JP2002193667A - Dielectric ceramic and stacked electronic part - Google Patents

Dielectric ceramic and stacked electronic part

Info

Publication number
JP2002193667A
JP2002193667A JP2000396623A JP2000396623A JP2002193667A JP 2002193667 A JP2002193667 A JP 2002193667A JP 2000396623 A JP2000396623 A JP 2000396623A JP 2000396623 A JP2000396623 A JP 2000396623A JP 2002193667 A JP2002193667 A JP 2002193667A
Authority
JP
Japan
Prior art keywords
dielectric
btz
crystal particles
dielectric constant
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000396623A
Other languages
Japanese (ja)
Other versions
JP4627876B2 (en
Inventor
Yasuyo Kamigaki
耕世 神垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000396623A priority Critical patent/JP4627876B2/en
Publication of JP2002193667A publication Critical patent/JP2002193667A/en
Application granted granted Critical
Publication of JP4627876B2 publication Critical patent/JP4627876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric ceramic whose dielectric constant is high and whose temperature characteristics of the dielectric constant is good even if crystal particles are made to be fine particles and to provide a stacked electronic part whose reduction rate of electrostatic capacity is low even when a high voltage is applied by the dielectric ceramic. SOLUTION: The dielectric ceramic comprises a perovskite BTZ crystal particles which include at least one of Ba, Ti, Zr, Mg, Y, Er, and Yb as metal elements and perovskite BT crystal particles which include at least one of Ba, Ti, Mg, Y, Er, and Yb as metal elements, and these perovskite crystal particles have a core-shell structures, and the mean particle diameter is 0.3 to 1.0 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘電体磁器および
積層型電子部品に関するものであり、例えば誘電体層に
印加される直流電圧が2V/μm以上であるような高電
圧用の積層セラミックコンデンサ等に用いられる誘電体
磁器および積層型電子部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic and a multilayer electronic component, for example, a high-voltage multilayer ceramic capacitor in which a DC voltage applied to a dielectric layer is 2 V / .mu.m or more. The present invention relates to a dielectric porcelain and a laminated electronic component used for the like.

【0002】[0002]

【従来技術】近年、電子機器の小型化、高性能化に伴
い、積層セラミックコンデンサの小型化、大容量化の要
求が高まってきている。このような要求に応えるため
に、積層セラミックコンデンサ(MLC)においては、
誘電体層を薄層化することにより静電容量を高めると共
に、積層数を大きくする事により、小型・高容量化を図
っている。
2. Description of the Related Art In recent years, with the miniaturization and high performance of electronic devices, demands for miniaturization and large capacity of multilayer ceramic capacitors have been increasing. To meet such demands, multilayer ceramic capacitors (MLCs)
The capacitance is increased by reducing the thickness of the dielectric layer, and the size and the capacitance are increased by increasing the number of layers.

【0003】誘電体材料には、小型・高容量化の為に、
高い比誘電率が要求されることはもちろんのこと、誘電
損失が小さく、温度特性が良好であり、直流電圧に対す
る誘電特性の依存性が小さい等の種々の特性が要求され
る。
[0003] In order to reduce the size and capacity of the dielectric material,
Various characteristics are required, such as low dielectric loss, good temperature characteristics, and low dependence of the dielectric characteristics on the DC voltage, as well as a high dielectric constant.

【0004】また、薄層化に伴い、積層セラミックコン
デンサに印加する電界の増大による信頼性低下を抑制す
る為に、粒子の微小化が行われる。
Further, as the thickness of the multilayer ceramic capacitor is reduced, the size of particles is reduced in order to suppress a decrease in reliability due to an increase in an electric field applied to the multilayer ceramic capacitor.

【0005】従来の誘電体材料であるチタン酸バリウム
(BaTiO3、以下BTということもある)系材料で
は、比誘電率が粒子径に依存する事は公知であり、約1
μmで比誘電率は最大値を示し、さらに粒径を小さくす
ると、比誘電率は単調に減少する。現在、小型・高容量
で温度特性に優れた積層セラミックコンデンサ(ML
C)材料は、BT系材料であり、大きな比誘電率を示す
サブミクロン粒径の焼結体を使用している。
It is known that the relative permittivity of barium titanate (BaTiO 3 , also referred to as BT) as a conventional dielectric material depends on the particle diameter.
At μm, the relative permittivity shows the maximum value, and when the particle size is further reduced, the relative permittivity monotonously decreases. Currently, multilayer ceramic capacitors (ML) with small size, high capacitance and excellent temperature characteristics
C) The material is a BT-based material, and uses a sintered body having a submicron particle size and a large relative dielectric constant.

【0006】また、温度特性が良好な誘電体磁器として
は、ジルコニアなどを微量添加したコアシェル構造(中
心部と周辺部において組成が異なる)と呼ばれる粒子の
BT系材料が知られており、添加物による粒成長抑制効
果とコアシェル構造により、温度特性のよい誘電体磁器
が作製されている。
As a dielectric ceramic having good temperature characteristics, a BT-based material of a particle called a core-shell structure (having a different composition between a central portion and a peripheral portion) containing a small amount of zirconia or the like is known. Due to the effect of suppressing grain growth and the core-shell structure, a dielectric ceramic having good temperature characteristics has been manufactured.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、BT系
材料は、直流電圧印加による比誘電率の減少が大きく、
小型化の為に薄層化を推し進めると、BT系材料に印加
される電界が増大する為、静電容量の減少が大きく、実
効的静電容量が小さくなるという問題があった。この
為、BTを用いたMLCにおいては薄層化に限界があっ
た。
However, the BT material has a large decrease in the relative dielectric constant due to the application of a DC voltage,
When the thickness is reduced for miniaturization, the electric field applied to the BT-based material increases, so that there is a problem that the capacitance is largely reduced and the effective capacitance is reduced. For this reason, in MLC using BT, there was a limit in thinning.

【0008】また、BTは、粒径をサブミクロンよりさ
らに小さくしていくと、DCバイアス依存性を改善でき
るが、比誘電率も減少してしまう為、小型・高容量・D
Cバイアス依存性を同時に満足する事はできなかった。
[0008] When the particle size of BT is made smaller than submicron, the DC bias dependency can be improved, but the relative dielectric constant also decreases.
The C bias dependency could not be satisfied at the same time.

【0009】DCバイアス依存性を向上することを目的
として、従来、特開平9−241075号公報に開示さ
れるような誘電体磁器が知られている。この公報では、
誘電体磁器を構成する粒子の平均粒径を0.1〜0.3
μmと微小化する事と、誘電体磁器を温度特性の異なる
2種類以上の微粒子結晶により構成する事により、平坦
な温度特性と、優れたDCバイアス特性を実現できるこ
とが記載されている。
For the purpose of improving the DC bias dependency, a dielectric ceramic as disclosed in Japanese Patent Application Laid-Open No. 9-241075 has been conventionally known. In this publication,
The average particle diameter of the particles constituting the dielectric porcelain is 0.1 to 0.3.
It is described that a flat temperature characteristic and an excellent DC bias characteristic can be realized by miniaturization to μm and forming the dielectric ceramic by two or more kinds of fine particle crystals having different temperature characteristics.

【0010】また、この公報によれば、1μm以下の粒
子サイズでは、平坦な温度特性と優れたDCバイアス特
性を実現するコアシェル構造の形成が困難であるため、
1μm以下の粒子サイズで、同様な効果を得る為に、さ
らなる微粒子化を行い、誘電体磁器の誘電的活性を小さ
くすることにより、平坦な温度特性と優れたDCバイア
ス特性を得ている。
Further, according to this publication, it is difficult to form a core-shell structure for realizing flat temperature characteristics and excellent DC bias characteristics with a particle size of 1 μm or less.
In order to obtain the same effect with a particle size of 1 μm or less, finer particles are further formed to reduce the dielectric activity of the dielectric ceramic, thereby obtaining flat temperature characteristics and excellent DC bias characteristics.

【0011】しかしながら、上述した様に、比誘電率は
粒子サイズとともに単調に減少する為、0.1〜0.3
μmの様な粒子サイズにおいては最大でも2100程度
の比誘電率しか得られず、高容量化に限界があった。
However, as described above, the relative dielectric constant monotonously decreases with the particle size.
At a particle size such as μm, a relative dielectric constant of only about 2100 was obtained at the maximum, and there was a limit to increasing the capacity.

【0012】また、原料の粒子サイズが0.3μm以下
になると、焼結時に容易に固溶体を形成し粒成長してし
まうため、原料粒子サイズを維持したまま緻密な焼結体
を作製するには種々の条件が必要であり、作製が困難で
あった。
When the particle size of the raw material is 0.3 μm or less, a solid solution is easily formed at the time of sintering and the particles grow, so that it is necessary to produce a dense sintered body while maintaining the raw material particle size. Various conditions were required, and fabrication was difficult.

【0013】従って、本発明は、結晶粒子を微粒子化し
た場合でも比誘電率が大きく、かつ比誘電率の温度特性
が良好な誘電体磁器を提供し、それにより高電圧が印加
されても静電容量の低下率が小さい誘電体磁器および積
層型電子部品を提供することを目的とする。
Accordingly, the present invention provides a dielectric porcelain having a large relative dielectric constant and good relative dielectric constant temperature characteristics even when the crystal grains are finely divided, so that even when a high voltage is applied, the dielectric porcelain can be statically charged. It is an object of the present invention to provide a dielectric porcelain and a multilayer electronic component having a small capacity reduction rate.

【0014】[0014]

【課題を解決するための手段】本発明者は、上記問題点
に対して検討を重ねた結果、大きな比誘電率を示しかつ
温度特性に優れたBT材料と、微小粒径においても大き
な比誘電率を示し、比誘電率の温度特性が平坦で、かつ
優れたDCバイアス特性を示すBa(Ti1-xZrx)O
3(以下、BTZということもある)が、サブミクロン
サイズで共存構造を構成し、かつ各々の粒子においてコ
アシェル構造を形成する事により、大きな比誘電率を示
し、その温度特性が平坦で、かつDCバイアス特性に優
れた誘電体磁器を実現できる事を見出し、本発明に至っ
た。
The inventor of the present invention has studied the above problems, and as a result, has found that a BT material exhibiting a large relative dielectric constant and excellent in temperature characteristics and a large Ba (Ti 1-x Zr x ) O, which shows a temperature characteristic of the relative permittivity and a flat DC bias characteristic.
3 (hereinafter also referred to as BTZ) has a large relative dielectric constant by forming a coexisting structure with a submicron size and forming a core-shell structure in each particle, and has a flat temperature characteristic and The present inventors have found that a dielectric ceramic excellent in DC bias characteristics can be realized, and have reached the present invention.

【0015】即ち、本発明の誘電体磁器は、金属元素と
してBa、Ti、Zr、Mgと、Y、ErおよびYbの
うち少なくとも1種とを含有するペロブスカイト型のB
TZ結晶粒子と、金属元素としてBa、Ti、Mgと、
Y、ErおよびYbのうち少なくとも1種とを含有する
ペロブスカイト型のBT結晶粒子とからなり、前記BT
Z結晶粒子および前記BT結晶粒子がコアシェル構造を
有し、かつ平均粒径が0.3〜1.0μmであることを
特徴とする。
That is, the dielectric porcelain of the present invention is a perovskite type B containing Ba, Ti, Zr, Mg as a metal element and at least one of Y, Er and Yb.
TZ crystal particles, Ba, Ti, Mg as metal elements,
A perovskite-type BT crystal particle containing at least one of Y, Er and Yb;
The Z crystal particles and the BT crystal particles have a core-shell structure, and have an average particle size of 0.3 to 1.0 μm.

【0016】一般に、BTは、逐次相転移に伴う原子の
揺らぎの増大に起因して4000を越す大きな比誘電率
を示すが、逐次相転移に起因した高比誘電率の為、DC
バイアス等外場の印加による比誘電率の減少が大きい。
In general, BT exhibits a large relative dielectric constant exceeding 4000 due to an increase in atomic fluctuations accompanying the successive phase transition, but has a high relative dielectric constant due to the successive phase transition, and therefore, BT has a high relative dielectric constant.
The application of an external field such as a bias greatly reduces the relative dielectric constant.

【0017】一方、BTZは、BTに見られる逐次相転
移のピークが一点に収束しており、ブロード(平坦)で
かつ大きな比誘電率を示す。BTZの粒径が1μm以下
になると相転移に伴う原子の揺らぎが小さくなり、比誘
電率は全体的に大きな値を維持したまま、ピークの値の
み減少し、平坦な温度特性を示す。
On the other hand, in BTZ, the peak of the sequential phase transition observed in BT converges to one point, and is broad (flat) and has a large relative dielectric constant. When the particle size of the BTZ is 1 μm or less, the fluctuation of atoms due to the phase transition is reduced, and only the peak value decreases while the relative dielectric constant maintains a large value as a whole, showing a flat temperature characteristic.

【0018】これは、相転移に伴う誘電的活性が低下
し、原子の分極特性が常誘電体に近い誘電的基底状態に
ある為、比誘電率のピークが減少し、よりブロードな温
度特性となるためである。これによりDCバイアスのよ
うな外場に対しての依存性が小さくなる。また、BTZ
微粒子は、同じ粒径で比較した場合、BTに比べ高誘電
率であり、かつDCバイアス依存性が小さい。
This is because the dielectric activity associated with the phase transition is reduced and the polarization characteristics of the atoms are in a dielectric ground state close to that of a paraelectric, so that the peak of the relative dielectric constant is reduced and a broader temperature characteristic is obtained. It is because it becomes. This reduces the dependence on an external field such as a DC bias. Also, BTZ
When compared with the same particle size, the fine particles have a higher dielectric constant than BT and have less DC bias dependency.

【0019】即ち、本発明の誘電体磁器では、高比誘電
率を示し、温度特性に優れたBT結晶粒子と、比較的高
誘電率で、DCバイアス特性に優れたBTZ結晶粒子の
共存構造を実現する事により、高誘電率で、温度特性が
平坦で、かつDCバイアス特性に優れた誘電体材料を実
現できる。
That is, the dielectric porcelain of the present invention has a coexistence structure of a BT crystal particle having a high relative dielectric constant and excellent in temperature characteristics and a BTZ crystal particle having a relatively high dielectric constant and excellent DC bias characteristics. By realizing the dielectric material, a dielectric material having a high dielectric constant, flat temperature characteristics, and excellent DC bias characteristics can be realized.

【0020】また、BT結晶粒子、BTZ結晶粒子がコ
アシェル構造を呈することにより、比誘電率のピークが
よりブロードになり、さらに温度特性とDCバイアス特
性を向上できる。
Further, since the BT crystal particles and the BTZ crystal particles have a core-shell structure, the peak of the relative dielectric constant becomes broader, and the temperature characteristics and the DC bias characteristics can be further improved.

【0021】さらに、本発明の誘電体磁器のBTZ結晶
粒子では、Bサイトの一部がZrで5〜30モル%置換
されていることが望ましい。この範囲内であれば、BT
Z結晶粒子の比誘電率のブロードなピークが室温近傍に
あり、BT結晶粒子とコンポジット構造を形成した場合
に、コンデンサとして使用する温度範囲において大きな
容量を確保できる。
Further, in the BTZ crystal grains of the dielectric ceramic of the present invention, it is desirable that a part of the B site is substituted with 5 to 30 mol% of Zr. Within this range, BT
When the broad peak of the relative permittivity of the Z crystal particles is near room temperature and a composite structure is formed with the BT crystal particles, a large capacitance can be secured in a temperature range used as a capacitor.

【0022】また、本発明の誘電体磁器は、金属元素と
してCaおよび/またはMnを、CaCO3、MnCO3
換算でそれぞれ0.4重量%以下含有することが望まし
い。これら金属元素は、焼結の際、BT、BTZ結晶の
粒成長を抑制したまま磁器の高密度化を可能にし、加圧
を伴わない通常焼成においても微細結晶からなる組織を
有したBT、BTZ焼結体を容易に作製できる。また、
これらの元素は一部粒子内に拡散し、コアシェル構造を
形成する。
Further, the dielectric porcelain of the present invention comprises Ca and / or Mn as metal elements, CaCO 3 , MnCO 3
It is desirable to contain each 0.4% by weight or less in conversion. These metal elements enable porcelain densification while suppressing grain growth of BT and BTZ crystals during sintering, and BT and BTZ having a structure composed of fine crystals even in normal firing without pressurization. A sintered body can be easily manufactured. Also,
These elements partially diffuse into the particles to form a core-shell structure.

【0023】本発明の積層型電子部品は、誘電体層と卑
金属からなる内部電極とを交互に積層してなる積層型電
子部品であって、前記誘電体層が、上記誘電体磁器から
なるものである。比誘電率が大きく誘電率の温度特性も
良好で、DCバイアス特性にも優れた上記本発明のBT
−BTZコンポジット誘電体磁器を誘電体層に用いるこ
とにより、薄層化して積層数を増やすことなく、大容量
の積層コンデンサが得られる。
The laminated electronic component of the present invention is a laminated electronic component in which dielectric layers and internal electrodes made of a base metal are alternately laminated, wherein the dielectric layer is made of the above-mentioned dielectric ceramic. It is. The BT according to the present invention, which has a large relative dielectric constant, good dielectric constant temperature characteristics, and excellent DC bias characteristics.
-By using the BTZ composite dielectric porcelain for the dielectric layer, a large-capacity multilayer capacitor can be obtained without increasing the number of layers by reducing the thickness.

【0024】また、結晶粒径が小さいため誘電体層の薄
層化が容易で、さらなる静電容量の向上、さらなる小型
化が実現できる。さらに卑金属を内部電極として用いる
ことにより、安価な積層型電子部品が得られる。
Further, since the crystal grain size is small, it is easy to make the dielectric layer thinner, and it is possible to further improve the capacitance and further reduce the size. Further, by using a base metal as an internal electrode, an inexpensive laminated electronic component can be obtained.

【0025】[0025]

【発明の実施の形態】本発明の誘電体磁器は、金属元素
としてBa、Ti、Zr、Mgと、Y、ErおよびYb
のうち少なくとも1種とを含有するペロブスカイト型の
BTZ結晶粒子と、金属元素としてBa、Ti、Mg
と、Y、ErおよびYbのうち少なくとも1種とを含有
するペロブスカイト型のBT結晶粒子とからなり、BT
Z結晶粒子およびBT結晶粒子がコアシェル構造を有
し、かつ平均粒径が0.3〜1.0μmであることを特
徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The dielectric porcelain of the present invention comprises Ba, Ti, Zr, Mg as metal elements, Y, Er and Yb.
A perovskite-type BTZ crystal particle containing at least one of Ba, Ti, and Mg as metal elements.
And perovskite-type BT crystal particles containing at least one of Y, Er and Yb,
The Z crystal particles and the BT crystal particles have a core-shell structure, and have an average particle size of 0.3 to 1.0 μm.

【0026】BTZ結晶粒子およびBT結晶粒子の平均
粒径を0.3〜1.0μmとしたのは、平均粒径が0.
3μmよりも小さい場合には、BT及びBTZともに比
誘電率が小さいからである。また、両者の間で容易に固
溶が起こり、共存構造の実現が困難となるからである。
また平均粒径が1.0μmよりも大きい場合には、BT
結晶粒子においては粒子サイズとともに比誘電率が単調
に減少してしまうためであり、またBTZ結晶粒子にお
いては、比誘電率は粒子サイズに比例して大きくなる
が、1μmを越えると比誘電率の温度特性が大きく劣化
するためである。BTZ結晶粒子およびBT結晶粒子の
平均粒径は、比誘電率の向上と温度特性の安定性という
点から0.4〜0.8μmであることが望ましい。
The reason why the average particle diameter of the BTZ crystal particles and the BT crystal particles is 0.3 to 1.0 μm is that the average particle diameter is 0.1 μm.
If it is smaller than 3 μm, the relative dielectric constant of both BT and BTZ is small. In addition, solid solution easily occurs between the two, and it is difficult to realize a coexisting structure.
When the average particle size is larger than 1.0 μm, BT
This is because the relative permittivity monotonously decreases with the grain size in the crystal grains, and the relative permittivity in the BTZ crystal grains increases in proportion to the grain size, but exceeds 1 μm. This is because temperature characteristics are greatly deteriorated. The average particle size of the BTZ crystal particles and the BT crystal particles is desirably 0.4 to 0.8 μm from the viewpoint of improvement in relative dielectric constant and stability of temperature characteristics.

【0027】また、本発明の誘電体磁器は、BTZ結晶
粒子およびBT結晶粒子がコアシェル構造を呈してお
り、個々の粒子内で中心部と周辺部において異なった組
成となっている。
In the dielectric porcelain of the present invention, the BTZ crystal particles and the BT crystal particles have a core-shell structure, and each particle has a different composition in the central portion and the peripheral portion.

【0028】本発明で、BTZ結晶粒子およびBT結晶
粒子がコアシェル構造を呈する理由は以下の通りであ
る。
In the present invention, the reason why the BTZ crystal particles and the BT crystal particles exhibit a core-shell structure is as follows.

【0029】BTZ粒子は、焼結時に原子拡散による粒
成長を起こしやすく、微小粒径の緻密焼結体を得にく
い。また、BTとBTZの混合体の焼結体においては、
BTZに比べ、BTの焼結温度が低いため、BTが両者
間の固溶を促進し、固溶体を容易に形成する。粒子サイ
ズがサブミクロンより小さい場合、粒子体積に対し、表
面積が大きな割合を占め、表面エネルギーが大きいた
め、エネルギー的に不安定な状態になり、原子拡散によ
る粒成長により表面積を小さくし表面エネルギーの低下
により安定化する。
BTZ particles are liable to undergo grain growth due to atomic diffusion during sintering, and it is difficult to obtain a dense sintered body having a small particle size. In a sintered body of a mixture of BT and BTZ,
Since BT has a lower sintering temperature than BTZ, BT promotes solid solution between the two and easily forms a solid solution. If the particle size is smaller than submicron, the surface area occupies a large proportion of the particle volume, and the surface energy is large, so that it becomes unstable in terms of energy. Stabilizes by lowering.

【0030】この為、粒成長が起こりやすく、微小サイ
ズの粒子からなる緻密焼結体は得にくい。特に0.3μ
mより小さい微小粒子サイズのBTとBTZの焼結体
は、容易に固溶・粒成長を生じ、粒子間の原子の移動を
抑制するものを粒子間に導入しなければ1μmを越える
大きな粒子サイズからなる焼結体が形成され、サブミク
ロン以下の微小粒子サイズからなる緻密な焼結体を得る
のは困難である。
For this reason, grain growth tends to occur, and it is difficult to obtain a dense sintered body composed of fine particles. Especially 0.3μ
A sintered body of BT and BTZ having a small particle size smaller than m easily causes solid solution and grain growth, and a large particle size exceeding 1 μm unless a material that suppresses the movement of atoms between particles is introduced between particles. , And it is difficult to obtain a dense sintered body having a fine particle size of submicron or less.

【0031】これに対し、微小結晶原料とともにMgと
Yの様な希土類元素を添加剤として導入し、さらに焼成
条件を調整する事により、原料結晶粒子のサイズを反映
した微小粒子焼結体を得る事ができる。これらの添加物
は、粒子表面に拡散し液相を形成する事によりMn、ガ
ラスとともに焼結を促進するとともに、粒界近傍及び粒
界にあって母相であるBT及びBTZ間のBa、Ti、
Zr原子の移動を抑制し、粒成長を抑制する。この結果
粒子表面に添加物の拡散固溶した結晶相が形成される。
On the other hand, by introducing a rare earth element such as Mg and Y as an additive together with the fine crystal raw material, and further adjusting the firing conditions, a fine particle sintered body reflecting the size of the raw material crystal particles is obtained. Can do things. These additives promote sintering together with Mn and glass by diffusing to the particle surface to form a liquid phase, and also Ba and Ti between BT and BTZ which are near and at the grain boundaries and are the parent phase. ,
It suppresses the movement of Zr atoms and suppresses grain growth. As a result, a crystal phase in which the additive is diffused and dissolved in the particle surface is formed.

【0032】以上の様に、BT、BTZの粒子サイズを
サブミクロン、具体的には0.3μm以上と大きくし、
さらに固溶を抑制する添加物を導入し、焼結条件を調整
することにより、固溶し易く粒成長し易いBTZとBT
からなる複合材料を作製できる。
As described above, the particle size of BT and BTZ is increased to submicron, specifically, 0.3 μm or more.
BTZ and BT which are easy to form a solid solution and easily grow grains by adjusting the sintering conditions by introducing an additive which suppresses solid solution.
Can be produced.

【0033】また、本発明の誘電体磁器では、BTZ結
晶粒子のBサイトの一部がZrで5〜30モル%置換さ
れていることが望ましい。この範囲内であれば、BTZ
結晶粒子の比誘電率のブロードなピークが室温近傍にあ
り、BT結晶粒子とコンポジット構造を形成した場合
に、コンデンサとして使用する温度範囲において大きな
容量を確保できる。
In the dielectric porcelain of the present invention, it is desirable that a part of the B site of the BTZ crystal particles is substituted with 5 to 30 mol% of Zr. Within this range, BTZ
When the broad peak of the relative permittivity of the crystal particles is near room temperature and a composite structure is formed with the BT crystal particles, a large capacitance can be secured in a temperature range used as a capacitor.

【0034】BサイトのZrによる置換量が5モル%に
満たない場合は、BTZの誘電特性がBTと大きな差異
がなく、BTZとBTのコンポジット構造を形成する有
効性が小さい。一方、30モル%より大きい場合は、比
誘電率のピークの温度が低温すぎる為、コンデンサとし
ての使用温度範囲において十分な比誘電率を得る事がで
きない。また、Zr量が多い場合、比誘電率の値が小さ
くなり、十分な比誘電率が得られないからである。BT
Z結晶粒子のZrによるBサイトの置換量は、比誘電率
の大きさとピーク温度及びピークのブロードさの点か
ら、5〜20モル%であることが望ましい。
When the amount of B site substituted by Zr is less than 5 mol%, the dielectric properties of BTZ are not much different from BT, and the effectiveness of forming a composite structure of BTZ and BT is small. On the other hand, if it is more than 30 mol%, the peak temperature of the relative dielectric constant is too low, so that a sufficient relative dielectric constant cannot be obtained in the operating temperature range of the capacitor. Also, when the amount of Zr is large, the value of the relative dielectric constant becomes small, and a sufficient relative dielectric constant cannot be obtained. BT
The replacement amount of the B site by Zr in the Z crystal particles is preferably 5 to 20 mol% from the viewpoint of the relative dielectric constant, the peak temperature, and the peak broadness.

【0035】さらに、本発明の誘電体磁器は、金属元素
としてCa、Mnの少なくとも1種を、CaCO3、M
nCO3換算でそれぞれ0.4重量%以下の比率で含有
していることが望ましい。これら金属成分は、誘電体磁
器の電気的絶縁性を高めるとともに、高温負荷寿命を大
きくし、信頼性を高める。0.4重量%より多く導入す
ると絶縁性が低下する。
Further, the dielectric porcelain of the present invention is characterized in that at least one of Ca and Mn is used as a metal element and CaCO 3 , M
It is desirable to contain each in a ratio of 0.4% by weight or less in terms of nCO 3 . These metal components increase the electrical insulation of the dielectric porcelain, increase the high-temperature load life, and enhance the reliability. If the amount is more than 0.4% by weight, the insulating property decreases.

【0036】本発明の誘電体磁器は、BT結晶粒子とB
TZ結晶粒子からなるもので、Mgと、Y、Er、Yb
のうちの一種はBT結晶粒子とBTZ結晶粒子内に殆ど
が固溶するが、一部粒界に存在する場合がある。粒界に
存在する場合は主として非晶質として存在する。
The dielectric porcelain of the present invention comprises BT crystal particles and B
Consisting of TZ crystal particles, Mg, Y, Er, Yb
One of them is almost completely dissolved in the BT crystal particles and the BTZ crystal particles, but may be partially present at the grain boundaries. When it exists at the grain boundary, it mainly exists as amorphous.

【0037】また、BT結晶粒子、BTZ結晶粒子では
Ba、Ti、Zrが均質に存在するとともに、Mgと、
Y、Er、Ybのうちの一種は主にBT結晶粒子、BT
Z結晶粒子の外周部に存在し、結晶粒子の中心部と周辺
部において組成が異なるコアシェル構造を呈している。
In the BT crystal particles and BTZ crystal particles, Ba, Ti, and Zr are uniformly present, and Mg,
One of Y, Er and Yb is mainly BT crystal particles, BT
It is present at the outer periphery of the Z crystal grain, and has a core-shell structure having different compositions at the center and the periphery of the crystal grain.

【0038】さらに、添加されるCa、Mnは、BT結
晶粒子やBTZ結晶粒子内に固溶したり、粒界に主とし
て非晶質として存在する。
Further, Ca and Mn to be added are dissolved in BT crystal particles or BTZ crystal particles or exist as amorphous mainly at grain boundaries.

【0039】本発明の誘電体磁器を製造するには、例え
ばゾルゲル法、蓚酸法、水熱合成法により生成された、
所定の組成を有する、平均粒径が0.1〜1μmのBT
Z粉末及びBT粉末を用いる。
In order to manufacture the dielectric porcelain of the present invention, for example, a sol-gel method, an oxalic acid method, and a hydrothermal synthesis method are used.
BT having a predetermined composition and an average particle size of 0.1 to 1 μm
Z powder and BT powder are used.

【0040】また、前記BTZ及びBT粉末に対し、所
定量のMg、Ca、Mn、Y、Er、Yb等金属元素の
酸化物あるいは炭酸塩を加えて回転ミルなどで20〜4
8時間湿式混合し、乾燥後、PVA等の有機バインダを
所定量添加して造粒し、これを所定形状に成形し、これ
を所望により大気中、真空中または窒素中で脱脂した
後、大気中または還元雰囲気中で焼成する。
Further, a predetermined amount of an oxide or carbonate of a metal element such as Mg, Ca, Mn, Y, Er, or Yb is added to the BTZ and the BT powder, and the powder is added with a rotary mill or the like.
After wet mixing for 8 hours and drying, a predetermined amount of an organic binder such as PVA is added and granulated, formed into a predetermined shape, and degreased in the air, vacuum or nitrogen as required, and then dried. Fire in medium or reducing atmosphere.

【0041】この時、焼成温度は、1050〜1150
℃、特に1075〜1125℃で1〜10時間焼成する
ことにより、本発明の誘電体磁器を作製することができ
る。
At this time, the firing temperature is from 1050 to 1150
By sintering at 10 ° C., particularly 1075 to 1125 ° C. for 1 to 10 hours, the dielectric porcelain of the present invention can be manufactured.

【0042】特にコアシェル構造を呈するには、この焼
成温度が重要である。焼成温度は1050〜1150℃
が望ましい。これは、1050℃より低い場合、焼結が
十分に進まない為、緻密な焼結体が得られない。また、
1150℃より高い温度では、BTにZrを含有しない
為、ZrがBTに拡散し易くなり、結果としてBTとB
TZの固溶体が形成されてしまう。焼成温度を1050
〜1150℃とする事で、Zrの拡散を抑制し、かつ添
加元素とBT、BTZとのコアシェル構造を形成し、こ
れにより焼結が促進され緻密なコンポジット構造を形成
できる。
In order to exhibit a core-shell structure, the firing temperature is important. The firing temperature is 1050-1150 ° C
Is desirable. If the temperature is lower than 1050 ° C., sintering does not proceed sufficiently, so that a dense sintered body cannot be obtained. Also,
At a temperature higher than 1150 ° C., BT does not contain Zr, so that Zr easily diffuses into BT, and as a result, BT and B
A TZ solid solution is formed. Firing temperature 1050
By setting the temperature to 11150 ° C., the diffusion of Zr is suppressed, and a core-shell structure of the additive element and BT or BTZ is formed, whereby sintering is promoted and a dense composite structure can be formed.

【0043】以上のような誘電体磁器では、BTZ結晶
粒子とBT結晶粒子からなり、これらの粒子がコアシェ
ル構造を有し、かつ平均粒径が0.3〜1.0μmであ
るため、高比誘電率を示し、温度特性に優れたBT結晶
粒子と、比較的高誘電率で、DCバイアス特性に優れた
BTZ結晶粒子の共存構造を実現する事により、高誘電
率で、温度特性が平坦で、かつDCバイアス特性に優れ
た誘電体材料を実現できる。
In the above-described dielectric porcelain, BTZ crystal grains and BT crystal grains have a core-shell structure and an average particle diameter of 0.3 to 1.0 μm. By realizing a coexistence structure of BT crystal particles exhibiting a dielectric constant and excellent temperature characteristics and BTZ crystal particles having a relatively high dielectric constant and excellent DC bias characteristics, it has a high dielectric constant and a flat temperature characteristic. In addition, a dielectric material having excellent DC bias characteristics can be realized.

【0044】また、BT結晶粒子、BTZ結晶粒子がコ
アシェル構造を呈することにより、さらに温度特性とD
Cバイアス特性を向上できる。
Further, since the BT crystal particles and BTZ crystal particles have a core-shell structure, the temperature characteristics and the D
C bias characteristics can be improved.

【0045】本発明の積層セラミックコンデンサからな
る積層型電子部品は、上記誘電体磁器からなる誘電体層
と卑金属からなる内部電極とを交互に積層して構成され
ている。卑金属としては、Ni、Cu等があるが、特に
安価という点からNiであることが望ましい。
The multilayer electronic component comprising the multilayer ceramic capacitor of the present invention is constituted by alternately laminating the dielectric layers composed of the dielectric ceramic and the internal electrodes composed of the base metal. As the base metal, there are Ni, Cu, and the like, but Ni is preferably used because it is particularly inexpensive.

【0046】本発明の積層型電子部品の製造方法につい
て説明する。まず、前記BT及びBTZ粉末に、所定量
のMg、Ca、Mn、Y、Er、Ybの酸化物あるいは
炭酸塩を加えて混合した原料粉末を用いて、引き上げ
法、ドクターブレード法、リバースロールコータ法、グ
ラビアコータ法、スクリーン印刷法、グラビア印刷等の
周知の成形法により誘電体シートを作製する。
A method for manufacturing a laminated electronic component according to the present invention will be described. First, a pulling method, a doctor blade method, a reverse roll coater, and a raw material powder obtained by adding a predetermined amount of oxides or carbonates of Mg, Ca, Mn, Y, Er, and Yb to the BT and BTZ powders and mixing them. A dielectric sheet is produced by a well-known forming method such as a gravure coating method, a screen printing method, and a gravure printing method.

【0047】また、この誘電体シートの厚みは、小型、
大容量化という理由から1〜10μm、特には1〜5μ
mであることが望ましい。
The thickness of the dielectric sheet is small,
1 to 10 μm, especially 1 to 5 μm for the reason of large capacity
m is desirable.

【0048】次に、この誘電体シートの表面に、例えば
Niを含有する導電性ペーストを、スクリーン印刷法、
グラビア印刷、オフセット印刷法等の周知の印刷方法に
より塗布し内部電極パターンを形成する。内部電極パタ
ーンの厚みは、コンデンサの小型、高信頼性化という点
から2μm以下、特には1μm以下であることが望まし
い。
Next, a conductive paste containing, for example, Ni is applied to the surface of the dielectric sheet by screen printing.
An internal electrode pattern is formed by coating by a known printing method such as gravure printing or offset printing. The thickness of the internal electrode pattern is desirably 2 μm or less, particularly preferably 1 μm or less, from the viewpoint of miniaturization and high reliability of the capacitor.

【0049】そして、導電性ペーストが塗布された誘電
体シートを複数枚積層圧着し、この積層成形体を大気中
250〜300℃または酸素分圧0.1〜1Paの低酸
素雰囲気中500〜800℃で脱脂した後、非酸化性雰
囲気で1050〜1150℃で2〜3時間焼成する。さ
らに、所望により、酸素分圧が0.1〜10-4Pa程度
の低酸素分圧下、900〜1100℃で5〜15時間再
酸化処理を施すことにより、還元された誘電体層が酸化
されることにより、良好な絶縁特性を有する誘電体層と
なる。
Then, a plurality of dielectric sheets to which the conductive paste is applied are laminated and pressed, and the laminated molded body is placed in the atmosphere at 250 to 300 ° C. or in a low oxygen atmosphere having an oxygen partial pressure of 0.1 to 1 Pa in a range of 500 to 800. After degreased at ℃, it is fired in a non-oxidizing atmosphere at 1,050 to 1,150 ° C for 2-3 hours. Further, if desired, the reduced dielectric layer is oxidized by performing reoxidation treatment at 900 to 1100 ° C. for 5 to 15 hours under a low oxygen partial pressure of about 0.1 to 10 −4 Pa. This results in a dielectric layer having good insulating properties.

【0050】最後に、得られた積層焼結体に対し、各端
面にCuペーストを塗布して焼き付け、Ni/Snメッ
キを施し、内部電極と電気的に接続された外部電極を形
成して積層セラミックコンデンサを作製できる。
Finally, a Cu paste is applied to each end face of the obtained laminated sintered body and baked, Ni / Sn plating is performed, and external electrodes electrically connected to the internal electrodes are formed to form a laminate. A ceramic capacitor can be manufactured.

【0051】このような積層セラミックコンデンサから
なる積層型電子部品では、高誘電率で、優れたDCバイ
アス特性を有する誘電体磁器を用いることにより、高容
量化・小型化をさらに推し進めることができる。また、
平均粒径の小さい誘電体磁器を用いることにより、誘電
体厚みを容易に薄層化することができ、静電容量の向
上、小型化が可能になると共に、Ni、Cu等の卑金属
を導体として用いることにより、安価な積層セラミック
コンデンサが得られる。
In a multilayer electronic component comprising such a multilayer ceramic capacitor, by using a dielectric ceramic having a high dielectric constant and excellent DC bias characteristics, a higher capacity and a smaller size can be further promoted. Also,
By using a dielectric porcelain having a small average particle size, the thickness of the dielectric can be easily reduced, the capacitance can be improved and the size can be reduced, and a base metal such as Ni or Cu can be used as a conductor. By using this, an inexpensive multilayer ceramic capacitor can be obtained.

【0052】[0052]

【実施例】実施例1 水熱合成法により生成された、BaTiO3(平均粒径
0.2、0.4μm)粉末と、Ba(Ti1-xZrx)O
3(xは表1に示す値、平均粒径0.2、0.3、0.
5μm)粉末と、MgCO3、Y23、Er23、Yb2
3、MnCO3、CaCO3を表1に記載する量だけ添
加し、Si、Li、Ba、Caからなるガラスフィラー
を全量中1.2重量%添加し、IPAを溶媒として3m
mφのZrO2ボールを用いて回転ミルで24時間湿式
混合した。
EXAMPLE 1 BaTiO 3 (average particle size 0.2, 0.4 μm) powder and Ba (Ti 1-x Zr x ) O produced by a hydrothermal synthesis method
3 (x is the value shown in Table 1, average particle size 0.2, 0.3, 0.
5 μm) powder, MgCO 3 , Y 2 O 3 , Er 2 O 3 , Yb 2
O 3 , MnCO 3 , and CaCO 3 were added in the amounts shown in Table 1, and a glass filler composed of Si, Li, Ba, and Ca was added in an amount of 1.2% by weight based on the total amount.
The mixture was wet-mixed for 24 hours with a rotary mill using a ZrO 2 ball of mφ.

【0053】スラリーを排出、乾燥した後、有機バイン
ダを約2重量%添加して造粒し、これを厚さ約1mm、
直径16mmに成形した。この成形体を脱脂した後、大
気中にて表1に示す温度で2時間焼成した。
After the slurry was discharged and dried, about 2% by weight of an organic binder was added and granulated.
It was formed into a diameter of 16 mm. After the molded body was degreased, it was fired in the air at the temperature shown in Table 1 for 2 hours.

【0054】得られた焼結体の断面を走査型電子顕微鏡
(SEM)にて観察し、インターセプト法により磁器の
平均粒径を求めた。
The cross section of the obtained sintered body was observed with a scanning electron microscope (SEM), and the average particle size of the porcelain was determined by an intercept method.

【0055】さらに、上記試料を厚さ400μmに研磨
加工し、試料上下面にIn−Gaを塗布して電極を形成
した。
Further, the sample was polished to a thickness of 400 μm, and In—Ga was applied to the upper and lower surfaces of the sample to form electrodes.

【0056】電気特性は、LCRメータを用いて−25
℃〜85℃の温度範囲で、AC1V、測定周波数 1k
Hzの条件で静電容量を測定し、比誘電率を算出した。
比誘電率の温度変化率TCCを、TCC={ε(T)−
ε(20℃)}/ε(20℃)の式により求めた。20
℃を基準温度としている。
The electrical characteristics were measured at -25 using an LCR meter.
AC 1V, measurement frequency 1k in the temperature range of ℃ ~ 85 ℃
The capacitance was measured under the condition of Hz, and the relative permittivity was calculated.
The temperature change rate TCC of the relative dielectric constant is expressed as TCC = {ε (T) −
It was determined by the equation of ε (20 ° C.)} / ε (20 ° C.). 20
C is the reference temperature.

【0057】比誘電率のDCバイアス依存性△ε/ε
は、分極ー電界ヒステレシス特性測定装置を用いて、D
Cオフセット電圧(800V)を30秒印加後、DCオ
フセット電圧を印加したままで、微小電圧(100V)
によるヒステレシス曲線を測定し、その傾きからDCバ
イアス印加時の比誘電率ε(800V)を算出した。D
Cバイアス依存性△ε/εは、{ε(800V)−ε
(0V)}/ε(0V)の式により求めた。結果を表1
に示した。
DC bias dependency of relative permittivity △ ε / ε
Is measured using a polarization-electric field hysteresis characteristic measuring apparatus.
After applying a C offset voltage (800 V) for 30 seconds, a small voltage (100 V) is applied while a DC offset voltage is applied.
Was measured, and the relative permittivity ε (800 V) when a DC bias was applied was calculated from the slope. D
The C bias dependency / ε / ε is given by {ε (800V) −ε
(0V)} / ε (0V). Table 1 shows the results
It was shown to.

【0058】[0058]

【表1】 [Table 1]

【0059】この表1から、BTZを含まない試料N
o.1は、比誘電率は約3400と大きいが、DCバイ
アス依存性が大きい。一方、BTとBTZの共存構造の
実現した本発明の試料では、比誘電率2000以上、特
には2500以上、比誘電率の変化率も±10%以内で
あり、かつDCバイアス依存性も−20%以内と優れて
いる。
From Table 1, it can be seen that the sample N containing no BTZ
o. No. 1 has a large relative dielectric constant of about 3400, but has a large DC bias dependency. On the other hand, in the sample of the present invention in which the coexistence structure of BT and BTZ was realized, the relative dielectric constant was 2000 or more, particularly 2500 or more, the relative dielectric constant change rate was within ± 10%, and the DC bias dependency was −20. Excellent within%.

【0060】また、本発明の試料では、透過型電子顕微
鏡により誘電体磁器の粒子の結晶構造、組成を分析した
ところ、BT、BTZ結晶粒子が存在しており、各B
T、BTZ結晶粒子内において、中心部と周辺部におい
て組成の相違が確認でき、Ba、Ti、Zrは均一に存
在し、周辺部においてはMgと、Y、Er、Ybが検出
されたが、中心部においては検出されず、いわゆるコア
シェル構造を呈していた。一方、1300℃焼成のN
o.2とNo.7においては、BTとBTZが完全固溶
し、所望の構造が得られなかった。また、1000℃焼
成のNo.6についても良好な焼結性が得られなかっ
た。
In the sample of the present invention, when the crystal structure and composition of the particles of the dielectric porcelain were analyzed by a transmission electron microscope, it was found that BT and BTZ crystal particles were present.
In the T and BTZ crystal grains, a difference in composition was confirmed between the central part and the peripheral part. Ba, Ti, and Zr were uniformly present, and Mg and Y, Er, and Yb were detected in the peripheral part. It was not detected at the center, and exhibited a so-called core-shell structure. On the other hand, N
o. 2 and No. In No. 7, BT and BTZ completely dissolved, and the desired structure was not obtained. In addition, no. No good sinterability was obtained for No. 6.

【0061】また、希土類元素が1.7重量%以上であ
るNo.10、No.14、No.17、No.25に
おいては焼結性が悪く、電気的測定ができなかった。 実施例2 まず、PETフィルム上に、BaTiO3、Ba(Ti
1-xZrx)O3、MgCO3、MnCO3およびY23
末、ブチラール樹脂、およびトルエンからなるセラミッ
クスラリーを作製し、これをドクターブレード法により
塗布し、乾燥機内で60℃で15秒間乾燥後、これを剥
離して厚み9μmのセラミックグリーンシートを形成
し、これを10枚積層して端面セラミックグリーンシー
ト層を形成した。そして、これらの端面セラミックグリ
ーンシート層を、90℃で30分の条件で乾燥させた。
In the case of No. 3 in which the rare earth element is 1.7% by weight or more. 10, No. 14, No. 17, No. In No. 25, the sinterability was poor, and electrical measurements could not be made. Example 2 First, BaTiO 3 , Ba (Ti
1-x Zr x ) A ceramic slurry composed of O 3 , MgCO 3 , MnCO 3 and Y 2 O 3 powders, butyral resin, and toluene was prepared, applied by a doctor blade method, and dried at 60 ° C. in a dryer at 60 ° C. After drying for 2 seconds, this was peeled off to form a 9 μm-thick ceramic green sheet, and 10 of these were laminated to form an end face ceramic green sheet layer. Then, these end face ceramic green sheet layers were dried at 90 ° C. for 30 minutes.

【0062】この端面セラミックグリーンシート層を台
板上に配置し、プレス機により圧着して台板上にはりつ
けた。
The ceramic green sheet layer at the end face was placed on a base plate, pressed with a press machine and glued on the base plate.

【0063】一方、PETフィルム上に、上記と同一の
セラミックスラリーをドクターブレード法により塗布
し、60℃で15秒間乾燥後、厚み5.5μmのセラミ
ックグリーンシートを多数作製した。
On the other hand, the same ceramic slurry as described above was applied on a PET film by a doctor blade method, dried at 60 ° C. for 15 seconds, and a number of 5.5 μm-thick ceramic green sheets were produced.

【0064】次に、平均粒径0.2μmのNi粉末の合
量45重量%に対して、エチルセルロース5.5重量%
とオクチルアルコール94.5重量%からなるビヒクル
55重量%を3本ロールで混練して内部電極ペーストを
作製した。
Next, 5.5% by weight of ethyl cellulose was added to 45% by weight of the total Ni powder having an average particle size of 0.2 μm.
And 55% by weight of a vehicle comprising 94.5% by weight of octyl alcohol were kneaded with three rolls to prepare an internal electrode paste.

【0065】この後、得られたセラミックグリーンシー
トの一方主面に、スクリーン印刷装置を用いて、上記し
た内部電極ペーストを内部電極パターン状に印刷し、グ
リーンシート上に長辺と短辺を有する長方形状の内部電
極パターンを複数形成し、乾燥後、剥離した。
Thereafter, the above-mentioned internal electrode paste is printed in an internal electrode pattern on one main surface of the obtained ceramic green sheet using a screen printing apparatus, and has a long side and a short side on the green sheet. A plurality of rectangular internal electrode patterns were formed, dried, and then peeled off.

【0066】この後、端面セラミックグリーンシート層
の上に、内部電極パターンが形成されたグリーンシート
を300枚積層し、この後、端面セラミックグリーンシ
ートを積層し、コンデンサ本体成形体を作製した。
Thereafter, 300 green sheets on which the internal electrode patterns were formed were laminated on the end face ceramic green sheet layer, and thereafter, the end face ceramic green sheets were laminated, thereby producing a molded body of the capacitor body.

【0067】次に、コンデンサ本体成形体を金型上に載
置し、積層方向からプレス機の加圧板により圧力を段階
的に増加して圧着し、この後さらにコンデンサ本体成形
体の上部にゴム型を配置し、静水圧成形した。
Next, the capacitor body molded body is placed on a mold, and the pressure is gradually increased by a pressing plate of a press machine from the laminating direction, and pressure is applied. The mold was placed and isostatically formed.

【0068】この後、このコンデンサ本体成形体を所定
のチップ形状にカットし、大気中300℃または0.1
Paの酸素/窒素雰囲気中500℃に加熱し、脱バイを
行った。さらに、10-7Paの酸素/窒素雰囲気中、1
100℃で2時間焼成し、さらに、10-2Paの酸素/
窒素雰囲気中にて1000℃で再酸化処理を行い、電子
部品本体を得た。焼成後、電子部品本体の端面にCuペ
ーストを900℃で焼き付け、さらにNi/Snメッキ
を施し、内部電極と接続する外部端子を形成した。
Thereafter, the molded body of the capacitor is cut into a predetermined chip shape, and the cut body is formed at 300 ° C. or 0.1 ° C. in the atmosphere.
Heating was performed at 500 ° C. in an oxygen / nitrogen atmosphere of Pa to remove the solder. Further, in an oxygen / nitrogen atmosphere of 10 -7 Pa,
Baking at 100 ° C. for 2 hours, and further adding 10 −2 Pa of oxygen /
Reoxidation was performed at 1000 ° C. in a nitrogen atmosphere to obtain an electronic component body. After firing, Cu paste was baked at 900 ° C. on the end surface of the electronic component body, and further subjected to Ni / Sn plating to form external terminals connected to internal electrodes.

【0069】このようにして得られた積層セラミックコ
ンデンサの内部電極間に介在する誘電体層の厚みは4μ
mであった。また誘電体層の有効積層数は300層であ
った。
The thickness of the dielectric layer interposed between the internal electrodes of the multilayer ceramic capacitor thus obtained is 4 μm.
m. The effective number of stacked dielectric layers was 300.

【0070】試料No.26とNo.27に測定結果を
示す。尚、DCバイアス依存性△ε/εは、{ε(8
V)−ε(0V)}/ε(0V)の式により求め、その
他の特性は上記実施例1と同様にして求めた。結果を表
1に示した。この結果から、比誘電率は3000以上を
示し、温度変化率、DCバイアスとも優れた特性を示し
た。
Sample No. 26 and no. 27 shows the measurement results. Note that the DC bias dependency Δε / ε is expressed as Δε (8
V) −ε (0V)} / ε (0V), and other characteristics were obtained in the same manner as in Example 1. The results are shown in Table 1. From these results, the relative dielectric constant was 3000 or more, and excellent characteristics were exhibited in both the temperature change rate and the DC bias.

【0071】[0071]

【発明の効果】本発明の誘電体磁器では、比誘電率が2
000以上で、比誘電率の温度特性が±10%以内で、
かつ2V/μmのDCバイアス印加による比誘電率の変
化率が20%以内の特性を有し、それにより高電圧が印
加されても静電容量の低下率が小さい小型・高容量の積
層セラミックコンデンサを実現することが可能となる。
According to the dielectric ceramic of the present invention, the relative dielectric constant is 2
000 or more, temperature characteristics of relative permittivity are within ± 10%,
Small and high-capacity monolithic ceramic capacitors having a characteristic that the rate of change of the relative dielectric constant due to application of a DC bias of 2 V / μm is within 20%, whereby the rate of decrease in capacitance is small even when a high voltage is applied. Can be realized.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】金属元素としてBa、Ti、Zr、Mg
と、Y、ErおよびYbのうち少なくとも1種とを含有
するペロブスカイト型のBTZ結晶粒子と、金属元素と
してBa、Ti、Mgと、Y、ErおよびYbのうち少
なくとも1種とを含有するペロブスカイト型のBT結晶
粒子とからなり、前記BTZ結晶粒子と、前記BT結晶
粒子がコアシェル構造を有し、かつ平均粒径が0.3〜
1.0μmであることを特徴とする誘電体磁器。
1. Ba, Ti, Zr, Mg as metal elements
And perovskite-type BTZ crystal particles containing at least one of Y, Er and Yb, and perovskite-type particles containing Ba, Ti and Mg as metal elements and at least one of Y, Er and Yb Wherein the BTZ crystal particles and the BT crystal particles have a core-shell structure, and have an average particle size of 0.3 to
A dielectric porcelain having a thickness of 1.0 μm.
【請求項2】BTZ結晶粒子のBサイトの一部が、Zr
で5〜30モル%置換されていることを特徴とする請求
項1記載の誘電体磁器。
2. A method according to claim 1, wherein a part of the B site of the BTZ crystal particle is Zr.
The dielectric porcelain according to claim 1, wherein 5 to 30 mol% is substituted.
【請求項3】金属元素としてCaおよび/またはMn
を、CaCO3、MnCO3換算で0.4重量%以下含有
することを特徴とする請求項1または2記載の誘電体磁
器。
3. A metal element comprising Ca and / or Mn.
3. The dielectric ceramic according to claim 1, wherein the content is 0.4% by weight or less in terms of CaCO 3 and MnCO 3 .
【請求項4】誘電体層と卑金属からなる内部電極とを交
互に積層してなる積層型電子部品であって、前記誘電体
層が、請求項1乃至3のうちいずれかに記載の誘電体磁
器からなることを特徴とする積層型電子部品。
4. A laminated electronic component in which dielectric layers and internal electrodes made of a base metal are alternately laminated, wherein the dielectric layer is a dielectric material according to claim 1. A laminated electronic component comprising porcelain.
JP2000396623A 2000-12-27 2000-12-27 Dielectric porcelain and multilayer electronic components Expired - Fee Related JP4627876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000396623A JP4627876B2 (en) 2000-12-27 2000-12-27 Dielectric porcelain and multilayer electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000396623A JP4627876B2 (en) 2000-12-27 2000-12-27 Dielectric porcelain and multilayer electronic components

Publications (2)

Publication Number Publication Date
JP2002193667A true JP2002193667A (en) 2002-07-10
JP4627876B2 JP4627876B2 (en) 2011-02-09

Family

ID=18861881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000396623A Expired - Fee Related JP4627876B2 (en) 2000-12-27 2000-12-27 Dielectric porcelain and multilayer electronic components

Country Status (1)

Country Link
JP (1) JP4627876B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004345927A (en) * 2003-05-26 2004-12-09 Murata Mfg Co Ltd Method for manufacturing irreducible dielectric ceramic, irreducible dielectric ceramic, and laminated ceramic capacitor
JP2007119275A (en) * 2005-10-26 2007-05-17 Kyocera Corp Dielectric ceramic
CN100392779C (en) * 2004-11-08 2008-06-04 华南理工大学 Fine crystal ceramic capacitor dielectric material with high dielectric coefficient and process for preparing same
CN100419923C (en) * 2003-03-03 2008-09-17 株式会社村田制作所 Dielectric ceramic and producing method thereof, and multilayer ceramic capacitor
JPWO2012008041A1 (en) * 2010-07-12 2013-09-05 株式会社ユーテック Ferroelectric film, sol-gel solution, film forming method, and method for manufacturing ferroelectric film
US20140185183A1 (en) * 2012-12-28 2014-07-03 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic capacitor using the same
JP2017175103A (en) * 2016-03-21 2017-09-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric composition and multilayer ceramic capacitor containing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926969A (en) * 1982-08-04 1984-02-13 株式会社村田製作所 Non-linear dielectric ceramic composition
JPH03112860A (en) * 1989-09-25 1991-05-14 Matsushita Electric Ind Co Ltd Dielectric porcelein composition and laminated ceramic capacitor using the same and its preparation
JPH03112861A (en) * 1989-09-25 1991-05-14 Matsushita Electric Ind Co Ltd Dielectric porcelain and laminated ceramic capacitor using the same and preparation thereof
JPH04289609A (en) * 1991-03-19 1992-10-14 Fujitsu Ltd Low-temperature fired dielectric composition
JPH065460A (en) * 1991-03-16 1994-01-14 Taiyo Yuden Co Ltd Porcelain capacitor and manufacture thereof
JPH09241075A (en) * 1996-03-08 1997-09-16 Murata Mfg Co Ltd Nonreducible dielectric ceramic and laminated ceramic electronic parts using same
JPH11251173A (en) * 1998-03-03 1999-09-17 Murata Mfg Co Ltd Laminated ceramic electronic component
JPH11273985A (en) * 1998-01-20 1999-10-08 Murata Mfg Co Ltd Dielectric ceramic and its manufacture, and laminated ceramic electronic part and its manufacture
JP2001220224A (en) * 2000-02-04 2001-08-14 Taiyo Yuden Co Ltd Dielectric ceramic and laminated ceramic electric part

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926969A (en) * 1982-08-04 1984-02-13 株式会社村田製作所 Non-linear dielectric ceramic composition
JPH03112860A (en) * 1989-09-25 1991-05-14 Matsushita Electric Ind Co Ltd Dielectric porcelein composition and laminated ceramic capacitor using the same and its preparation
JPH03112861A (en) * 1989-09-25 1991-05-14 Matsushita Electric Ind Co Ltd Dielectric porcelain and laminated ceramic capacitor using the same and preparation thereof
JPH065460A (en) * 1991-03-16 1994-01-14 Taiyo Yuden Co Ltd Porcelain capacitor and manufacture thereof
JPH04289609A (en) * 1991-03-19 1992-10-14 Fujitsu Ltd Low-temperature fired dielectric composition
JPH09241075A (en) * 1996-03-08 1997-09-16 Murata Mfg Co Ltd Nonreducible dielectric ceramic and laminated ceramic electronic parts using same
JPH11273985A (en) * 1998-01-20 1999-10-08 Murata Mfg Co Ltd Dielectric ceramic and its manufacture, and laminated ceramic electronic part and its manufacture
JPH11251173A (en) * 1998-03-03 1999-09-17 Murata Mfg Co Ltd Laminated ceramic electronic component
JP2001220224A (en) * 2000-02-04 2001-08-14 Taiyo Yuden Co Ltd Dielectric ceramic and laminated ceramic electric part

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100419923C (en) * 2003-03-03 2008-09-17 株式会社村田制作所 Dielectric ceramic and producing method thereof, and multilayer ceramic capacitor
JP2004345927A (en) * 2003-05-26 2004-12-09 Murata Mfg Co Ltd Method for manufacturing irreducible dielectric ceramic, irreducible dielectric ceramic, and laminated ceramic capacitor
JP4513278B2 (en) * 2003-05-26 2010-07-28 株式会社村田製作所 Non-reducing dielectric ceramic manufacturing method, non-reducing dielectric ceramic and multilayer ceramic capacitor
CN100392779C (en) * 2004-11-08 2008-06-04 华南理工大学 Fine crystal ceramic capacitor dielectric material with high dielectric coefficient and process for preparing same
JP2007119275A (en) * 2005-10-26 2007-05-17 Kyocera Corp Dielectric ceramic
JPWO2012008041A1 (en) * 2010-07-12 2013-09-05 株式会社ユーテック Ferroelectric film, sol-gel solution, film forming method, and method for manufacturing ferroelectric film
US20140185183A1 (en) * 2012-12-28 2014-07-03 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic capacitor using the same
JP2017175103A (en) * 2016-03-21 2017-09-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric composition and multilayer ceramic capacitor containing the same

Also Published As

Publication number Publication date
JP4627876B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
US6205015B1 (en) Dielectric ceramic, method for producing the same, laminated ceramic electronic element, and method for producing the same
US6303529B1 (en) Dielectric ceramic, method for producing the same, laminated ceramic electronic element, and method for producing the same
KR100242590B1 (en) Deelectric ceramic and monolithic ceramic electronic part
JP2006206362A (en) Dielectric ceramic and multilayer ceramic capacitor
JPWO2007026614A1 (en) Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor
JP4522025B2 (en) Dielectric porcelain, multilayer electronic component, and manufacturing method of multilayer electronic component
JP2003048774A (en) Dielectric porcelain, method of producing the same, and multilayer-type electronic parts
JP2005022891A (en) Dielectric porcelain and laminated electronic component
JP3603607B2 (en) Dielectric ceramic, multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
JP4721576B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
KR100374471B1 (en) Dielectric Ceramic Material and Monolithic Ceramic Electronic Element
JP4354224B2 (en) Dielectric porcelain and multilayer electronic components
JP4557472B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4549203B2 (en) Multilayer ceramic capacitor
JP4519342B2 (en) Dielectric porcelain and multilayer electronic components
JP5229685B2 (en) Dielectric ceramic and multilayer ceramic capacitor
JP4511323B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4627876B2 (en) Dielectric porcelain and multilayer electronic components
JP2002265260A (en) Dielectric ceramic and lamination type electronic part
JP3945033B2 (en) Manufacturing method of multilayer ceramic capacitor
JP4048808B2 (en) Dielectric ceramic composition and multilayer ceramic electronic component
JP3250923B2 (en) Dielectric porcelain composition
JP4652595B2 (en) Dielectric porcelain with excellent temperature characteristics
JP2002284571A (en) Dielectric ceramic having excellent thermal and dc bias properties
JP4463095B2 (en) Multilayer ceramic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees