CB18 CB22 CB26 CB30 CB39 CB35 CB35 CB35 CB35 CB35 CB35 CB35 CB35

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 式x(BaαCaβSrγ)O−y
[(TiO21-m(ZrO2m ]−zRe23(但
し、式中、x+y+z=100、α+β+γ=1、0≦
β+γ<0.8、0≦m<0.15であって、Reは少
なくとも1種以上の希土類元素 。)で表わされ、これ
ら(BaαCaβSrγ)Oと[(TiO2 1-m(Zr
2m ]とRe23のモル組成比{(BaαCaβS
rγ)O,[(TiO21-m(ZrO2m ],Re2
3}が、添付の図1に示す3元組成図において、点A
(7,85,8),点B(7,59,34),点C
(0,59,41),点D(0,85,15)で囲まれ
た領域内(但し、点A,点Bを結ぶ線上は含まない。)
にある主成分100重量部に対して、 第1の副成分としてガラスを含有しており、該ガラスは
SiO2系のガラス(但し、Pb酸化物を含まず)であ
って、その含有量a(重量部)は0.1≦a≦25であ
り、 かつ、第2の副成分としてMn酸化物を含有しており、
該Mn酸化物の含有量b(重量部)はMnOに換算して
0.5<b≦20であることを特徴とする、誘電体セラ
ミック組成物。
1. The formula x (BaαCaβSrγ) Oy
[(TiOTwo)1-m(ZrOTwo)m ] -ZReTwoOThree(However
Where x + y + z = 100, α + β + γ = 1, 0 ≦
β + γ <0.8, 0 ≦ m <0.15, and Re is small
At least one rare earth element. ) And this
(BaαCaβSrγ) O and [(TiOTwo) 1-m(Zr
OTwo)m ] And ReTwoOThreeMolar ratio of (BaαCaβS
rγ) O, [(TiOTwo)1-m(ZrOTwo)m ], ReTwoO
Three} Indicates a point A in the ternary composition diagram shown in FIG.
(7, 85, 8), point B (7, 59, 34), point C
(0,59,41), surrounded by point D (0,85,15)
(However, it does not include on the line connecting point A and point B.)
Contains glass as a first subcomponent with respect to 100 parts by weight of the main component in
SiOTwoGlass (but not containing Pb oxide)
Therefore, the content a (parts by weight) is 0.1 ≦ a ≦ 25.
And containing a Mn oxide as a second subcomponent,
The content b (parts by weight) of the Mn oxide is converted to MnO.
0.5 <b ≦ 20, dielectric ceramics
Mick composition.
【請求項2】 前記第1の副成分としてのガラスが、B
23−SiO2の系ガラス(但し、Pb酸化物を含ま
ず)であることを特徴とする請求項1記載の誘電体セラ
ミック組成物。
2. The method according to claim 1, wherein the glass as the first subcomponent is B
2. The dielectric ceramic composition according to claim 1, wherein the dielectric ceramic composition is a 2 O 3 —SiO 2 system glass (not including a Pb oxide).
【請求項3】 前記主成分100重量部に対して、第3
の副成分としてCu酸化物を含有しており、該Cu酸化
物の含有量c(重量部)はCuOに換算してc≦10で
あることを特徴とする請求項1または2記載の誘電体セ
ラミック組成物。
3. The method according to claim 1, wherein 100 parts by weight of the main component is
3. The dielectric according to claim 1, wherein Cu oxide is contained as a subcomponent of (c), and the content c (parts by weight) of the Cu oxide satisfies c ≦ 10 in terms of CuO. 4. Ceramic composition.
【請求項4】 複数の誘電体セラミック層と、該誘電体
セラミック層間に形成された内部電極と、該内部電極に
電気的に接続された外部電極とを備える積層セラミック
部品において、前記誘電体セラミック層が請求項1〜3
のいずれかに記載の誘電体セラミック組成物で構成さ
れ、前記内部電極がCuまたはAgを主成分として構成
されていることを特徴とする、積層セラミック部品。
4. A multilayer ceramic component comprising: a plurality of dielectric ceramic layers; an internal electrode formed between said dielectric ceramic layers; and an external electrode electrically connected to said internal electrode. Claims 1-3
5. The multilayer ceramic component comprising the dielectric ceramic composition according to any one of the above, wherein the internal electrode is mainly composed of Cu or Ag.
JP25355399A 1999-09-07 1999-09-07 Dielectric ceramic composition and multilayer ceramic component Expired - Fee Related JP3678072B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP25355399A JP3678072B2 (en) 1999-09-07 1999-09-07 Dielectric ceramic composition and multilayer ceramic component
DE10043882A DE10043882B4 (en) 1999-09-07 2000-09-06 Dielectric ceramic composition and monolithic ceramic component
GB0022008A GB2353995B (en) 1999-09-07 2000-09-07 Dielectric ceramic composition and monolithic ceramic component
KR10-2000-0053068A KR100379204B1 (en) 1999-09-07 2000-09-07 Dielectric Ceramic Composition and Monolithic Ceramic Component
TW089118322A TW455885B (en) 1999-09-07 2000-09-07 Dielectric ceramic composition and monolithic ceramic component
US09/657,198 US6385035B1 (en) 1999-09-07 2000-09-07 Dielectric ceramic composition and monolithic ceramic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25355399A JP3678072B2 (en) 1999-09-07 1999-09-07 Dielectric ceramic composition and multilayer ceramic component

Publications (2)

Publication Number Publication Date
JP2001080959A true JP2001080959A (en) 2001-03-27
JP3678072B2 JP3678072B2 (en) 2005-08-03

Family

ID=17252977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25355399A Expired - Fee Related JP3678072B2 (en) 1999-09-07 1999-09-07 Dielectric ceramic composition and multilayer ceramic component

Country Status (1)

Country Link
JP (1) JP3678072B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082806A1 (en) 2004-03-01 2005-09-09 Murata Manufacturing Co., Ltd. Insulating ceramic composition, insulating ceramic sintered body, and multilayer ceramic electronic component
JP2007119275A (en) * 2005-10-26 2007-05-17 Kyocera Corp Dielectric ceramic
US7368408B2 (en) 2004-03-01 2008-05-06 Murata Manufacturing Co., Ltd. Glass-ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7417001B2 (en) 2004-03-01 2008-08-26 Murata Manufacturing Co., Ltd Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7439202B2 (en) 2004-03-01 2008-10-21 Murata Manufacturing Co., Ltd. Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7704477B2 (en) 2005-12-27 2010-04-27 Murata Manufacturing Co., Ltd. Method for producing powder forsterite powder, forsterite powder, sintered forsterite, insulating ceramic composition, and multilayer ceramic electronic component
DE112009000012T5 (en) 2008-03-13 2012-01-05 Murata Manufacturing Co., Ltd. Glass ceramic composition, glass ceramic sintered body and ceramic multilayer electronic component

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082806A1 (en) 2004-03-01 2005-09-09 Murata Manufacturing Co., Ltd. Insulating ceramic composition, insulating ceramic sintered body, and multilayer ceramic electronic component
KR100744621B1 (en) * 2004-03-01 2007-08-01 가부시키가이샤 무라타 세이사쿠쇼 Insulating ceramic composition, insulating ceramic sintered body, and multilayer ceramic electronic component
US7351674B2 (en) 2004-03-01 2008-04-01 Murata Manufacturing Co., Ltd. Insulating ceramic composition, insulating ceramic sintered body, and mulitlayer ceramic electronic component
US7368408B2 (en) 2004-03-01 2008-05-06 Murata Manufacturing Co., Ltd. Glass-ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7417001B2 (en) 2004-03-01 2008-08-26 Murata Manufacturing Co., Ltd Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7439202B2 (en) 2004-03-01 2008-10-21 Murata Manufacturing Co., Ltd. Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
JP2007119275A (en) * 2005-10-26 2007-05-17 Kyocera Corp Dielectric ceramic
US7704477B2 (en) 2005-12-27 2010-04-27 Murata Manufacturing Co., Ltd. Method for producing powder forsterite powder, forsterite powder, sintered forsterite, insulating ceramic composition, and multilayer ceramic electronic component
US7824642B2 (en) 2005-12-27 2010-11-02 Murata Manufacturing Co., Ltd. Method for producing forsterite powder, forsterite powder, sintered forsterite, insulating ceramic composition, and multilayer ceramic electronic component
DE112009000012T5 (en) 2008-03-13 2012-01-05 Murata Manufacturing Co., Ltd. Glass ceramic composition, glass ceramic sintered body and ceramic multilayer electronic component
US8199455B2 (en) 2008-03-13 2012-06-12 Murata Manufacturing Co., Ltd. Glass ceramic composition, glass ceramic sintered body, and multilayer ceramic electronic device

Also Published As

Publication number Publication date
JP3678072B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
JP3567759B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP3334607B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
KR100374470B1 (en) Ceramic capacitor and method for making the same
JP2998639B2 (en) Multilayer ceramic capacitors
JP3391268B2 (en) Dielectric ceramic and its manufacturing method, and multilayer ceramic electronic component and its manufacturing method
KR100326950B1 (en) Dielectric ceramic composition and laminated ceramic parts
EP1178024A2 (en) Reduction-resistant dielectric ceramic compact and laminated ceramic capacitor
KR100379204B1 (en) Dielectric Ceramic Composition and Monolithic Ceramic Component
KR19980018400A (en) Dielectric ceramic composition and multilayer ceramic capacitor using same
JPH1074660A (en) Laminated ceramic capacitor
JP2001143955A (en) Dielectric ceramic composition and laminated ceramic capacitor
JPH09232180A (en) Laminated ceramic capacitor
JP3882054B2 (en) Multilayer ceramic capacitor
JP4752340B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP2000058378A (en) Laminated ceramic capacitor
JP3603607B2 (en) Dielectric ceramic, multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
JP3334606B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP3678072B2 (en) Dielectric ceramic composition and multilayer ceramic component
JP2005187296A (en) Dielectric ceramic composition and multilayer ceramic capacitor
JPH1192222A (en) Dielectric porcelain composition and laminated ceramic capacitor
JP3678073B2 (en) Dielectric ceramic composition and multilayer ceramic component
JP2001089234A (en) Dielectric ceramic composition and multilayer ceramic parts
JP2002231560A (en) Dielectric ceramic and laminated ceramic capacitor
JP2004292186A (en) Dielectric ceramic and multilayer ceramic capacitor
JP2001089233A (en) Dielectric ceramic composition and multilayer ceramic parts

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent or registration of utility model

Ref document number: 3678072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees