JPH03112861A - Dielectric porcelain and laminated ceramic capacitor using the same and preparation thereof - Google Patents

Dielectric porcelain and laminated ceramic capacitor using the same and preparation thereof

Info

Publication number
JPH03112861A
JPH03112861A JP1248327A JP24832789A JPH03112861A JP H03112861 A JPH03112861 A JP H03112861A JP 1248327 A JP1248327 A JP 1248327A JP 24832789 A JP24832789 A JP 24832789A JP H03112861 A JPH03112861 A JP H03112861A
Authority
JP
Japan
Prior art keywords
dielectric
ceramic composition
dielectric ceramic
composition
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1248327A
Other languages
Japanese (ja)
Other versions
JP2529411B2 (en
Inventor
Tsutomu Nishimura
勉 西村
Seiichi Nakatani
誠一 中谷
Sei Yuhaku
聖 祐伯
Yasuhiko Hakotani
箱谷 靖彦
Tatsuo Kikuchi
菊池 立郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1248327A priority Critical patent/JP2529411B2/en
Priority to US07/507,568 priority patent/US5014158A/en
Publication of JPH03112861A publication Critical patent/JPH03112861A/en
Application granted granted Critical
Publication of JP2529411B2 publication Critical patent/JP2529411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide the subject composition having a high dielectric constant, a low dielectric loss factor and improved reliability and not producing a semiconductor even when sintered under a low oxygen fractional pressure by adding MnO2, Dy2O3 and Y2O3 to a BaTiO3 complex oxide one part of whose Ti is substituted with Zr. CONSTITUTION:MnO2, Dy2O3, Y2O3 and, if necessary, 0.1-1mol% of Yb2O3 and/or TlO2 and 0.1-2mol% of NiO and/or Co2O3 are added to a BaTiO3 complex oxide to provide a dielectric porcelain composition, the BaTiO3 complex oxide being prepared by substituting one part of Ti in BaTiO3 with Zr. The composition is mixed with an organic binder, a solvent and a plasticizes and the prepared slurry is formed into a green sheet, which is printed with a paste comprising a Ni oxide, an organic binder and an organic solvent to form a patterned film. A desired number of the green sheets are laminated, heated and pressed to prepare a laminate. The laminate is cut into a desired size, heated in air at a temperature not initiating the combustion of the composition for burning the binder, heated in a reducing atmosphere for reducing the Ni oxide into the metal and subsequently calcined in a N2 atmosphere heated at a temperature below the melting point of the Ni form densifying the composition and the metal to provide a laminated ceramic capacitor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子機器に用いられるセラミックコンデンサ
、特にニッケルからなる内部電極を有する積層セラミッ
クコンデンサ用の高誘電率な誘電体磁器組成物とそれを
用いた積層セラミックコンデンサとその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a dielectric ceramic composition with a high dielectric constant for use in ceramic capacitors used in electronic devices, particularly multilayer ceramic capacitors having internal electrodes made of nickel, and its use. The present invention relates to a multilayer ceramic capacitor and its manufacturing method.

従来の技術 積層セラミックコンデンサは、電極と誘電体磁器組成物
とが層状に構成されているもので、セラミックス作製技
術によって一体化、固体化されるため、小型、大容量の
ものが得られる。さらに電極が内蔵されるため、磁気誘
電成分が少く高周波用途にも優れた性能を示す。またチ
ップ型は、リード線がないため部品実装の際、直付けが
可能で電子機器の小型軽量化への要求にもマツチし、今
後増々発展が期待されている。
Conventional Multilayer Ceramic Capacitors are composed of layers of electrodes and dielectric ceramic compositions, and are integrated and solidified using ceramic manufacturing technology, making it possible to obtain small-sized capacitors with large capacity. Furthermore, since the electrode is built-in, the magneto-dielectric component is small and the device exhibits excellent performance in high-frequency applications. In addition, the chip type does not have lead wires, so it can be directly attached when mounting components, and it meets the demand for smaller and lighter electronic devices, and is expected to continue to develop in the future.

一方、コンデンサの材質における分類から、アルミ電解
、タンタル電解2紙、有機フィルムなどが上げられ、積
層セラミックコンデンサの容量範囲から、それらのすべ
てと競合関係にある。従って、積層セラミックコンデン
サに対する今後の要求は、大容量化、小型化、低価格化
である。積層セラミックコンデンサの容量は一般的に次
の式で表わせる。
On the other hand, the classification of capacitor materials includes aluminum electrolytic, tantalum electrolytic 2 paper, organic film, etc., and multilayer ceramic capacitors compete with all of them due to their capacity range. Therefore, future demands for multilayer ceramic capacitors are higher capacity, smaller size, and lower cost. The capacitance of a multilayer ceramic capacitor can generally be expressed by the following formula.

C=EoEsX    Xn Eo:真空の誘電率 ES:誘電体材料の比誘電率 n:積層数 S:電極面積 dニー層当りの誘電体の厚さ 大容量化に向けては、上式よりも明らかな様に、誘電体
材料の高誘電率化、電極面積を大きくするための高積層
化、誘電体層の薄層化に対する取り組みがなされている
C=EoEsX Efforts are being made to increase the dielectric constant of dielectric materials, increase the number of laminated layers to increase the area of electrodes, and reduce the thickness of dielectric layers.

小型化に対しては、チップ形状が、3.2mx1.6 
nll5から2.0am+ X 1.25mmや1.6
閣×0.8鵬、さらには、1.OmmX O,5mn+
へという取り組みがなされている。次に低コスト化であ
るが、これが最も大きな要求である。なぜならば、大容
量化、小型化は、低コスト化と相反する要求ではなく、
大容量化、小型化と同時に取り組むべき課題だからであ
る。
For miniaturization, the chip shape is 3.2m x 1.6
nll5 to 2.0am+X 1.25mm or 1.6
Kaku x 0.8 Peng, and 1. OmmX O,5mn+
Efforts are being made to Next is cost reduction, which is the most important requirement. This is because larger capacity and smaller size are not contradictory demands to lower cost.
This is because it is an issue that must be addressed simultaneously with increasing capacity and downsizing.

従来の積層セラミックコンデンサは、BaTiO3を誘
電体材料の主成分とし、内部電極に貴金属のPdを用い
ている。そのため、生産コストに占める内部電極材料コ
ストの比率が極めて高く、7割以上とも言われている。
A conventional multilayer ceramic capacitor uses BaTiO3 as a main component of the dielectric material and uses Pd, a noble metal, for internal electrodes. Therefore, the internal electrode material cost accounts for an extremely high proportion of the production cost, said to be over 70%.

特に静電容量の大きなものでは内部電極数が多くなるた
め、さらにコスト高となり、積層セラミックコンデンサ
は容量効率が高く、その低誘電的特性に優れかつ高信頼
性にもかかわらず価格面がその進展に大きな障害となっ
ていた。
In particular, products with large capacitance have a large number of internal electrodes, which further increases the cost.Despite the fact that multilayer ceramic capacitors have high capacitance efficiency, excellent low dielectric properties, and high reliability, the price has increased. This was a major hindrance.

そしてこれらのコストダウンを目ざして各方面で種々の
検討がなされている。中でも、貴金属のうちでも比較的
コストの安いAgに着目し、Ag−Pdを内部電極材料
とする方法が検討されている。
Various studies are being conducted in various fields with the aim of reducing these costs. Among these, attention has been paid to Ag, which is relatively inexpensive among noble metals, and a method of using Ag-Pd as an internal electrode material is being considered.

(例えば 特開昭49−19399号公報、K、  S
、 5ubbrao:J  Pbys、Cbem、5o
licls、236.65 (1962))一方、Ag
でもコストが高いとし、卑金属化を指向する方向もある
。つまり電極材料にNiを用いるというものである。N
iなどの卑金属を内部電極として使用すると、BaTi
O3を主成分とする誘電体と卑金属内部電極とをニッケ
ルが酸化されない非酸化性雰囲気中で同時焼成しなけれ
ばならない。しかしこの場合、従来のBaTi0゜また
は、その固溶体からなる誘電体は容易に還元されてしま
い絶縁性を失い、その結集積層セラミックコンデンサと
して実用的な誘電体特性が得られなくなるという欠点を
有していた。そこで、中性または還元性雰囲気で焼成し
ても還元されない材料として、非還元性セラミック誘電
体材料の開発も行なわれている。
(For example, JP-A-49-19399, K, S
, 5ubbrao: J Pbys, Cbem, 5o
licls, 236.65 (1962)) while Ag
However, due to the high cost, there is a trend toward using base metals. In other words, Ni is used as the electrode material. N
When a base metal such as i is used as an internal electrode, BaTi
The O3-based dielectric and the base metal internal electrode must be co-fired in a non-oxidizing atmosphere in which nickel is not oxidized. However, in this case, the conventional dielectric made of BaTi0° or its solid solution is easily reduced and loses its insulating properties, making it impossible to obtain practical dielectric properties as an integrated multilayer ceramic capacitor. Ta. Therefore, non-reducible ceramic dielectric materials are being developed as materials that are not reduced even when fired in a neutral or reducing atmosphere.

(例えば特開昭55−67568号公報、特開昭61−
256968号公報、特開昭60−109104号公報
など。)次に、Niを内部電極とする積層セラミックコ
ンデンサの製造方法においては、一般に、表面に内部電
極(N i )が塗布されたBaTi0+を主成分とす
る誘電体グリーンシートを複数枚積層した未焼結積層体
を、内部電極のNiが酸化されないような極めて酸素分
圧の低い窒素雰囲気下で焼結一体化することにより作製
している。
(For example, JP-A-55-67568, JP-A-61-
256968, JP-A-60-109104, etc. ) Next, in the manufacturing method of a multilayer ceramic capacitor using Ni as an internal electrode, generally, an unfired green sheet made of a plurality of dielectric green sheets mainly composed of BaTi0+ whose surfaces are coated with internal electrodes (N i ) is laminated. The crystalline laminate is produced by sintering and integrating in a nitrogen atmosphere with extremely low oxygen partial pressure so that the Ni of the internal electrodes is not oxidized.

発明が解決しようとする課題 本発明は、NiとNiOの平衡酸素分圧以下という極め
て低酸素分圧下の焼成においても半導体化せず、絶縁抵
抗の低下をまねかない高誘電率でかつ低誘電正接な、さ
らには、信頼性とりわけ高温負荷、高温高温負荷におい
ても劣化の少ない誘電体磁器組成物を提供するものであ
る。
Problems to be Solved by the Invention The present invention has a high dielectric constant and a low dielectric loss tangent that does not convert into a semiconductor even when fired under an extremely low oxygen partial pressure that is below the equilibrium oxygen partial pressure of Ni and NiO, and does not cause a decrease in insulation resistance. Furthermore, it is an object of the present invention to provide a dielectric ceramic composition that exhibits reliability, particularly high-temperature loads, and little deterioration even under high-temperature high-temperature loads.

そして、この誘電体磁器組成物を用いることにより、高
性能は、Niを内部電極とした積層セラミックコンデン
サを提供するものである。
By using this dielectric ceramic composition, a high performance multilayer ceramic capacitor with Ni as the internal electrode can be provided.

次に、本発明は、従来のNiを内部電極とする積層セラ
ミックコンデンサの製造方法の課題点を解決する新しい
製造方法を提供するものである。
Next, the present invention provides a new manufacturing method that solves the problems of the conventional manufacturing method of multilayer ceramic capacitors using Ni as internal electrodes.

それは、従来の製造方法においては、内部電極と誘電体
材料を同時焼成するときに有機バインダの使用に困難を
生ずる点にある。つまり誘電体グリーンシートに用いら
れる有機バインダ、および電極ペーストに含まれる同じ
く有機バインダが非酸化性雰囲気下では完全に除去する
ことが困難である。そして、完全に除去できなければ誘
電体材料そのものも多孔質のままで存在するといわれて
おり、焼結が進行しないばかりか、分解後のカーボンの
ために黒ずんだものしか得られない。そしてこの課題は
、積層セラミックコンデンサの大容量化に伴う積層数の
増加や、低温焼成化に伴う、誘電体粉の微粉化でシート
中の有機成分含有率が増加した場合、今以上に重要な課
題となることが予想される。
In conventional manufacturing methods, it is difficult to use an organic binder when co-firing the internal electrodes and the dielectric material. In other words, it is difficult to completely remove the organic binder used in the dielectric green sheet and the same organic binder contained in the electrode paste in a non-oxidizing atmosphere. If the dielectric material cannot be completely removed, it is said that the dielectric material itself remains porous, which not only prevents sintering but also results in a blackened material due to the decomposed carbon. This issue will become even more important as the number of laminated layers increases due to the increase in capacity of multilayer ceramic capacitors, and as the content of organic components in the sheet increases due to the micronization of dielectric powder due to low-temperature firing. This is expected to be an issue.

課題を解決するための手段 上記課題を解決するために、本発明の誘電体磁器組成物
はチタン酸バリウムの構成元素のTiの一部をZrで置
換したチタン酸バリウム系複合酸化物に、Mn0zとD
)’203とYz03とを添加したことを特徴とする。
Means for Solving the Problems In order to solve the above problems, the dielectric ceramic composition of the present invention is a barium titanate-based composite oxide in which a part of Ti, a constituent element of barium titanate, is replaced with Zr. and D
)'203 and Yz03 are added.

さらに、上記誘電体磁器組成物に、Ybz 03 、T
 lz Oのうち少なくとも1種以上を0.1mol%
以上、1+o1%以下の範囲で添加した事を特徴とする
。さらに、NiO,C0,03のうち少なくとも1種以
上を0.1mol%以上、2mo 1%以下の範囲で添
加した事を特徴とする。
Furthermore, Ybz 03 , T
0.1 mol% of at least one type of lzO
The above is characterized in that it is added in a range of 1+o1% or less. Furthermore, it is characterized in that at least one of NiO, C0, and O3 is added in a range of 0.1 mol % or more and 2 mol % or less.

さらに、チタン酸バリウム系複合酸化物の構成元素のB
aの一部をCa 1M g +  S rで置換するか
、あるいはCaO,MgO,SrOを添加したことを特
徴とするものである。
Furthermore, B, which is a constituent element of barium titanate-based composite oxide,
It is characterized in that a part of a is replaced with Ca 1M g + Sr, or CaO, MgO, or SrO is added.

また、本発明の積層セラミックコンデンサの製造方法は
、上記の誘電体組成物と少なくとも有機バインダ、溶剤
、可塑剤からなるグリーンシート上に、ニッケルの酸化
物を主成分として少なくとも有機バインダと有機溶剤と
からなるビヒクルとともに混練したペーストを印刷しパ
ターン膜を形成する工程と、該印刷されたグリーンシー
トを所望の枚数だけ加熱加圧することによって積層化す
る工程と、この様に積層された積層体を所望の寸法に切
断する工程と、これを前記誘電体磁器組成物が焼結し始
めない温度の空気中で加熱し、有機バインダを燃焼させ
る工程と、これを還元雰囲気中で熱処理し、ニッケルの
酸化物を金属に還元せしむる工程と、これをニッケルの
融点より低い温度の窒素雰囲気中で焼成し、誘電体磁器
組成物と金属とを緻密化する工程からなることを特徴と
するものである。
In addition, the method for manufacturing a multilayer ceramic capacitor of the present invention includes applying a nickel oxide as a main component and at least an organic binder and an organic solvent onto a green sheet consisting of the above dielectric composition and at least an organic binder, a solvent, and a plasticizer. A step of printing a paste kneaded with a vehicle consisting of the above to form a patterned film, a step of laminating a desired number of the printed green sheets by heating and pressurizing them, and a step of laminating the thus laminated laminate as desired. A step of cutting the dielectric ceramic composition into dimensions of It is characterized by comprising the steps of reducing a substance to a metal, and firing this in a nitrogen atmosphere at a temperature lower than the melting point of nickel to densify the dielectric ceramic composition and the metal. .

作用 本発明の誘電体磁器組成物は、MnO,を含んでいるた
め、チタン酸バリウムの低酸素分圧下での焼成による半
導体化を電荷補償により抑制する効果がある。これによ
って低酸素分圧下の焼成においても良好な絶縁抵抗を示
すこととなる。チタン酸バリウムの構成元素のTiの一
部をZrで置換する目的は、誘電体磁器組成物のキュリ
ー点(T c )を低温側にシフトさせ、室温での誘電
率を高くするためである。しかしながら、チタン酸バリ
ウム系複合酸化物にMnO□を添加したたけの誘電体磁
器組成物では、低酸素分圧下の焼成により良好な絶縁抵
抗は得られるものの高誘電率を得ることは出来ない。そ
のため、Dy2O3とY2O3を添加する。これらの酸
化物は低酸素分圧下でも非常に安定で還元されにくい。
Since the dielectric ceramic composition of the present invention contains MnO, it has the effect of suppressing the conversion of barium titanate into a semiconductor by firing under a low oxygen partial pressure by charge compensation. This results in good insulation resistance even during firing under low oxygen partial pressure. The purpose of partially substituting Ti, which is a constituent element of barium titanate, with Zr is to shift the Curie point (T c ) of the dielectric ceramic composition to the low temperature side and increase the dielectric constant at room temperature. However, with a dielectric ceramic composition in which MnO□ is added to a barium titanate-based composite oxide, although a good insulation resistance can be obtained by firing under a low oxygen partial pressure, a high dielectric constant cannot be obtained. Therefore, Dy2O3 and Y2O3 are added. These oxides are very stable and difficult to reduce even under low oxygen partial pressures.

さらに焼成において、誘電体の粒成長を促進する働きが
あるため、誘電体の高誘電率化に対しても効果がある。
Furthermore, since it acts to promote grain growth in the dielectric during firing, it is also effective in increasing the dielectric constant of the dielectric.

ここで重要な点は、D )’ t 03 、 Yz 0
3の一方だけを添加するのではなく、両方を添加するこ
とである。Dy20.だけの添加は、誘電率を非常に高
くする上では有効であるが、ともすれば、誘電体の粒成
長を異常なまでに促進しく〉10μm)、特性において
安定性を欠き、信頬性面においても高温負荷、高温高温
負荷による劣化が起こりやすくなる。又、Yt O,だ
けの添加は、異常な粒成長を起こさず、低酸素分圧下の
焼成においても絶縁抵抗をMn0zだけの添加に比べさ
らに高める効果がある。しかしながら、誘電率がMnO
□だけを添加した場合と比べてあまり高まらない。しか
しながら、D’jtOzとYtO,の再酸化物を添加す
る事により、それぞれの酸化物の添加の長所をのばし、
欠点をおぎない、極めて高い誘電率でかつ信転性の高い
積層セラミックコンデンサの作製が可能となる。又、Y
b203 、Tlz Oの添加は、誘電率をほとんど低
下させる事なく、絶縁抵抗を向上させる効果がある。又
、NiO,Co2O3等の添加は、誘電正接(tanδ
)を下げ、かつ誘電体の焼結温度を下げるため、緻密な
焼結体を得る上で有効であり、積層セラミックコンデン
サの機械的強度の向上に効果がある。さらに又、チタン
酸バリウム系複合酸化物の構成元素のBaの一部をCa
、Mg、Srで置換するか、あるいは、CaO,MgO
,SrOを添加する事は、チタン酸バリウム系複合酸化
物をABO3という式で示した場合、Aサイトが化学量
論比に比べて過剰となり、低酸素分圧下の焼成において
耐還元性向上に効果がある。
The important point here is D)' t 03 , Yz 0
Instead of adding only one of the three, add both. Dy20. Although the addition of 10% is effective in increasing the dielectric constant to a very high level, it also abnormally accelerates the grain growth of the dielectric (>10 μm), resulting in a lack of stability in properties and poor reliability. Also, deterioration is likely to occur due to high-temperature loads and high-temperature high-temperature loads. Furthermore, the addition of only Yt 2 O does not cause abnormal grain growth and has the effect of further increasing the insulation resistance even in firing under low oxygen partial pressure compared to the addition of only Mn0z. However, the dielectric constant is MnO
It does not increase much compared to when only □ is added. However, by adding re-oxides of D'jtOz and YtO, the advantages of adding each oxide can be extended,
It becomes possible to manufacture a multilayer ceramic capacitor with an extremely high dielectric constant and high reliability without any drawbacks. Also, Y
The addition of b203 and TlzO has the effect of improving insulation resistance without substantially lowering the dielectric constant. In addition, the addition of NiO, Co2O3, etc. increases the dielectric loss tangent (tan δ
) and the sintering temperature of the dielectric, it is effective in obtaining a dense sintered body and effective in improving the mechanical strength of multilayer ceramic capacitors. Furthermore, a part of Ba, which is a constituent element of barium titanate-based composite oxide, is replaced with Ca.
, Mg, Sr, or CaO, MgO
, The addition of SrO makes the A site excessive compared to the stoichiometric ratio when the barium titanate-based composite oxide is represented by the formula ABO3, and is effective in improving reduction resistance during firing under low oxygen partial pressure. There is.

次に、本発明の積層セラミックコンデンサの製造方法に
より、最大の課題であった有機バインダの除去を完全に
行なうことが可能となった。これによって、誘電体磁器
組成物のスラリー化において有機バインダ等を広い範囲
から選択する事が可能となる。又、内部電極ペースト用
有機バインダにおいても、飛散性を考慮することなく、
印刷性の面から有機バインダの選択が可能となり、内部
電極形成の点から非常に有利になる。さらに、内部電極
の出発原料をニッケルの酸化物にしたため、脱バインダ
時には有機バインダの分解除去のみを、焼結時には、誘
電体層と、Niに還元された電極層の緻密化のみを考慮
すればよく、従来のように、電極を酸化させずに有機バ
インダを除去するというような微妙な雰囲気コントロー
ルをしなくても信顛性の高い積層セラミックコンデンサ
の作製が可能となる。
Next, the method for manufacturing a multilayer ceramic capacitor of the present invention makes it possible to completely remove the organic binder, which was the biggest problem. This makes it possible to select organic binders and the like from a wide range in slurrying the dielectric ceramic composition. Also, in the organic binder for internal electrode paste, without considering scattering,
It becomes possible to select an organic binder from the viewpoint of printability, which is very advantageous from the viewpoint of forming internal electrodes. Furthermore, since nickel oxide was used as the starting material for the internal electrodes, only the decomposition and removal of the organic binder was considered during debinding, and only the densification of the dielectric layer and the electrode layer reduced to Ni during sintering. It is now possible to manufacture highly reliable multilayer ceramic capacitors without having to perform delicate atmosphere control such as removing the organic binder without oxidizing the electrodes, as required in the past.

実施例 以下に本発明の一実施例を詳細に説明する。Example An embodiment of the present invention will be described in detail below.

実施例1 まず、チタン酸バリウム(BaTiOl)、ジルコン酸
バリウム(BaZrOs)を仮焼法により合成した。B
aTi0:+は、試薬のBaC0+とTiO□とをボー
ルミル中で湿式混合した後、吸引濾過、乾燥し、空気中
1200°Cで2時間仮焼し合成した。この後、ボール
ミル中で湿式粉砕したものを乾燥して用いた。一方、B
aZr0+は試薬のBaC0,とZrChとを用い、B
aTi0+含Ti0+の手順で作製した。本実施例に用
いたBaTi0+とBaZr0.の各粉体の平均粒径は
SEM観察によりそれぞれ約0.8μmであった。
Example 1 First, barium titanate (BaTiOl) and barium zirconate (BaZrOs) were synthesized by a calcining method. B
aTi0:+ was synthesized by wet mixing reagents BaC0+ and TiO□ in a ball mill, suction filtration, drying, and calcining in air at 1200° C. for 2 hours. Thereafter, it was wet-pulverized in a ball mill and dried before use. On the other hand, B
aZr0+ uses reagents BaC0 and ZrCh, and B
It was produced using the procedure of aTi0+ containing Ti0+. BaTi0+ and BaZr0. used in this example. The average particle size of each of the powders was approximately 0.8 μm by SEM observation.

次にMnO2は試薬のMnO□をボールミル中で湿式粉
砕し、平均粒径を約1μmにしたものを使用した。次に
D )’z Ox 、  Yt 03は、純度99.9
%の試薬を用いた。この様にして準備したBaTi0:
+ r  BaZrO3,Mn0z +D7z owl
 。
Next, as MnO2, the reagent MnO□ was wet-pulverized in a ball mill to have an average particle size of about 1 μm. Next, D )'z Ox , Yt 03 has a purity of 99.9
% of reagents were used. BaTi0 prepared in this way:
+ r BaZrO3, Mn0z +D7z owl
.

Y2O3を第1表に示した割合で混合したものを無機成
分とし、さらに、有機バインダとしてポリビニルブチラ
ール樹脂、可塑剤としてDBP(ジブチルフタレート)
溶剤として、1.1.1. )リクロロエタン、酢酸n
ブチルを加えボールミルにて混合し、スラリーを調整し
た。なお、スラリー化の条件は、無機成分100gに対
して、ポリヒニルブチラール樹脂10g、DBP5 g
、1゜1.1.1−リクロロエタン100g、酢酸nブ
チル70gとした。この様にして調整したスラリーを真
空脱泡の後ドクターブレード法によりフィルム状に造膜
しグリーンシートを作製した。乾燥後のグリーンシート
の厚みは約40μmとなるようにした。次にこのグリー
ンシート上に平均粒径0.8μmの酸化ニッケル(N 
i O)粉末からなるペーストを用いて所望のパターン
をスクリーン印刷した。ペースト作製のための条件は、
溶剤としてのテレピン油に、有機バインダのエチルセル
ロースを溶かしたものを用い、上記酸化ニッケル粉末と
三段ロールにて混練した。以上の様にして得られた電極
パターン形成済グリーンシートを、内部電極パターンが
対向するように11枚重ね合わせ(すなわち、有効層は
10層)、熱圧着して一体化した。そしてさらに、4m
m X 3 mmの寸法に切断して未焼結積層体を準備
した。この未焼結積層体の厚みは約IIIII11とな
る様に有効層の両側に各300μmの無効層を設けた。
The inorganic component is a mixture of Y2O3 in the proportions shown in Table 1, and further contains polyvinyl butyral resin as an organic binder and DBP (dibutyl phthalate) as a plasticizer.
As a solvent, 1.1.1. ) Lichloroethane, acetic acid n
Butyl was added and mixed in a ball mill to prepare a slurry. The slurry conditions were as follows: 100 g of inorganic component, 10 g of polyhinyl butyral resin, 5 g of DBP.
, 100 g of 1°1.1.1-lichloroethane, and 70 g of n-butyl acetate. The thus prepared slurry was degassed under vacuum and then formed into a film using a doctor blade method to produce a green sheet. The thickness of the green sheet after drying was approximately 40 μm. Next, nickel oxide (N
i O) A paste consisting of powder was used to screen print the desired pattern. The conditions for making paste are:
Ethyl cellulose as an organic binder was dissolved in turpentine oil as a solvent, and the mixture was kneaded with the nickel oxide powder using a three-stage roll. Eleven of the electrode pattern-formed green sheets obtained as described above were stacked one on top of the other (that is, there were 10 effective layers) so that the internal electrode patterns faced each other, and were bonded together by thermocompression. And furthermore, 4m
A green laminate was prepared by cutting into dimensions of m x 3 mm. Ineffective layers each having a thickness of 300 μm were provided on both sides of the effective layer so that the thickness of this unsintered laminate was about III11.

次に、この未焼結積層体の脱バインダをまず行う。Next, the binder of this unsintered laminate is first removed.

脱バインダ後程は、700″Cで2時間(昇降温100
”C/ h )空気中で熱処理することによって行なっ
た。この工程は、グリーンシート内および酸化ニッケル
ペースト内に含まれる有機バインダ成分の除去を目的と
する。脱バインダ後の素体を走査型電子顕微鏡で観察し
たところ、誘電体層の焼結の進行は見られなかった。さ
らに組成分析でも素体中にカーボンの存在は見られず、
有機成分が充分に除去できたことが確認された。次にこ
の脱バインダ済の素体の内部電極を還元する。この工程
は、250 ’Cで2時間、水素100%の雰囲気で行
なった。
After debinding, the temperature was 700"C for 2 hours (temperature increase/decrease 100%).
"C/h)" was carried out by heat treatment in air. The purpose of this step is to remove organic binder components contained in the green sheet and nickel oxide paste. After the binder was removed, the element body was subjected to scanning electron When observed under a microscope, no progress in sintering of the dielectric layer was observed.Furthermore, compositional analysis showed no presence of carbon in the element body.
It was confirmed that the organic components were sufficiently removed. Next, the internal electrodes of this binder-removed element body are reduced. This step was performed at 250'C for 2 hours in a 100% hydrogen atmosphere.

この工程によって誘電体層の成分は還元されず、内部電
極の酸化ニッケルだけが金属ニッケルに還元される。次
に、還元済みの素体を焼成する。焼成は1250℃で2
時間(昇降温200°C/h)行なった。焼成雰囲気は
、キャリアガスとしてNtガスを用い、500°C以上
の温度領域で電気炉内の酸素濃度が10−” atmに
なるようにグリーンガスの流量を制御して調節した。以
上の様にして得られた焼結体の端面に、外部電極として
市販の900°C窒素雰囲気焼成用Cuペーストを塗布
し、メッシェ型の連続ベルト炉によって焼付け、特性測
定用試料とした。。
This step does not reduce the components of the dielectric layer, but only the nickel oxide of the internal electrodes is reduced to metallic nickel. Next, the reduced element body is fired. Firing at 1250℃ 2
The test was carried out for several hours (temperature increase/decrease 200°C/h). The firing atmosphere was adjusted by using Nt gas as a carrier gas and controlling the flow rate of green gas so that the oxygen concentration in the electric furnace was 10-'' atm in a temperature range of 500°C or higher. A commercially available Cu paste for firing in a nitrogen atmosphere at 900° C. was applied as an external electrode to the end face of the sintered body obtained, and the paste was baked in a mesh type continuous belt furnace to obtain a sample for property measurement.

静電容量および誘電正接は、周波数1.0KHz、入力
信号レベル1.OVrmsにて測定し、静電容量から比
誘電率を算出した。その後直流50Vを1分間印加し、
その時の絶縁抵抗を測定した。なお、誘電体層の厚みは
約25μm・電極層の厚みは3〜4μmであった。
The capacitance and dielectric loss tangent are measured at a frequency of 1.0 KHz and an input signal level of 1.0 KHz. It was measured at OVrms, and the relative dielectric constant was calculated from the capacitance. Then apply 50V DC for 1 minute,
The insulation resistance at that time was measured. Note that the thickness of the dielectric layer was approximately 25 μm and the thickness of the electrode layer was 3 to 4 μm.

上記の測定結果を第1表にあわせて示した。なお、測定
は20°Cの恒温槽中で行なった。
The above measurement results are also shown in Table 1. Note that the measurement was performed in a constant temperature bath at 20°C.

(以下空白) 第1表 第1表の試料Nα12゜ 阻13には比較例としてDy 1 2 0コ のどちらか一方だけを添加した 時の初期特性を示した。第1表から明らかなように、本
発明の誘電体磁器組成物を用いて作製した積層セラミッ
クコンデンサは、比誘電率が高く、又、誘電正接が低く
、さらに絶縁抵抗も実用上充分に高い値を示している。
(Blank below) Table 1 Sample Nα12゜in 13 in Table 1 shows the initial characteristics when only one of Dy 120 was added as a comparative example. As is clear from Table 1, the multilayer ceramic capacitor manufactured using the dielectric ceramic composition of the present invention has a high dielectric constant, a low dielectric loss tangent, and an insulation resistance that is sufficiently high for practical use. It shows.

比較例の特性と比べてもDytOxとYzOsの両方を
添加する事の効果が充分に認められる0本実施例1に示
した積層セラミックコンデンサのキュリー点は、5℃〜
15°Cの間になるように誘電体の組成を調整したが、
シフターとして働(Zr成分、MnO□成分、さらに、
DVz Os 、Y203の量を微妙に変化させる事に
よって第1表以外の組成においてもTcを望む温度にす
る事が出来、優れた特性を有する積層セラミックコンデ
ンサの作製が可能である。
Even when compared with the characteristics of the comparative example, the effect of adding both DytOx and YzOs is fully recognized.The Curie point of the multilayer ceramic capacitor shown in Example 1 is 5℃~
The composition of the dielectric was adjusted so that the temperature was between 15°C, but
Works as a shifter (Zr component, MnO□ component, and
By slightly changing the amounts of DVz Os and Y203, Tc can be set to a desired temperature even in compositions other than those in Table 1, and a multilayer ceramic capacitor with excellent characteristics can be manufactured.

又、試料Nt14,5に示した様に、DyxOz、Y2
O、の添加量が非常に少な(でも充分な特性を有する積
層セラミックコンデンサの作製が可能である。一方、D
yt Ox 、Yz Oxの添加量の最大値は2mol
%以下がのぞましく、それを越えると焼結が得られなく
なる。Zr成分については、20mo1%以下が望まし
い。なぜならば、これ以上の添加は、他の成分をどの様
に調整してもTcを適当な位置にする事が不可能となり
、又、焼成温度が高くなり内部電極の収縮が起こり、デ
ラミ発生の原因となる。又、Zr成分をまったく入れな
い場合も同様な事が言える。MnO□については誘電体
磁器組成物の耐還元性を得る上でImo1%〜5mo1
%程度が適当であった。
In addition, as shown in sample Nt14,5, DyxOz, Y2
It is possible to fabricate a multilayer ceramic capacitor with sufficient characteristics even with a very small amount of added D.
The maximum amount of yt Ox and Yz Ox added is 2 mol
% or less, and if it exceeds it, sintering cannot be obtained. The Zr component is desirably 20 mo1% or less. This is because if more than this is added, no matter how you adjust other ingredients, it will be impossible to set Tc to an appropriate position, and the firing temperature will increase, causing shrinkage of the internal electrodes and causing delamination. Cause. Moreover, the same thing can be said when no Zr component is added. Regarding MnO□, Imo1% to 5mol
% was appropriate.

実施例2 本実施例2では、実施例1に示した誘電体磁器組成物に
、Y bz 03 、 T lz Oを添加した時の実
施例を示す。第2表に組成と初期特性を示した。
Example 2 This Example 2 shows an example in which Y bz 03 and T lz O are added to the dielectric ceramic composition shown in Example 1. Table 2 shows the composition and initial properties.

なお、Y bz Owl 、 T lz Oとしては9
9.9%の試薬を用いた。積層セラミックコンデンサ作
製の工程は実施例1と同様な手順で行なった。
In addition, Y bz Owl and T lz O are 9
9.9% reagent was used. The steps for manufacturing a multilayer ceramic capacitor were performed in the same manner as in Example 1.

(以下余白) 第2表 第2表より明らかな様にYb、O,、Tl□Oの添加は
、誘電率の低下はほとんどまねかず、絶縁抵抗の向上に
大きな効果が認められる。試料Nα22及びNα23は
、比較例としてYb、03.Tl。
(Left below) Table 2 As is clear from Table 2, the addition of Yb, O, Tl□O hardly causes a decrease in the dielectric constant, and is highly effective in improving the insulation resistance. Samples Nα22 and Nα23 are Yb, 03. Tl.

0を過剰に入れた場合を示している。この結果からも、
Yb! Ox 、T lx Oの添加量は、0.1mo
l%以上1mol%以下が適当であるといえる。本実施
例2においては、Ybz Ox 、Tl! Oを単独で
添加した場合を示したが、yb、03とTl2Oの両方
を添加した場合でも、その量の合計が0.1mol%〜
In+o1%の範囲であれば、同様な効果が得られた。
This shows the case where an excessive number of 0's are inserted. From this result,
Yb! The amount of Ox, T lx O added is 0.1 mo
It can be said that 1% or more and 1 mol% or less is appropriate. In Example 2, Ybz Ox, Tl! Although the case where O is added alone is shown, even when both yb,03 and Tl2O are added, the total amount is 0.1 mol% ~
Similar effects were obtained within the range of In+O1%.

さらに、Yb、O,、Tl2Oの添加は、信頬性試験と
りわけTHB(85°C185%RH50V)後の劣化
防止に効果があった。
Furthermore, the addition of Yb, O, and Tl2O was effective in preventing deterioration after the reliability test, especially THB (85°C, 185% RH, 50V).

又、第2表に示した誘電体組成以外においても、実施例
1ですでに言及した様な範囲でZr量、Mno、量、D
ytOx量、Y2O,量を変える事によって様々な誘電
体組成が可能である。
In addition, in addition to the dielectric composition shown in Table 2, the amount of Zr, Mno, amount, and D may be adjusted within the ranges already mentioned in Example 1.
Various dielectric compositions are possible by changing the amount of ytOx and Y2O.

実施例3 本実施例3では、実施例1に示した誘電体磁器組成物に
、N i O,Cox Oユを添加した時の実施例を示
す、第3表に組成と初期特性を示した。
Example 3 In this Example 3, the composition and initial characteristics are shown in Table 3, which shows an example when NiO and CoxO were added to the dielectric ceramic composition shown in Example 1. .

なお、N i O,Co z Oxとしては特級試薬を
用いた。純度は99%以上である。積層セ手ミックコン
デンサ作製の工程は実施例1と同様な手順で行なった。
Note that special grade reagents were used as N i O and Co z Ox. Purity is over 99%. The steps for manufacturing a multilayer ceramic capacitor were performed in the same manner as in Example 1.

第3表 第3表つづき 第3表より明らかな様に、N i O,Co z Os
の添加は、誘電率の低下をほとんどまねかずに、誘電正
接だけを下げるのに非常に効果がある。そしてその添加
範囲は0.1mol%以上、2.Omo1%以下が適当
であり、それ以下では効果がなく、その範囲より多い場
合は、tanδは下がるものの、比誘電率、絶縁抵抗と
もに低下する傾向にあり望ましくない0本実施例3にお
いては、Nip、Cozy3の一方だけを添加した例を
示したが、NiOとCozy、の添加量の和が0.1m
ol%以上、2.0mo1%以下の範囲であればtan
δを下げる効果がある事を確認した。又、本実施例3に
は、Yb20、、T1.0を添加しない誘電体にNiO
,CO□0.を添加した場合を示したが、実験の結果、
Ybt 03 、TIt 0WNtO,Cot Osを
同時に添加しても悪い相互作用は認められず、tanδ
を下げるという効果が無くなるものではなかった。
Table 3 Table 3 Continued As is clear from Table 3, N i O, Co z Os
The addition of is very effective in lowering only the dielectric loss tangent without causing a decrease in the dielectric constant. The addition range is 0.1 mol% or more, 2. Omo1% or less is suitable; if it is less than that, there is no effect; if it is more than that range, tan δ will decrease, but both the dielectric constant and insulation resistance will tend to decrease, which is not desirable. , an example was shown in which only one of Cozy3 was added, but when the sum of the amounts of NiO and Cozy3 added was 0.1 m
If it is in the range of ol% or more and 2.0mol% or less, tan
It was confirmed that it has the effect of lowering δ. In addition, in this Example 3, NiO was added to the dielectric material not added with Yb20, T1.0.
, CO□0. However, as a result of the experiment,
Even when Ybt 03 , TIt 0WNtO, and Cot Os were added simultaneously, no bad interaction was observed, and tan δ
This did not eliminate the effect of lowering the

実施例4 実施例1に示した誘電体磁器組成物のうちでBaの一部
をCa、Mg、Srで置換した場合の実験を行なった。
Example 4 An experiment was conducted in which part of Ba in the dielectric ceramic composition shown in Example 1 was replaced with Ca, Mg, and Sr.

その結果、Ba成分全体を100とした場合、Ca、M
g、Srのそれぞれ又は、混合したものが5以下の範囲
では比誘電率を低下させる事なく絶縁抵抗を向上させる
効果が認められた、過剰の添加は、焼結性を悪くし、比
誘電率を著しく低下させる結果となった。又、CaO,
Mgo、SrOを添加した場合においても、Cab。
As a result, when the entire Ba component is taken as 100, Ca, M
When each of g and Sr or a mixture of 5 or less was found to have the effect of improving insulation resistance without reducing the dielectric constant, excessive addition deteriorates sinterability and increases the dielectric constant. This resulted in a significant decrease in Also, CaO,
Cab even when Mgo and SrO are added.

MgO,SrOの添加量が5mo 1%以下の場合、同
様の効果が得られた。さらに、このことは、誘電体磁器
組成物中にYbz O3,Tit O,Nip。
Similar effects were obtained when the amount of MgO and SrO added was 5 mo 1% or less. Furthermore, this means that Ybz O3, Tit O, Nip in the dielectric ceramic composition.

Co、O,を含む場合においてもそれぞれの添加物の効
果を打消すものではなかった。
Even when Co and O were included, the effects of each additive were not negated.

以上、本実施例1〜4においては、誘電体磁器組成物中
のBaTi0.、BaZrOsを仮焼法により作製した
が、これについては、共沈法、アルコキシド法、水熱合
成法によって準備されたものであっても問題はなく、良
好な結果が得られる。
As described above, in Examples 1 to 4, BaTi0. , BaZrOs was prepared by a calcining method, but there is no problem and good results can be obtained even if it is prepared by a coprecipitation method, an alkoxide method, or a hydrothermal synthesis method.

又、本実施例では、BaTiO3,BaZr0゜は化学
量論比になる様にAサイ) (Ba、及び、・BaaC
a、Mg、Srの和)とBサイト(ZrとTiの和)の
モル比すなわちA/B=1.00となる様にしたが、A
/B比が0.98以上1.03以下であれば同様に良好
な結果が得られる。しかし、Al6比が0.98より小
さい場合は、絶縁抵抗が非常に低くなり、1.03を越
えた場合、焼結が得られないことになる。
In addition, in this example, BaTiO3 and BaZr0° were adjusted to have a stoichiometric ratio (A size) (Ba, and ・BaaC
The molar ratio of the B site (the sum of Zr and Ti) to the B site (the sum of Zr and Ti), that is, A/B = 1.00, was set.
Similarly, good results can be obtained if the /B ratio is 0.98 or more and 1.03 or less. However, if the Al6 ratio is less than 0.98, the insulation resistance will be very low, and if it exceeds 1.03, sintering will not be obtained.

また、本実施例では、脱バインダ、還元、焼成の各工程
条件を固定して行なったが、脱パインダ工程の条件は、
使用する有機バインダの種類に応じて最適に選択すれば
よく、還元工程においても、誘電体が還元されず電極の
酸化ニッケルのみが還元される条件であればよく、雰囲
気についても100%のH3雰囲気でなくても良い。さ
らに焼成工程の雰囲気についても、本実施例の条件に限
るものではなく、焼成時の保持温度(本実施例において
は1250″C)でNiとNiOの平衡酸素分圧以下の
酸素濃度であれば良(、他の昇温、降温領域においては
、Ni電極が著しく酸化されないならば、Ni(!:N
iOの平衡酸素分圧以上に酸素を含有した雰囲気であっ
ても問題はない。
In addition, in this example, the conditions for each step of debinding, reduction, and firing were fixed, but the conditions for the debinding step were as follows.
The optimum selection should be made depending on the type of organic binder used, and the conditions in the reduction process should be such that the dielectric is not reduced and only the nickel oxide of the electrode is reduced, and the atmosphere should be a 100% H3 atmosphere. It doesn't have to be. Furthermore, the atmosphere of the firing process is not limited to the conditions of this example, but as long as the oxygen concentration is below the equilibrium oxygen partial pressure of Ni and NiO at the holding temperature during firing (1250''C in this example). If the Ni electrode is not significantly oxidized in other temperature rising and cooling regions, Ni(!:N
There is no problem even if the atmosphere contains oxygen at a level higher than the equilibrium oxygen partial pressure of iO.

さらに、本実施例においては、積層セラミックコンデン
サを作製し、誘電体磁器組成物の特性を測定したが、本
発明の誘電体磁器組成物は、単板型のセラミックコンデ
ンサに使用できることはいうまでもない、さらに本発明
の製造方法を用いることにより、積層バリスタ、コンデ
ンサ内蔵の多層配線基板への応用も可能となる。
Further, in this example, a multilayer ceramic capacitor was manufactured and the characteristics of the dielectric ceramic composition were measured. However, it goes without saying that the dielectric ceramic composition of the present invention can be used in a single-plate ceramic capacitor. Furthermore, by using the manufacturing method of the present invention, it is also possible to apply it to multilayer wiring boards with built-in multilayer varistors and capacitors.

発明の効果 本発明の請求の範囲内の誘電体磁器組成物は、極めて低
い酸素分圧下の焼成においても高い比誘電率と、低い誘
電正接、さらに高い絶縁抵抗を示すため、Niを内部電
極とする積層セラミックコンデンサ作製において最適で
ある。
Effects of the Invention The dielectric ceramic composition within the scope of the claims of the present invention exhibits a high dielectric constant, a low dielectric loss tangent, and a high insulation resistance even when fired under an extremely low oxygen partial pressure. It is ideal for manufacturing multilayer ceramic capacitors.

又、本発明の積層セラミックコンデンサの製造方法は、
脱バインダを空気中で行なうため、特別な有機バインダ
を必要とせず、完全なバインダ除去が行なえる。さらに
、還元、焼成時の雰囲気コントロールが容易となるため
、積層セラミックコンデンサの内部電極を卑金属化する
上で極めて効果的であり、加えて、積層セラミックコン
デンサ作製において、誘電体層の薄層化、高積層化によ
り大容量化を目指す場合に極めて優位性のある発明であ
る。
Further, the method for manufacturing a multilayer ceramic capacitor of the present invention includes:
Since the binder is removed in air, no special organic binder is required and the binder can be completely removed. Furthermore, since the atmosphere can be easily controlled during reduction and firing, it is extremely effective in converting the internal electrodes of multilayer ceramic capacitors into base metals. This invention is extremely advantageous when aiming to increase capacity by increasing the number of layers.

Claims (7)

【特許請求の範囲】[Claims] (1)チタン酸バリウムの構成元素のTiの一部をZr
で置換したチタン酸バリウム系複合酸化物に、MnO_
2とDy_2O_3とY_2O_3とを添加したことを
特徴とする誘電体磁器組成物。
(1) Part of Ti, a constituent element of barium titanate, is replaced with Zr.
MnO_
A dielectric ceramic composition characterized in that it contains Dy_2O_3, Dy_2O_3, and Y_2O_3.
(2)Yb_2O_3,Tl_2Oのうち少なくとも1
種以上を0.1mol%以上、1mol%以下の範囲で
添加したことを特徴とする請求項(1)記載の誘電体磁
器組成物。
(2) At least one of Yb_2O_3 and Tl_2O
2. The dielectric ceramic composition according to claim 1, wherein at least one species is added in an amount of 0.1 mol% or more and 1 mol% or less.
(3)NiO,Co_2O_3のうち少なくとも1種以
上を0.1mol%以上、2mol%以下の範囲で添加
したことを特徴とする請求項(1)または(2)のいず
れに記載の誘電体磁器組成物。
(3) The dielectric ceramic composition according to claim 1 or 2, wherein at least one of NiO and Co_2O_3 is added in a range of 0.1 mol% or more and 2 mol% or less. thing.
(4)チタン酸バリウム系複合酸化物の構成元素のBa
の一部をCa,Mg,Srで置換するか、あるいはCa
O,MgO,SrOを添加したことを特徴とする請求項
(1)(2)または(3)のいずれかに記載の誘電体磁
器組成物。
(4) Ba, a constituent element of barium titanate-based composite oxide
Part of it is replaced with Ca, Mg, Sr, or Ca
The dielectric ceramic composition according to claim 1, wherein O, MgO, and SrO are added.
(5)請求項(1)(2)(3)または(4)のいずれ
かに記載の誘電体磁器組成物からなるセラミックコンデ
ンサ。
(5) A ceramic capacitor comprising the dielectric ceramic composition according to any one of claims (1), (2), (3), and (4).
(6)請求項(1)(2)(3)または(4)のいずれ
かに記載の誘電体磁器組成物からなる誘電体層と、Ni
を主成分とする内部電極層からなる積層セラミックコン
デンサ。
(6) A dielectric layer made of the dielectric ceramic composition according to any one of claims (1), (2), (3), or (4);
A multilayer ceramic capacitor consisting of an internal electrode layer whose main component is
(7)請求項(1)(2)(3)または(4)のいずれ
かに記載の誘電体磁器組成物と少なくとも有機バインダ
、溶剤、可塑剤からなるスラリーより作製したグリーン
シート上に、ニッケルの酸化物を主成分として少なくと
も有機バインダと有機溶剤とからなるビヒクルとともに
混練したペーストを印刷しパターン膜を形成する工程と
、該印刷されたグリーンシートを所望の枚数だけ加熱加
圧することによって積層化する工程と、この様に積層さ
れた積層体を所望の寸法に切断する工程と、これを前記
誘電体磁器組成物が焼結し始めない温度の空気中で加熱
し、有機バインダを燃焼させる工程と、これを還元雰囲
気中で熱処理し、ニッケルの酸化物を金属に還元せしむ
る工程と、これをニッケルの融点より低い温度の窒素雰
囲気中で焼成し、誘電体磁器組成物と金属とを緻密化す
る工程からなることを特徴とする積層セラミックコンデ
ンサの製造方法。
(7) On a green sheet made from a slurry consisting of the dielectric ceramic composition according to any one of claims (1), (2), (3), or (4) and at least an organic binder, a solvent, and a plasticizer, a nickel A process of printing a paste made by kneading an oxide as a main component with a vehicle consisting of at least an organic binder and an organic solvent to form a pattern film, and laminating a desired number of printed green sheets by heating and pressing them. a step of cutting the laminate thus laminated into desired dimensions; and a step of heating this in air at a temperature at which the dielectric ceramic composition does not begin to sinter, thereby burning the organic binder. This is heat-treated in a reducing atmosphere to reduce the nickel oxide to metal, and this is fired in a nitrogen atmosphere at a temperature lower than the melting point of nickel to combine the dielectric ceramic composition and the metal. A method for manufacturing a multilayer ceramic capacitor, characterized by comprising a densification process.
JP1248327A 1989-04-11 1989-09-25 Dielectric ceramic composition, laminated ceramic capacitor using the same, and method for producing the same Expired - Fee Related JP2529411B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1248327A JP2529411B2 (en) 1989-09-25 1989-09-25 Dielectric ceramic composition, laminated ceramic capacitor using the same, and method for producing the same
US07/507,568 US5014158A (en) 1989-04-11 1990-04-11 Laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1248327A JP2529411B2 (en) 1989-09-25 1989-09-25 Dielectric ceramic composition, laminated ceramic capacitor using the same, and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03112861A true JPH03112861A (en) 1991-05-14
JP2529411B2 JP2529411B2 (en) 1996-08-28

Family

ID=17176433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1248327A Expired - Fee Related JP2529411B2 (en) 1989-04-11 1989-09-25 Dielectric ceramic composition, laminated ceramic capacitor using the same, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2529411B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193667A (en) * 2000-12-27 2002-07-10 Kyocera Corp Dielectric ceramic and stacked electronic part
US6884308B2 (en) * 2001-09-27 2005-04-26 Murata Manufacturing Co., Ltd. Method of manufacturing monolithic ceramic electronic part and monolithic ceramic electronic part
JP2009161417A (en) * 2008-01-10 2009-07-23 Tdk Corp Dielectric porcelain composition and electronic component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141205A (en) * 1986-12-04 1988-06-13 太陽誘電株式会社 Dielectric ceramic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141205A (en) * 1986-12-04 1988-06-13 太陽誘電株式会社 Dielectric ceramic

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193667A (en) * 2000-12-27 2002-07-10 Kyocera Corp Dielectric ceramic and stacked electronic part
US6884308B2 (en) * 2001-09-27 2005-04-26 Murata Manufacturing Co., Ltd. Method of manufacturing monolithic ceramic electronic part and monolithic ceramic electronic part
JP2009161417A (en) * 2008-01-10 2009-07-23 Tdk Corp Dielectric porcelain composition and electronic component
JP4710908B2 (en) * 2008-01-10 2011-06-29 Tdk株式会社 Dielectric porcelain composition and electronic component

Also Published As

Publication number Publication date
JP2529411B2 (en) 1996-08-28

Similar Documents

Publication Publication Date Title
JP3934352B2 (en) Multilayer ceramic chip capacitor and manufacturing method thereof
JP3326513B2 (en) Multilayer ceramic chip capacitors
JP2007031273A (en) Dielectric porcelain composition for low temperature firing and laminated ceramic condenser using the same
JPH11273985A (en) Dielectric ceramic and its manufacture, and laminated ceramic electronic part and its manufacture
JP4506084B2 (en) Non-reducing dielectric ceramic, method for manufacturing the same, and multilayer ceramic capacitor
US20120075768A1 (en) Dielectric ceramic composition and manufacturing method thereof, and ceramic electronic device
JP2001291632A (en) Non-reducing dielectric ceramic and laminated ceramic capacitor using the same
JP3146967B2 (en) Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same
JP5194370B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP4557472B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP7025695B2 (en) Dielectric Porcelain Compositions, Electronic Components and Multilayer Ceramic Capacitors
JP7025694B2 (en) Dielectric Porcelain Compositions, Electronic Components and Multilayer Ceramic Capacitors
JPH11302072A (en) Dielectric ceramic, laminated ceramic capacitor and its production
JP2007261913A (en) Dielectric porcelain composition, electronic part and multilayer ceramic capacitor
JP2529410B2 (en) Dielectric ceramic composition, laminated ceramic capacitor using the same, and method for producing the same
JP2009096671A (en) Dielectric ceramic and multi-layer ceramic capacitor
JP2007258476A (en) Laminated electronic component and manufacturing method thereof
JP3130214B2 (en) Multilayer ceramic chip capacitors
JP2005162557A (en) Method of manufacturing dielectric ceramic composition, method of manufacturing dielectric layer-containing electronic component, and dielectric layer-containing electronic component
JP5167591B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP2004217509A (en) Nonreducible dielectric ceramic and multilayer ceramic capacitor
JP2007258477A (en) Laminated electronic component and manufacturing method thereof
JPH11302071A (en) Dielectric ceramic, laminated ceramic capacitor and its production
JPH03112861A (en) Dielectric porcelain and laminated ceramic capacitor using the same and preparation thereof
JP2002134350A (en) Laminated ceramic capacitor and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees