JPH04289609A - Low-temperature fired dielectric composition - Google Patents

Low-temperature fired dielectric composition

Info

Publication number
JPH04289609A
JPH04289609A JP3055179A JP5517991A JPH04289609A JP H04289609 A JPH04289609 A JP H04289609A JP 3055179 A JP3055179 A JP 3055179A JP 5517991 A JP5517991 A JP 5517991A JP H04289609 A JPH04289609 A JP H04289609A
Authority
JP
Japan
Prior art keywords
dielectric
temperature
copper
barium titanate
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3055179A
Other languages
Japanese (ja)
Inventor
Yoshihiko Imanaka
佳彦 今中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3055179A priority Critical patent/JPH04289609A/en
Publication of JPH04289609A publication Critical patent/JPH04289609A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide a low-temperature fired dielectric composition which can be fired integrally with copper, without being reduced even under an atmosphere under which copper is fired, and made into close cohesion at a temperature at which copper is made into close cohesion to form a dielectric with high dielectric constant and insulation resistance. CONSTITUTION:Li chloride as firing assistant is added to barium titanate ceramics. In this case, one type of barium titanate ceramics or two or more types of barium titanate ceramics, different in Curie point or in average grain size, can be contained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は低温焼成誘電体組成物に
関し、たとえばコンピュータ等の電子機器に搭載する回
路基板の形成材料に好適に利用可能な低温焼成誘電体組
成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature fired dielectric composition, and more particularly, to a low-temperature fired dielectric composition that can be suitably used as a material for forming circuit boards mounted on electronic devices such as computers.

【0002】0002

【従来の技術】セラミックス回路基板はLSIを実装す
るのに好適であることから、各種電子機器に広く用いら
れている。特にコンピュータの分野においては、機器の
小型化および処理速度の高速化が可能な回路基板が望ま
れている。このような背景から、たとえば抵抗、コンデ
ンサー等の受動素子を内蔵する回路基板や素子を収納す
るためのキャビティが形成されてなるPGA型回路基板
等のように機能性を有するセラミックス回路基板が登場
している。
2. Description of the Related Art Ceramic circuit boards are widely used in various electronic devices because they are suitable for mounting LSIs. Particularly in the field of computers, there is a demand for circuit boards that can reduce the size of devices and increase processing speed. Against this background, functional ceramic circuit boards have appeared, such as circuit boards that incorporate passive elements such as resistors and capacitors, and PGA type circuit boards that have cavities for housing the elements. ing.

【0003】ところで、回路のさらなる微細化あるいは
高周波領域での使用を考慮すると、たとえば銅(Cu)
などの抵抗値の低い導体の使用が求められる。そこで、
銅導体との一体焼成が可能であるとともに高誘電率の誘
電体の開発が急がれている。また、チップコンデンサの
分野においても、銅を導体に使用することでコストダウ
ンが可能になるため上記のような誘電体の開発が盛んで
あり、銅との一体焼成が可能な誘電体として(Pb0.
87Sr0.16){(Zn1/3 Nb2/3 )0
.81Ti0.16(Cu1/9 Mn2/9 Nb2
/3 )0.03}O3.03などが開発されている。
By the way, in consideration of further miniaturization of circuits or use in the high frequency range, for example, copper (Cu)
It is required to use conductors with low resistance such as Therefore,
There is an urgent need to develop a dielectric material that can be integrally fired with a copper conductor and has a high dielectric constant. Furthermore, in the field of chip capacitors, the use of copper as a conductor makes it possible to reduce costs, so the development of dielectric materials such as the one described above is active, and as a dielectric material that can be fired integrally with copper (Pb0 ..
87Sr0.16) {(Zn1/3 Nb2/3)0
.. 81Ti0.16 (Cu1/9 Mn2/9 Nb2
/3)0.03}O3.03 etc. have been developed.

【0004】0004

【発明が解決しようとする課題】しかしながら、図4に
示した平衡状態図からも明らかなように、Pb系、Bi
系の誘電体は銅と一体焼成する際の焼成雰囲気のマージ
ンが極めて狭く、銅との一体焼成を安定して行なうこと
が困難である。即ち、図4から明らかな如く、Pb系、
Bi系誘電体を高い誘電率で得るには、Pb系誘電体で
はPb0の還元を防止する、図4のPb0/Pb線より
上方(酸化性)の焼成条件が必要とされ、又、Bi系誘
電体ではBi2 O3の還元を防止する、図4のBi2
 O3 /Bi線より上方(酸化性)の焼成条件が必要
とされる。一方、銅導体配線のCuの酸化を防止するに
は、図4のCu2 O/Cu線より下方(還元性)の焼
成条件が必要とされる。従って、低抵抗の銅導体配線と
、高誘電率のPb系或いはBi系誘電体を一体燃成によ
り形成するには、Cu2 /Cu線より下方、Pb0/
Pb線又はBi2 O3 /Bi線より上方の両線でサ
ンドイッチされた領域が燃成条件となる。そして、銅導
体の緻密化温度は、銅の融点1084℃より低温で90
0℃程度以上であり、図4から、燃成雰囲気のマージン
が極めて狭いことが明らかである。またBa系誘電体は
銅との一体焼成が可能な雰囲気下では安定であるが、焼
成温度が1200〜1300℃と高く、この焼成温度と
銅の緻密化温度900〜1000℃とは一致しないため
、銅との一体焼成により誘電率の高い誘電体を得ること
は困難である。
However, as is clear from the equilibrium diagram shown in FIG.
The margin of the firing atmosphere when the dielectric material of the system is fired together with copper is extremely narrow, and it is difficult to stably perform the firing together with copper. That is, as is clear from FIG. 4, Pb-based,
In order to obtain a Bi-based dielectric with a high dielectric constant, firing conditions above (oxidizing) the Pb0/Pb line in Figure 4 are required to prevent reduction of Pb0 in the case of a Pb-based dielectric. In the dielectric, Bi2 in Fig. 4 prevents the reduction of Bi2 O3.
Firing conditions above (oxidizing) the O3/Bi line are required. On the other hand, in order to prevent oxidation of Cu in the copper conductor wiring, firing conditions below (reducing) the Cu2O/Cu line in FIG. 4 are required. Therefore, in order to form a low-resistance copper conductor wiring and a high dielectric constant Pb-based or Bi-based dielectric by integral combustion, the Pb0/
The area above the Pb line or the Bi2 O3 /Bi line and sandwiched between the two lines becomes the combustion condition. The densification temperature of the copper conductor is 90°C, which is lower than the melting point of copper, 1084°C.
The temperature is about 0° C. or higher, and it is clear from FIG. 4 that the margin of the combustion atmosphere is extremely narrow. In addition, although Ba-based dielectrics are stable in an atmosphere where they can be fired together with copper, the firing temperature is as high as 1200 to 1300°C, and this firing temperature does not match the densification temperature of copper, which is 900 to 1000°C. It is difficult to obtain a dielectric material with a high dielectric constant by integral firing with copper.

【0005】一方、チタン酸バリウム(BaTiO3 
)にフッ化リチウム(LiF)を添加し、900〜10
00℃の温度で焼成するという例はあるが、この場合、
特に銅(Cu)との一体焼成が可能な雰囲気領域におけ
るN2 雰囲気中ではフッ素が還元するため材料が半導
体化し、銅との一体焼成では高い絶縁抵抗が得られない
という問題があった。
On the other hand, barium titanate (BaTiO3
) to add lithium fluoride (LiF) to 900-10
There is an example of firing at a temperature of 00℃, but in this case,
In particular, in an N2 atmosphere in an atmosphere region where integral firing with copper (Cu) is possible, fluorine is reduced and the material becomes a semiconductor, and there is a problem in that high insulation resistance cannot be obtained by integral firing with copper.

【0006】本発明はかかる事情に基づいてなされたも
のであり、本発明の目的は、銅との一体焼成が可能であ
って銅を焼成する雰囲気下でも還元せず、銅が緻密化す
る温度で緻密化して誘電率および絶縁抵抗のいずれもが
高い誘電体を形成する低温焼成誘電体組成物を提供する
ことにある。
The present invention has been made based on the above circumstances, and an object of the present invention is to enable integral firing with copper, to prevent reduction even in the atmosphere in which copper is fired, and to maintain a temperature at which copper becomes densified. The object of the present invention is to provide a low temperature firing dielectric composition which is densified to form a dielectric material having both high dielectric constant and high insulation resistance.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の要旨は、チタン酸バリウム系セラミックス
に焼結助剤としてLi塩化合物を添加してなることを特
徴とする低温焼成誘電体組成物であり、キュリー点の異
なる2種類以上のチタン酸バリウム系セラミックスを含
有するとともに焼結助剤としてLi塩化合物を添加して
なることを特徴とする低温焼成誘電体組成物であり、平
均粒径の異なる2種類以上のチタン酸バリウム系セラミ
ックスを含有するとともに焼結助剤としてLi塩化合物
を添加してなることを特徴とする低温焼成誘電体組成物
である。
[Means for Solving the Problems] The gist of the present invention to achieve the above object is to provide a low-temperature firing dielectric characterized by adding a Li salt compound as a sintering aid to barium titanate ceramics. A low-temperature firing dielectric composition characterized by containing two or more types of barium titanate ceramics having different Curie points and adding a Li salt compound as a sintering aid, This is a low temperature firing dielectric composition characterized by containing two or more types of barium titanate ceramics having different average particle diameters and adding a Li salt compound as a sintering aid.

【0008】以下に本発明の低温焼成誘電体組成物につ
いて成分等に分けて説明する。 −チタン酸バリウム系セラミックス− 本発明の低温焼成誘電体組成物に含有されるチタン酸バ
リウム系セラミックスとしては、チタン酸バリウム(B
aTiO3 )のほか、たとえばBaTi1−x Zr
x O3 、Ba1−x Srx TiO3 、Ba1
−x Cax TiO3 等のように各種元素が固溶し
たものであってもよい。
[0008] The low temperature fired dielectric composition of the present invention will be explained below by dividing it into components. - Barium titanate ceramics - The barium titanate ceramics contained in the low temperature fired dielectric composition of the present invention include barium titanate (B
aTiO3), for example, BaTi1-x Zr
x O3 , Ba1-x Srx TiO3 , Ba1
-x Cax It may be one in which various elements are dissolved in solid solution, such as TiO3.

【0009】また、これらの他に、たとえばBa1.0
05 TiO3 、Ba0.997 TiO3 等のよ
うに上記のストイキオメトリーから各元素が0.02モ
ル以下の範囲で置換したものであってもよい。本発明の
低温焼成誘電体組成物に含有されるチタン酸バリウム系
セラミックスの平均粒径は30μm以下、好ましくは1
μm以下である。
[0009] In addition to these, for example, Ba1.0
Based on the above stoichiometry, each element may be substituted in a range of 0.02 mol or less, such as 05 TiO3, Ba0.997 TiO3, etc. The average particle size of the barium titanate ceramics contained in the low temperature fired dielectric composition of the present invention is 30 μm or less, preferably 1 μm or less.
It is less than μm.

【0010】本発明の低温焼成誘電体組成物においては
、上記のような各種のチタン酸バリウム系セラミックス
のうち一種を単独で含有していてもよいが、キュリー点
の異なる2種類以上のものあるいは平均粒径の異なる2
種類以上のものを含有すると、本発明の低温焼成誘電体
組成物は誘電率の温度変化が特に少ないものとなる。 −Li塩化合物− 本発明の低温焼成誘電体組成物においては、前記のチタ
ン酸バリウム系セラミックスの焼結助剤として、Li塩
化合物を含有する。
The low-temperature fired dielectric composition of the present invention may contain only one type of barium titanate ceramics as described above, but may contain two or more types of barium titanate ceramics having different Curie points or 2 different average particle sizes
When more than one kind of these materials are contained, the low-temperature fired dielectric composition of the present invention exhibits particularly little change in dielectric constant with temperature. -Li salt compound- The low temperature firing dielectric composition of the present invention contains a Li salt compound as a sintering aid for the barium titanate ceramic.

【0011】ここで、Li塩化合物としては、フッ素(
F)を含まない全てのLi塩化合物、たとえば炭酸リチ
ウム(Li2 CO3 )、硫酸リチウム(Li2 S
O4 )、塩化リチウム(LiCl)などを用いること
が可能であり、特に炭酸リチウム(Li2 CO3 )
は焼成により緻密化する程度が高いため好適に用いるこ
とができる。
[0011] Here, as the Li salt compound, fluorine (
F), such as lithium carbonate (Li2 CO3 ), lithium sulfate (Li2 S
O4 ), lithium chloride (LiCl), etc. can be used, especially lithium carbonate (Li2 CO3 ), etc.
can be suitably used because it can be densified to a high degree by firing.

【0012】Li塩化合物は、通常、1種が単独で用い
られるが、2種以上を併用することも可能である。また
、このLi塩化合物の平均粒径は、通常、3μmである
。このようなLi塩化合物の添加割合は、通常、20モ
ル%以下、好ましくは5モル%以下である。この添加割
合が20モル%を超えると、本発明の組成物を焼成して
得られる誘電体の誘電率の低下が顕著になる。
Generally, one type of Li salt compound is used alone, but it is also possible to use two or more types in combination. Moreover, the average particle size of this Li salt compound is usually 3 μm. The proportion of such Li salt compound added is usually 20 mol% or less, preferably 5 mol% or less. If this addition ratio exceeds 20 mol %, the dielectric constant of the dielectric obtained by firing the composition of the present invention will decrease significantly.

【0013】−その他− 本発明の低温焼成誘電体組成物は、前記のチタン酸バリ
ウム系セラミックスおよび焼結助剤であるLi塩化合物
とともに二酸化マンガン(MnO2 )を含有していて
もよい。二酸化マンガン(MnO2 )を含有すると、
絶縁抵抗がさらに向上する。
-Others- The low temperature firing dielectric composition of the present invention may contain manganese dioxide (MnO2) together with the barium titanate ceramic and the Li salt compound as a sintering aid. Containing manganese dioxide (MnO2),
Insulation resistance is further improved.

【0014】この二酸化マンガン(MnO2 )を含有
する場合、その添加割合は、通常、10モル%以下であ
る。この添加割合が10モル%を超えると、本発明の組
成物を焼成して得られる誘電体の誘電率の低下が顕著に
なる。本発明の低温焼成誘電体組成物は、たとえばグリ
ーンシート法、厚膜印刷法、プレス成形法等の成形方法
により成形され、その後、焼成されて誘電体を形成する
[0014] When this manganese dioxide (MnO2) is contained, its addition ratio is usually 10 mol% or less. If this addition ratio exceeds 10 mol %, the dielectric constant of the dielectric obtained by firing the composition of the present invention will decrease significantly. The low-temperature firing dielectric composition of the present invention is molded by a molding method such as a green sheet method, a thick film printing method, or a press molding method, and then fired to form a dielectric.

【0015】ここで、上記の焼成は、通常N2 雰囲気
で行われるが、大気雰囲気および還元雰囲気のいずれに
おいても可能である。また、焼成温度は、通常、120
0℃以下、好ましくは900〜1000℃である。この
焼成温度が1200℃を超えると、銅の緻密化温度90
0〜1000℃との温度差が大きくなり過ぎて誘電率の
高い誘電体が得られなくなる。
[0015] Here, the above-mentioned firing is usually carried out in an N2 atmosphere, but it can also be carried out in either an atmospheric atmosphere or a reducing atmosphere. In addition, the firing temperature is usually 120
The temperature is 0°C or lower, preferably 900 to 1000°C. When this firing temperature exceeds 1200℃, the densification temperature of copper is 90℃.
The temperature difference between 0 and 1000° C. becomes too large, making it impossible to obtain a dielectric with a high dielectric constant.

【0016】[0016]

【実施例】以下に本発明の実施例を示し、本発明につい
てさらに具体的に説明する。 (実施例1)平均粒径1μmのチタン酸バリウムに平均
粒径4μmの炭酸リチウムを2モル%の割合で添加して
混合粉を調製した。
EXAMPLES Examples of the present invention will be shown below to explain the present invention more specifically. (Example 1) Lithium carbonate having an average particle size of 4 μm was added to barium titanate having an average particle size of 1 μm at a ratio of 2 mol % to prepare a mixed powder.

【0017】次いで、この混合粉に対してアクリル系バ
インダー10重量部、アセトン100重量部およびDB
P(ジブチルフタレート)4重量部を添加し、ボールミ
ルを用いて20時間混練してスラリーとした。得られた
スラリーをドクターブレードによりキャリアフィルム上
に注ぎ、その後、室温下に5時間放置することにより乾
燥を行なって厚さ80μmのグリーンシートに成形した
Next, 10 parts by weight of an acrylic binder, 100 parts by weight of acetone and DB were added to this mixed powder.
4 parts by weight of P (dibutyl phthalate) was added and kneaded for 20 hours using a ball mill to form a slurry. The obtained slurry was poured onto a carrier film using a doctor blade, and then dried by being left at room temperature for 5 hours to form a green sheet with a thickness of 80 μm.

【0018】次に、上記のグリーンシートの表面に印刷
パターンを形成した。なお、印刷パターンの形成には銅
(Cu)ペーストを用いたスクリーン印刷法を採用した
。同様の操作を行なって得たグリーンシートを50枚重
ね合わせ、温度100℃、圧力10MPaの条件下で積
層した。その後、この積層体を、N2雰囲気中、温度1
000℃で5時間焼成して誘電体を得た。
Next, a printing pattern was formed on the surface of the green sheet. Note that a screen printing method using copper (Cu) paste was employed to form the printed pattern. Fifty green sheets obtained by performing the same operation were stacked and laminated under conditions of a temperature of 100° C. and a pressure of 10 MPa. Thereafter, this laminate was placed in a N2 atmosphere at a temperature of 1
A dielectric material was obtained by firing at 000° C. for 5 hours.

【0019】この誘電体の誘電率(1MHz、室温)、
誘電損失(tanδ)および絶縁抵抗を求めた。結果を
表1に示す。また、この誘電体について温度と誘電率と
の関係を求めたところ、図1に示す関係が得られた。図
1から明らかなように、この誘電体は緻密化しているた
め誘電率のピーク値は高かった。さらに、この誘電体の
室温における絶縁抵抗は1013Ω・cmであった。
The dielectric constant of this dielectric (1 MHz, room temperature),
Dielectric loss (tan δ) and insulation resistance were determined. The results are shown in Table 1. Further, when the relationship between temperature and dielectric constant of this dielectric was determined, the relationship shown in FIG. 1 was obtained. As is clear from FIG. 1, this dielectric material was dense, so the peak value of the dielectric constant was high. Furthermore, the insulation resistance of this dielectric at room temperature was 1013 Ω·cm.

【0020】[0020]

【表1】[Table 1]

【0021】(比較例1)前記実施例1において、焼結
助剤である炭酸リチウム(Li2 CO3 )を用いな
かったほかは前記実施例1と同様にして誘電体を作製し
、この誘電体の誘電率、誘電損失および絶縁抵抗を求め
た。 結果を表1に示す。 (比較例2)前記実施例1において、焼結助剤として炭
酸リチウム(Li2CO3 )に代えてフッ化リチウム
(LiF)を用いたほかは前記実施例1と同様にして誘
電体を作製し、この誘電体の誘電率、誘電損失および絶
縁抵抗を求めた。結果を表1に示す。
(Comparative Example 1) A dielectric was produced in the same manner as in Example 1 except that lithium carbonate (Li2 CO3) as a sintering aid was not used. The dielectric constant, dielectric loss, and insulation resistance were determined. The results are shown in Table 1. (Comparative Example 2) A dielectric was produced in the same manner as in Example 1 except that lithium fluoride (LiF) was used as the sintering aid instead of lithium carbonate (Li2CO3). The dielectric constant, dielectric loss, and insulation resistance of the dielectric were determined. The results are shown in Table 1.

【0022】(実施例2)平均粒径1μmのチタン酸バ
リウム(BaTiO3 )および平均粒径1μmのBa
Ti0.8 Zr0.2 O3 を重量比で1:1の割
合で混合してなるチタン酸バリウム系セラミックス混合
粉に平均粒径4μmの炭酸リチウムを2モル%の割合で
添加して混合粉を調製した次いで、この混合粉に対して
アクリル系バインダー10重量部、アセトン100重量
部およびDBP(ジブチルフタレート)4重量部を添加
し、ボールミルで20時間混練してスラリーとした。得
られたスラリーを、ドクターブレードによりキャリアフ
ィルム上に注ぎ、その後、室温下に2時間放置して乾燥
を行なうことにより厚さ80μmのグリーンシート得た
(Example 2) Barium titanate (BaTiO3) with an average particle size of 1 μm and Ba with an average particle size of 1 μm
A mixed powder was prepared by adding 2 mol% of lithium carbonate with an average particle size of 4 μm to a barium titanate ceramic mixed powder made by mixing Ti0.8 Zr0.2 O3 at a weight ratio of 1:1. Next, 10 parts by weight of an acrylic binder, 100 parts by weight of acetone, and 4 parts by weight of DBP (dibutyl phthalate) were added to this mixed powder, and the mixture was kneaded in a ball mill for 20 hours to form a slurry. The obtained slurry was poured onto a carrier film using a doctor blade, and then left to dry at room temperature for 2 hours to obtain a green sheet with a thickness of 80 μm.

【0023】次に、上記のグリーンシートの表面に印刷
パターンを形成した。なお、印刷パターンの形成には銅
(Cu)ペーストを用いたスクリーン印刷法を採用した
。同様の操作を行なって得たグリーンシートを50枚重
ね合わせ、温度100℃、圧力10MPaの条件下で積
層した。その後、この積層体を、N2雰囲気中、温度1
000℃で5時間焼成して誘電体を得た。
Next, a printing pattern was formed on the surface of the green sheet. Note that a screen printing method using copper (Cu) paste was employed to form the printed pattern. Fifty green sheets obtained by performing the same operation were stacked and laminated under conditions of a temperature of 100° C. and a pressure of 10 MPa. Thereafter, this laminate was placed in a N2 atmosphere at a temperature of 1
A dielectric material was obtained by firing at 000° C. for 5 hours.

【0024】得られた誘電体について、温度と誘電率と
の関係を求めたところ、図2に示す関係が得られた。図
2から明らかなように、得られた誘電体の誘電率の温度
変化は小さく、安定していた。また、この誘電体の室温
における絶縁抵抗は1013Ω・cmであった。 (比較例3)前記実施例2において、平均粒径1μmの
チタン酸バリウム(BaTiO3 )および平均粒径1
μmのBaTi0.8 Zr0.2 O3 を重量比で
1:1の割合で混合してなるチタン酸バリウム系セラミ
ックス混合粉に代えチタン酸バリウム(BaTiO3 
)を単独で用いるとともに、焼結助剤の炭酸リチウム(
Li2 CO3 )を用いなかったほかは、前記実施例
2と同様にして誘電体を作製した。獲られた誘電体につ
いて、温度と誘電率との関係を求めたところ、図3に示
す関係が得られた。 図3から明らかなように、この誘電体は緻密化していな
いため誘電率は低かった。また、この誘電体の室温にお
ける絶縁抵抗は1013Ω・cmであった。
When the relationship between temperature and dielectric constant of the obtained dielectric was determined, the relationship shown in FIG. 2 was obtained. As is clear from FIG. 2, the temperature change in the dielectric constant of the obtained dielectric was small and stable. Further, the insulation resistance of this dielectric material at room temperature was 1013 Ω·cm. (Comparative Example 3) In Example 2, barium titanate (BaTiO3) having an average particle size of 1 μm and barium titanate (BaTiO3) having an average particle size of 1 μm and
Barium titanate (BaTiO3
) is used alone, and the sintering aid lithium carbonate (
A dielectric was produced in the same manner as in Example 2 except that Li2CO3) was not used. When the relationship between temperature and dielectric constant of the obtained dielectric material was determined, the relationship shown in FIG. 3 was obtained. As is clear from FIG. 3, this dielectric material had a low dielectric constant because it was not densified. Further, the insulation resistance of this dielectric material at room temperature was 1013 Ω·cm.

【0025】[0025]

【発明の効果】本発明によれば、絶縁抵抗の大きな誘電
体が得られるチタン酸バリウム系セラミックスと銅の緻
密化温度で緻密化するLi塩化合物とを含有するので、
銅との一体焼成が可能であって銅を焼成する雰囲気下で
も還元せず、銅が緻密化する温度で緻密化して誘電率お
よび絶縁抵抗が高い誘電体を形成する低温焼成誘電体組
成物を提供することができる。
[Effects of the Invention] According to the present invention, since it contains barium titanate-based ceramics that can provide a dielectric with high insulation resistance and a Li salt compound that becomes densified at the densification temperature of copper,
A low-temperature firing dielectric composition that can be fired together with copper, does not reduce even in the atmosphere in which copper is fired, and is densified at the temperature at which copper becomes densified to form a dielectric with high dielectric constant and insulation resistance. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1で得られた誘電体の温度と誘電率との
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between temperature and dielectric constant of the dielectric obtained in Example 1.

【図2】実施例2で得られた誘電体の温度と誘電率との
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between temperature and dielectric constant of the dielectric obtained in Example 2.

【図3】比較例3で得られた誘電体の温度と誘電率との
関係を示すグラフである。
3 is a graph showing the relationship between temperature and dielectric constant of the dielectric obtained in Comparative Example 3. FIG.

【図4】各種金属及び金属酸化物の温度と酸素分圧との
関係を示す平衡状態図である。
FIG. 4 is an equilibrium state diagram showing the relationship between temperature and oxygen partial pressure of various metals and metal oxides.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  チタン酸バリウム系セラミックスに焼
結助剤としてLi塩化合物を添加してなることを特徴と
する低温焼成誘電体組成物。
1. A low-temperature firing dielectric composition characterized in that it is made by adding a Li salt compound as a sintering aid to a barium titanate ceramic.
【請求項2】  キュリー点の異なる2種類以上のチタ
ン酸バリウム系セラミックスを含有するとともに焼結助
剤としてLi塩化合物を添加してなることを特徴とする
低温焼成誘電体組成物。
2. A low-temperature firing dielectric composition comprising two or more types of barium titanate ceramics having different Curie points, and a Li salt compound added thereto as a sintering aid.
【請求項3】  平均粒径の異なる2種類以上のチタン
酸バリウム系セラミックスを含有するとともに焼結助剤
としてLi塩化合物を添加してなることを特徴とする低
温焼成誘電体組成物。
3. A low-temperature firing dielectric composition comprising two or more types of barium titanate ceramics having different average particle diameters and a Li salt compound added thereto as a sintering aid.
JP3055179A 1991-03-19 1991-03-19 Low-temperature fired dielectric composition Withdrawn JPH04289609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3055179A JPH04289609A (en) 1991-03-19 1991-03-19 Low-temperature fired dielectric composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3055179A JPH04289609A (en) 1991-03-19 1991-03-19 Low-temperature fired dielectric composition

Publications (1)

Publication Number Publication Date
JPH04289609A true JPH04289609A (en) 1992-10-14

Family

ID=12991496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3055179A Withdrawn JPH04289609A (en) 1991-03-19 1991-03-19 Low-temperature fired dielectric composition

Country Status (1)

Country Link
JP (1) JPH04289609A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193667A (en) * 2000-12-27 2002-07-10 Kyocera Corp Dielectric ceramic and stacked electronic part
JP2002274937A (en) * 2001-03-21 2002-09-25 Kyocera Corp Dielectric ceramic excellent in temperature characteristics
KR100417394B1 (en) * 2001-02-20 2004-02-05 학교법인 성균관대학 A dielectric ceramic composition
JP2007137747A (en) * 2005-11-22 2007-06-07 Taiyo Yuden Co Ltd Dielectric porcelain and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193667A (en) * 2000-12-27 2002-07-10 Kyocera Corp Dielectric ceramic and stacked electronic part
KR100417394B1 (en) * 2001-02-20 2004-02-05 학교법인 성균관대학 A dielectric ceramic composition
JP2002274937A (en) * 2001-03-21 2002-09-25 Kyocera Corp Dielectric ceramic excellent in temperature characteristics
JP2007137747A (en) * 2005-11-22 2007-06-07 Taiyo Yuden Co Ltd Dielectric porcelain and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5335139A (en) Multilayer ceramic chip capacitor
JP4858248B2 (en) Dielectric porcelain composition and electronic component
JP3326513B2 (en) Multilayer ceramic chip capacitors
JP2005129802A (en) Laminated ceramic capacitor
EP0275052A2 (en) Method for making a ceramic multilayer structure having internal copper conductors
JP2762427B2 (en) Multilayer ceramic chip capacitors
JP5040243B2 (en) Ceramic substrate
JPH04289609A (en) Low-temperature fired dielectric composition
JPS62256422A (en) Laminated type porcelain capacitor
JP2784982B2 (en) Multilayer ceramic chip capacitors
JP2004256384A (en) Oxide ceramic material, and ceramic substrate, laminated ceramic device, and power amplifier module using the material
JPH0255391B2 (en)
JP3130214B2 (en) Multilayer ceramic chip capacitors
JP4385726B2 (en) Conductive paste and method for producing multilayer ceramic capacitor using the same
JP4578134B2 (en) Glass ceramic multilayer wiring board with built-in capacitor
JP5023748B2 (en) Dielectric porcelain composition and electronic component
JPH11157921A (en) Oxide ceramic material and multilayer wiring board using the same material
JP2975459B2 (en) Multilayer ceramic chip capacitors
JPH04292456A (en) Dielectric material composition for low-temperature burning, multilayer ceramic circuit substrate having built-in condenser layer and production thereof
JPS593909A (en) Electrode paste for ceramic condenser
JP2006179844A (en) Wiring board with built-in capacitor
JP3231892B2 (en) Method for manufacturing multilayer substrate
JP2652229B2 (en) Multilayer circuit ceramic substrate
JP2003306377A (en) Dielectric porcelain composition and ceramic electronic component
JP3153410B2 (en) Manufacturing method of dielectric ceramics

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514