JP2001220224A - Dielectric ceramic and laminated ceramic electric part - Google Patents

Dielectric ceramic and laminated ceramic electric part

Info

Publication number
JP2001220224A
JP2001220224A JP2000026953A JP2000026953A JP2001220224A JP 2001220224 A JP2001220224 A JP 2001220224A JP 2000026953 A JP2000026953 A JP 2000026953A JP 2000026953 A JP2000026953 A JP 2000026953A JP 2001220224 A JP2001220224 A JP 2001220224A
Authority
JP
Japan
Prior art keywords
dielectric
dielectric ceramic
ceramic
shell
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000026953A
Other languages
Japanese (ja)
Inventor
Yoichi Mizuno
洋一 水野
Yoshinao Takahashi
義直 高橋
Kenji Yazawa
健二 矢澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2000026953A priority Critical patent/JP2001220224A/en
Publication of JP2001220224A publication Critical patent/JP2001220224A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a dielectric ceramic having a high dielectric constant and a high insulation resistance, and further to provide a laminated ceramic capacitor good in both characteristics and reliability. SOLUTION: This dielectric ceramic consists essentially of BaTiO3, and contains dielectric ceramic particles 1, having cores 2 in a ferroelectric phase, and shells 3 formed so as to surround the core 2 and containing Mg and a rare earth element dispersed, in the BaTiO3. In short, the dielectric ceramic particle has a core-shell particle structure. The ratio d/D of the depth d from the surface of the dielectric ceramic particle 1, to the average diameter D of the dielectric ceramic particle 1 is regulated so as to be 0.03<=d/D<=0.3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層セラミックコ
ンデンサの積層体等として用いられる誘電体磁器に関
し、特に良好なB温度特性を有するコンデンサが得られ
るコア・シェルの粒子構造を持った誘電体磁器であっ
て、高い誘電率と高い絶縁抵抗を有する誘電体磁器に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic used as a laminated body of a multilayer ceramic capacitor, and more particularly to a dielectric ceramic having a core-shell particle structure capable of obtaining a capacitor having good B temperature characteristics. The present invention relates to a dielectric ceramic having a high dielectric constant and a high insulation resistance.

【0002】[0002]

【従来の技術】積層コンデンサ等に用いられるBaTi
3 を主成分とする誘電体磁器において、良好なB温度
特性を有するコンデンサを得ることができるようにする
ため、誘電体磁器の結晶粒内にコアとこれを囲むシェル
とを共存させてコア・シェル粒子構造とすることが有効
であると考えられている。このコア・シェル粒子構造で
は、誘電体磁器粒子の表面に前記シェルを形成するため
Mgや希土類元素を添加することが行われている。
2. Description of the Related Art BaTi used for multilayer capacitors and the like
In a dielectric ceramic mainly composed of O 3 , in order to obtain a capacitor having good B temperature characteristics, a core and a shell surrounding the core coexist in crystal grains of the dielectric ceramic. -It is considered effective to have a shell particle structure. In this core-shell particle structure, Mg or a rare earth element is added to form the shell on the surface of the dielectric ceramic particles.

【0003】従来のMgや希土類元素を添加したコア・
シェル粒子構造を有する誘電体磁器においては、Mgや
希土類元素は一括して添加され、シェルにおいてそれら
Mgや希土類元素が混然一体化して拡散している状態と
なっている。そして、従来では、シェルにおけるMgや
希土類元素の分布について特別な制御が行われておら
ず、Mgや希土類元素が誘電体粒子の比較的深い部位ま
で拡散されている。
[0003] Conventional cores to which Mg or rare earth elements are added
In a dielectric porcelain having a shell particle structure, Mg and rare earth elements are added at a time, and the Mg and rare earth elements are mixed and diffused in the shell. Conventionally, no special control is performed on the distribution of Mg and rare earth elements in the shell, and Mg and rare earth elements are diffused to relatively deep portions of the dielectric particles.

【0004】[0004]

【発明が解決しようとしている課題】しかしながら、前
記のようなB温度特性の改善のために有効なコア・シェ
ル粒子構造を有する誘電体粒子により構成された誘電体
磁器では、充分に誘電率が高く、なお且つ耐電圧性の良
好な誘電体磁器を得ることができなかった。積層セラミ
ックコンデンサの大容量化に伴う誘電体層の薄層化が進
んでおり、これに伴い、要求される品質レベルが極めて
高くなっている。しかし、前記従来の誘電体磁器では積
層セラミックコンデンサの品質を充分に向上させること
ができなかった。
However, the dielectric ceramic composed of dielectric particles having a core-shell particle structure effective for improving the B temperature characteristic as described above has a sufficiently high dielectric constant. In addition, a dielectric ceramic having good withstand voltage could not be obtained. With the increase in capacitance of multilayer ceramic capacitors, the thickness of dielectric layers has been reduced, and accordingly, the required quality level has become extremely high. However, the conventional dielectric ceramic cannot sufficiently improve the quality of the multilayer ceramic capacitor.

【0005】本発明は、前記従来のようなコア・シェル
粒子構造をとる誘電体磁器における課題に鑑み、誘電率
が高く、なお且つ絶縁抵抗の高い誘電体磁器を得て、特
性及び信頼性共に良好な積層セラミックコンデンサを製
造することができるようにすることを目的とする。
The present invention has been made in view of the above-mentioned problems in a conventional dielectric ceramic having a core-shell particle structure, and has been developed to obtain a dielectric ceramic having a high dielectric constant and a high insulation resistance, and having both characteristics and reliability. It is an object of the present invention to manufacture a good multilayer ceramic capacitor.

【0006】[0006]

【課題を解決するための手段】本発明では、前記のよう
なB温度特性を有する積層セラミックコンデンサを作る
ためのコア・シェル粒子構造を有する誘電体磁器におい
て、その誘電体磁器の誘電率と絶縁抵抗は、誘電体磁器
粒子1の平均径Dに対するシェル3の誘電体磁器粒子1
の表面からの深さdの比d/Dに関係することを見いだ
し、この比d/Dを適宜の範囲に設定した。
According to the present invention, there is provided a dielectric ceramic having a core-shell particle structure for producing a multilayer ceramic capacitor having the above-mentioned B temperature characteristic. The resistance is equal to the average diameter D of the dielectric porcelain particles 1.
Was found to be related to the ratio d / D of the depth d from the surface, and this ratio d / D was set in an appropriate range.

【0007】すなわち、本発明による誘電体磁器は、B
aTiO3 を主体とし、誘電体磁器粒子1が強誘電体相
のコア2と、このコア2を囲んで形成され、BaTiO
3 にMgと希土類元素が拡散したシェル3とを有する。
要するに、誘電体磁器粒子がコア・シェル粒子構造をと
っている。このような誘電体磁器において、前記シェル
3の誘電体磁器粒子1の表面からの深さdと誘電体磁器
粒子1の平均径Dとの比d/Dを、0.03≦d/D≦
0.3とする。
That is, the dielectric porcelain according to the present invention has B
aTiO 3 as a main component, a dielectric ceramic particle 1 is formed around a core 2 of a ferroelectric phase, and the core 2 is formed of BaTiO 3.
3 has a shell 3 in which Mg and a rare earth element are diffused.
In short, the dielectric ceramic particles have a core-shell particle structure. In such a dielectric ceramic, the ratio d / D of the depth d of the shell 3 from the surface of the dielectric ceramic particle 1 to the average diameter D of the dielectric ceramic particle 1 is set to 0.03 ≦ d / D ≦
0.3.

【0008】シェル3はコア2に比べて高抵抗であり、
この深さが浅いと、十分な絶縁抵抗を有する誘電体磁器
を得ることができない。誘電体の薄層化のもとでも高い
信頼性を有する積層セラミックコンデンサを得るため、
誘電体磁器に必要な絶縁抵抗が500MΩ以上であると
すると、シェル3の誘電体磁器粒子1の表面からの深さ
dと誘電体磁器粒子1の平均径Dとの比d/Dは、0.
03以上とすることが必要である。
The shell 3 has a higher resistance than the core 2,
If the depth is small, a dielectric ceramic having a sufficient insulation resistance cannot be obtained. In order to obtain a highly reliable multilayer ceramic capacitor even with a thin dielectric layer,
Assuming that the insulation resistance required for the dielectric porcelain is 500 MΩ or more, the ratio d / D between the depth d of the shell 3 from the surface of the dielectric porcelain particles 1 and the average diameter D of the dielectric porcelain particles 1 is 0. .
It is necessary to be 03 or more.

【0009】他方、コア2はシェル3に比べて高誘電率
であり、シェル3のの深さが深すぎ、その分だけコア2
が小さくなると、十分な誘電率を有する誘電体磁器を得
ることができない。誘電体の薄層化のもとでも所要の静
電容量を有する積層セラミックコンデンサを得るため
に、誘電体磁器に必要な誘電率が3000以上であると
すると、シェル3の誘電体磁器粒子1の表面からの平均
深さdと誘電体磁器粒子1の平均径Dとの比d/Dは、
0.3以下とすることが必要である。換言すると、前記
シェル3とコア2との平均体積比を、0.2〜14.6
とする必要がある。
On the other hand, the core 2 has a higher dielectric constant than the shell 3, and the depth of the shell 3 is too deep.
Is small, a dielectric porcelain having a sufficient dielectric constant cannot be obtained. Assuming that the dielectric constant required for the dielectric ceramic is 3000 or more in order to obtain a multilayer ceramic capacitor having a required capacitance even in the case where the dielectric is made thinner, if the dielectric ceramic particles 1 of the shell 3 The ratio d / D of the average depth d from the surface to the average diameter D of the dielectric ceramic particles 1 is as follows:
It is necessary to be 0.3 or less. In other words, the average volume ratio between the shell 3 and the core 2 is 0.2 to 14.6.
It is necessary to

【0010】さらに、コア・シェル粒子構造をとる誘電
体磁器粒子1は、隣接する誘電体磁器粒子1において、
シェル2の境界部分にガラス成分が析出した粒界4を形
成している。このガラス質の粒界4は、液相で形成され
ており、他の部分より絶縁抵抗が高い。そして、コア・
シェル粒子構造を有する誘電体磁器において、隣接する
誘電体磁器粒子1は、電気的に直列に接続されていると
考えると、電界負荷時には最も抵抗の高い前記の粒界4
に局部的に高電圧がかかる。
Further, the dielectric porcelain particles 1 having a core-shell particle structure have the following characteristics.
A grain boundary 4 where a glass component is precipitated is formed at a boundary portion of the shell 2. The vitreous grain boundaries 4 are formed in a liquid phase and have higher insulation resistance than other portions. And the core
In the dielectric porcelain having the shell particle structure, considering that the adjacent dielectric porcelain particles 1 are electrically connected in series, the grain boundary 4 having the highest resistance when an electric field is loaded.
Is locally applied with a high voltage.

【0011】そこでこの粒界4を厚くすることにより、
絶縁抵抗の高い誘電体磁器を得ることができる。しかし
この粒界4は、コア2に比べて低誘電率であり、粒界4
が大きすぎると、十分な誘電率を有する誘電体磁器を得
ることができない。前述のように、誘電体磁器に必要な
絶縁抵抗が500MΩ以上、それに必要な誘電率が30
00以上であるとすると、前記粒界4の平均厚さtと前
記誘電体磁器粒子1の誘電体磁器粒子1の平均径Dとの
比t/Dを、0.005≦t/D≦0.05とするもの
である。
Therefore, by making the grain boundaries 4 thicker,
A dielectric ceramic having high insulation resistance can be obtained. However, the grain boundary 4 has a lower dielectric constant than the core 2 and
Is too large, it is not possible to obtain a dielectric porcelain having a sufficient dielectric constant. As described above, the insulation resistance required for the dielectric porcelain is 500 MΩ or more, and the required dielectric constant is 30 MΩ.
If the ratio is not less than 00, the ratio t / D of the average thickness t of the grain boundaries 4 to the average diameter D of the dielectric ceramic particles 1 of the dielectric ceramic particles 1 is 0.005 ≦ t / D ≦ 0. .05.

【0012】さらに、前記のような誘電体磁器を使用し
た本発明による積層セラミック電子部品は、セラミック
層17と内部電極15、16とが交互に積層された積層
体13と、この積層体13の端部に設けられた外部電極
12、12とを有し、前記内部電極15、16がセラミ
ック層17の縁に達していることにより、積層体13の
端面に内部電極15、16が各々導出され、同積層体1
3の端面に導出された内部電極15、16が前記外部電
極12、12に各々接続されている。そして、前記積層
体13を構成するセラミック層17が前記の誘電体磁器
からなる。これにより、前述のような優れた特性を有す
る積層セラミック電子部品が得られる。
Further, the multilayer ceramic electronic component according to the present invention using the above-described dielectric porcelain has a laminate 13 in which ceramic layers 17 and internal electrodes 15 and 16 are alternately laminated, and a laminate of the laminate 13. It has external electrodes 12 and 12 provided at the ends, and since the internal electrodes 15 and 16 reach the edge of the ceramic layer 17, the internal electrodes 15 and 16 are respectively led out to the end face of the laminate 13. , The same laminate 1
The internal electrodes 15, 16 led out to the end face 3 are connected to the external electrodes 12, 12, respectively. The ceramic layer 17 constituting the laminate 13 is made of the above-mentioned dielectric ceramic. As a result, a multilayer ceramic electronic component having excellent characteristics as described above can be obtained.

【0013】[0013]

【発明の実施の形態】次に、図面を参照しながら、本発
明の実施の形態について、具体的且つ詳細に説明する。
図1は、本発明によるコア・シェル粒子構造を有する誘
電体磁器における誘電体磁器粒子1の状態を模式的に示
す。
Embodiments of the present invention will now be described specifically and in detail with reference to the drawings.
FIG. 1 schematically shows the state of dielectric ceramic particles 1 in a dielectric ceramic having a core-shell particle structure according to the present invention.

【0014】前述した通り、本発明による誘電体磁器
は、BaTiO3 を主体とし、誘電体磁器粒子1が強誘
電体相のコア2と、このコア2を囲んで形成され、Ba
TiO 3 にMgと希土類元素が拡散したシェル3とを有
する。ここで、誘電体磁器粒子1の径をD、コア2の誘
電体磁器粒子1の表面からの深さをdとする。本発明で
は、前記シェル3の誘電体磁器粒子1の表面からの深さ
dと誘電体磁器粒子1の平均径Dとの比d/Dを、0.
03≦d/D≦0.3とする。
As mentioned above, the dielectric porcelain according to the present invention
Is BaTiOThree, And dielectric porcelain particles 1 are strongly attracted
A core 2 of an electric phase, formed around the core 2,
TiO ThreeHas a shell 3 in which Mg and a rare earth element are diffused.
I do. Here, the diameter of the dielectric ceramic particles 1 is D, and the induction of the core 2 is
The depth from the surface of the electric porcelain particles 1 is d. In the present invention
Is the depth of the shell 3 from the surface of the dielectric ceramic particles 1
The ratio d / D of d to the average diameter D of the dielectric ceramic particles 1 is set to 0.
03 ≦ d / D ≦ 0.3.

【0015】シェル3の誘電体磁器粒子1の表面からの
深さdと誘電体磁器粒子1の平均径Dとすると、前記シ
ェル3の体積は、π{D3−(D−2d)3}/6であ
る。またコア2の体積は、π(D−2d)3 /6であ
る。このシェル3とコア2との体積比をγとすると、γ
={D3−(D−2d)3}/(D−2d)3={1/
(1−2d/D)}3−1なり、前記シェル3の誘電体
磁器粒子1の表面からの深さdと誘電体磁器粒子1の平
均径Dとの比d/Dが0.03≦d/D≦0.3のと
き、0.20≦γ≦14.6となる。
Assuming that the depth d of the shell 3 from the surface of the dielectric ceramic particles 1 and the average diameter D of the dielectric ceramic particles 1, the volume of the shell 3 is π {D 3- (D-2d) 3 }. / 6. The volume core 2, π (D-2d) is a 3/6. Assuming that the volume ratio between the shell 3 and the core 2 is γ, γ
= {D 3- (D-2d) 3 } / (D-2d) 3 = {1 /
(1-2d / D)} 3 -1 becomes, the ratio d / D is 0.03 ≦ between the average diameter D of the depth d and the dielectric ceramic particles 1 from dielectric ceramic particles 1 of the surface of the shell 3 When d / D ≦ 0.3, 0.20 ≦ γ ≦ 14.6.

【0016】このようなコア・シェル粒子構造を有する
誘電体磁器は、BaTiO3 (チタン酸バリウム)を主
成分とし、これにMgO(酸化マグネシウム)やHo2
3(酸化ホルミウム)及びその他の添加物を加え、湿
式で混合し、成形した後焼成することにより得られる。
前記コア2の部分は、BaTiO3 の純度が高い部分で
あり、強誘電体相となる部分である。これに対し、シェ
ル3の部分は、BaTiO3 にMgOやHo23
の添加物が拡散した部分である。
A dielectric porcelain having such a core-shell particle structure contains BaTiO 3 (barium titanate) as a main component, and MgO (magnesium oxide) or Ho 2
It is obtained by adding O 3 (holmium oxide) and other additives, mixing in a wet manner, molding and firing.
The portion of the core 2 is a portion having a high purity of BaTiO 3 and a portion to be a ferroelectric phase. On the other hand, the portion of the shell 3 is a portion in which an additive such as MgO or Ho 2 O 3 diffuses into BaTiO 3 .

【0017】そして、前記のようなシェル3の深さd
は、誘電体磁器を焼成するときの温度や、焼成温度を維
持する時間により調整することができる。例えば、誘電
体磁器を焼成するときの温度が低いと、焼成時にMgや
希土類等の添加物の固熔がしにくいため、それらの酸化
物の誘電体磁器粒子1の内部への拡散がしにくく、高い
電気抵抗を有するシェル3の部分の深さdは浅くなる。
これに対し、誘電体磁器を焼成するときの温度が高い
と、焼成時にMgや希土類等の添加物の固熔がしやすい
ため、それらの酸化物の誘電体磁器粒子1の内部への拡
散がしやすく、高い電気抵抗を有するシェル3の部分の
深さdは深くなる。
The depth d of the shell 3 as described above
Can be adjusted by the temperature at which the dielectric porcelain is fired and the time for maintaining the firing temperature. For example, if the temperature at which the dielectric porcelain is fired is low, additives such as Mg and rare earth elements are hardly solid-dissolved at the time of sintering, so that the diffusion of these oxides into the dielectric porcelain particles 1 is difficult. The depth d of the portion of the shell 3 having a high electric resistance is reduced.
On the other hand, if the temperature at which the dielectric porcelain is fired is high, additives such as Mg and rare earths are likely to be solid-dissolved at the time of sintering, so that the diffusion of these oxides into the dielectric porcelain particles 1 is difficult. The depth d of the portion of the shell 3 which is easy to perform and has high electric resistance is increased.

【0018】また、誘電体磁器を焼成する時に焼成温度
を維持する時間が短いと、焼成時にMgや希土類等の添
加物の固熔がしにくいため、それらの酸化物の誘電体磁
器粒子1の内部への拡散がしにくく、高い電気抵抗を有
するシェル3の部分の深さdは浅くなる。これに対し、
誘電体磁器を焼成するときの焼成温度を維持する時間が
長いと、焼成時にMgや希土類等の添加物の固熔がしや
すいめ、それらの酸化物の誘電体磁器粒子1の内部への
拡散がしやすく、高い電気抵抗を有するシェル3の部分
の深さdは深くなる。
If the time during which the firing temperature is maintained during firing of the dielectric porcelain is short, it is difficult for additives such as Mg and rare earths to be solid-dissolved during firing. The depth d of the portion of the shell 3 having a high electric resistance is less likely to be diffused into the inside, and is small. In contrast,
If the time for maintaining the firing temperature when firing the dielectric porcelain is long, solidification of additives such as Mg and rare earths is likely to occur during firing, and the diffusion of these oxides into the dielectric porcelain particles 1 will occur. And the depth d of the portion of the shell 3 having high electric resistance is increased.

【0019】前記のようなコア・シェル粒子構造を有す
る誘電体磁器では、隣接する誘電体磁器粒子1のシェル
2の境界部分にガラス成分が析出した電気抵抗の高い粒
界4が形成される。前述した通り、粒界4の平均厚さt
と前記誘電体磁器粒子1の平均径Dとの比t/Dを、
0.005≦t/D≦0.05とする。
In the dielectric porcelain having the above-described core-shell particle structure, a grain boundary 4 having a high electric resistance in which a glass component is precipitated is formed at the boundary between the shells 2 of the adjacent dielectric porcelain particles 1. As described above, the average thickness t of the grain boundary 4
And the ratio t / D between the average diameter D of the dielectric ceramic particles 1 and
0.005 ≦ t / D ≦ 0.05.

【0020】このような粒界4は、誘電体磁器の原料の
中に、添加物としてSiO2 等のガラス成分を添加し、
この添加量により前記粒界4の厚さtを調整する。この
粒界4は、高い絶縁抵抗を示すが、コア2に比べて誘電
率が低い。
Such a grain boundary 4 is obtained by adding a glass component such as SiO 2 as an additive to the raw material of the dielectric porcelain,
The thickness t of the grain boundary 4 is adjusted by this addition amount. The grain boundary 4 has a high insulation resistance, but has a lower dielectric constant than the core 2.

【0021】次に、前述のような誘電体磁器を使用した
積層セラミック電子部品の例として、積層セラミックコ
ンデンサとその製造方法について説明する。まず前述の
ように、BaTiO3 (チタン酸バリウム)を主成分と
し、これにMgO(酸化マグネシウム)やHo2
3(酸化ホルミウム)及びその他の添加物を加え、湿式
で混合し、乾燥する。その後、この混合粉末を溶剤に溶
解したエチルセルロース等の有機バインダに均一に分散
し、セラミックスラリを調整する。このセラミックスラ
リをポリエチレンテレフタレートフィルム等のベースフ
ィルム上に薄く均一な厚さで塗布し、乾燥し、膜状のセ
ラミックグリーンシートを作る。その後、このセラミッ
クグリーンシートを適当な大きさに裁断する。
Next, a multilayer ceramic capacitor and a method of manufacturing the same as an example of a multilayer ceramic electronic component using the above-described dielectric ceramic will be described. First, as described above, BaTiO 3 (barium titanate) is used as a main component, and MgO (magnesium oxide) or Ho 2 O
3 Add (holmium oxide) and other additives, mix wet and dry. Thereafter, the mixed powder is uniformly dispersed in an organic binder such as ethyl cellulose dissolved in a solvent to prepare a ceramic slurry. This ceramic slurry is applied to a thin and uniform thickness on a base film such as a polyethylene terephthalate film or the like, and dried to form a film-shaped ceramic green sheet. Thereafter, the ceramic green sheet is cut into an appropriate size.

【0022】次に、この裁断したセラミックグリーンシ
ートの上に、導電ペーストを使用し、2種類の内部電極
パターンを各々印刷する。例えば導電ペーストは、Ni
及びその合金、Cu及びその合金、Ag、Pd、Ag−
Pd等から選択された1種の導体粉末の100重量%に
対して、バインダとしてエチルセルロース、アクリル、
ポリエステル等から選択された1種を3〜12重量%、
溶剤としてブチルカルビトール、ブチルカルビトールア
セテート、テルピネオール、エチルセロソルブ、炭化水
素等から選択された1種を80〜120重量%添加し、
均一に混合、分散したものを使用する。
Next, two types of internal electrode patterns are printed on the cut ceramic green sheets using a conductive paste. For example, the conductive paste is Ni
And its alloys, Cu and its alloys, Ag, Pd, Ag-
With respect to 100% by weight of one kind of conductor powder selected from Pd and the like, ethyl cellulose, acrylic,
3 to 12% by weight of one selected from polyester or the like,
As a solvent, 80 to 120% by weight of one selected from butyl carbitol, butyl carbitol acetate, terpineol, ethyl cellosolve, hydrocarbon and the like is added,
Use what is uniformly mixed and dispersed.

【0023】このような内部電極パターンが印刷された
セラミックグリーンシートを、交互に積み重ね、さらに
その両側に内部電極パターンが印刷されてないセラミッ
クグリーンシート、いわゆるダミーシートを積み重ね、
これらを圧着し、積層体を得る。さらに、この積層体を
縦横格子状に裁断し、個々の未焼成のチップ状の積層体
に分割する。この分割された積層体の対向する端面に
は、前記の内部電極が交互に導出されている。
Ceramic green sheets on which such internal electrode patterns are printed are alternately stacked, and ceramic green sheets on which both internal electrode patterns are not printed, so-called dummy sheets, are stacked on both sides.
These are pressed to obtain a laminate. Further, this laminate is cut into a vertical and horizontal lattice, and divided into individual unfired chip-like laminates. The internal electrodes described above are alternately led out to opposing end faces of the divided laminated body.

【0024】次に、前記の内部電極パターンが各々導出
している未焼成の積層体の両端面と、この両端面に連な
る積層体の側面の一部にわたって、外部電極用の導電ペ
ーストを塗布し、乾燥する。その後、これらの積層体を
焼成することで、積層体が焼結すると共に、前記内部電
極パターンを形成している導電ペースト及び積層体の端
部に塗布された導電ペーストが焼き付けられる。
Next, a conductive paste for an external electrode is applied to both end surfaces of the unfired laminate from which the internal electrode patterns are led out and a part of the side surface of the laminate connected to the both end surfaces. ,dry. Then, by firing these laminates, the laminates are sintered, and the conductive paste forming the internal electrode pattern and the conductive paste applied to the ends of the laminate are baked.

【0025】さらに、積層体の端部に形成された導体層
の上に、Snまたは半田メッキが施される。これによ
り、図2に示すような積層セラミックコンデンサが完成
する。この積層セラミックコンデンサは、図3に示すよ
うな層構造を有する焼成済みの積層体3を有し、図2に
示すように、その端部に外部電極2、2が形成されてい
る。
Further, Sn or solder plating is applied to the conductor layer formed at the end of the laminate. Thus, a multilayer ceramic capacitor as shown in FIG. 2 is completed. This multilayer ceramic capacitor has a fired laminate 3 having a layer structure as shown in FIG. 3, and external electrodes 2 and 2 are formed at its ends as shown in FIG.

【0026】図3に示すように、積層体13は内部電極
15、16を有する誘電体からなるセラミック層17、
17…が積層され、さらにその両側に内部電極15、1
6が形成されてないセラミック層17、17…が各々複
数層積み重ねられたものである。このような積層体13
は、セラミック層17を介して対向している各内部電極
15、16が、積層体13の両端面に交互に導出されて
いる。そして、図2に示すように、この内部電極15、
16が、交互に導出された積層体13の両端面におい
て、前記外部電極12、12が前記内部電極15、16
と導通している。ここで、前記セラミック層17、17
…は、前述のようなコア・シェル粒子構造を有する誘電
体磁器からなる。
As shown in FIG. 3, the laminate 13 includes a dielectric ceramic layer 17 having internal electrodes 15 and 16.
17 are laminated, and the internal electrodes 15, 1
Are formed by stacking a plurality of ceramic layers 17 each having no 6 formed thereon. Such a laminate 13
The internal electrodes 15 and 16 facing each other via the ceramic layer 17 are alternately led out to both end surfaces of the laminate 13. Then, as shown in FIG.
The external electrodes 12 and 12 are connected to the internal electrodes 15 and 16 at both end surfaces of the laminate 13 alternately led out.
It is conducting. Here, the ceramic layers 17, 17
Are made of a dielectric ceramic having a core-shell particle structure as described above.

【0027】なお、以上の例は、積層セラミック電子部
品として積層セラミックコンデンサを説明したが、本発
明による積層セラミック電子部品は、例えば、コンデン
サ部分を有する複合部品、例えば積層セラミックLC複
合部品にも同様にして適用することができる。
In the above example, a multilayer ceramic capacitor was described as the multilayer ceramic electronic component. However, the multilayer ceramic electronic component according to the present invention is also applicable to a composite component having a capacitor portion, for example, a multilayer ceramic LC composite component. And can be applied.

【0028】[0028]

【実施例】次に、本発明の実施例について具体的な数値
をあげて説明する。 (実施例1)積層セラミックコンデンサ用の誘電体磁器
を得るため、平均粒径0.4μmのBaTiO3 (チタ
ン酸バリウム)が94.2重量%、MgO(酸化マグネ
シウム)が0.8重量%、Ho23(酸化ホルミウム)
が1.0重量%、焼結助剤であるSiO2 (酸化ケイ
素)が2.0重量%とからなるセラミック粉末を調合し
た。このセラミック粉末混合体をボールミルにて純水中
で15時間混合した後乾燥した。さらに、このセラミッ
ク粉末混合体に水と有機バインダを加えてスラリを得
た。
Next, embodiments of the present invention will be described with specific numerical values. Example 1 In order to obtain a dielectric ceramic for a multilayer ceramic capacitor, BaTiO 3 (barium titanate) having an average particle diameter of 0.4 μm was 94.2% by weight, MgO (magnesium oxide) was 0.8% by weight, Ho 2 O 3 (holmium oxide)
Of 1.0% by weight and 2.0% by weight of SiO 2 (silicon oxide) as a sintering aid. This ceramic powder mixture was mixed in pure water for 15 hours using a ball mill and then dried. Further, water and an organic binder were added to the ceramic powder mixture to obtain a slurry.

【0029】このスラリをリバースコータで厚さ10μ
mのセラミックグリーンシートに成型した。次にこのセ
ラミックグリーンシートに導電性ペーストを塗布し内部
電極パターンを形成した後、このシートを10枚積層し
た。得られた積層体を、格子状に裁断し、多数の積層体
チップを作製した。次に、この積層体チップを還元性雰
囲気中で1200℃で1.5時間焼成し、標準寸法長さ
3.2mm、端面角1.6mmの積層セラミックコンデ
ンサを得た。
This slurry was coated with a reverse coater to a thickness of 10 μm.
m green ceramic sheets. Next, after applying a conductive paste to this ceramic green sheet to form an internal electrode pattern, ten sheets were laminated. The obtained laminate was cut into a lattice to produce a number of laminate chips. Next, the laminated chip was fired in a reducing atmosphere at 1200 ° C. for 1.5 hours to obtain a laminated ceramic capacitor having a standard dimension length of 3.2 mm and an end face angle of 1.6 mm.

【0030】この積層セラミックコンデンサの積層体チ
ップを構成する誘電体磁器は、図1に模式的に示すよう
に、多数の誘電体磁器粒子1の集まりから成る。この誘
電体磁器粒子1は、中心部のBaTiO3 を主とする強
誘電体相がコア2となり、その周囲のBaTiO3 中に
MgとHoが拡散した常誘電体相のシェル3を有するコ
ア・シェル粒子構造を有する。ここで、シェル3の平均
深さdと誘電体磁器粒子1の平均径Dとを測定し、その
比d/Dを求め、さらにこの値からコア2とシェル3の
体積比を求めたところ、表1の資料4に示す通りであ
る。
The dielectric ceramic constituting the multilayer chip of the multilayer ceramic capacitor comprises a large number of dielectric ceramic particles 1 as schematically shown in FIG. The dielectric ceramic particles 1 have a core 2 having a ferroelectric phase mainly composed of BaTiO 3 at the center and a shell 3 of a paraelectric phase in which Mg and Ho are diffused in the surrounding BaTiO 3. It has a shell particle structure. Here, the average depth d of the shell 3 and the average diameter D of the dielectric ceramic particles 1 were measured, the ratio d / D was obtained, and the volume ratio between the core 2 and the shell 3 was obtained from this value. It is as shown in Document 4 in Table 1.

【0031】さらに表1に示すように、前記試料4と焼
成温度のみを変え、その他は試料4と同じ条件で試料
2、3、5及び6の試料を得た。また、表1に示すよう
に、焼成温度を1050℃とし、その他は試料4と同じ
条件で誘電体磁器を焼成したが、未焼結となった。これ
を便宜上試料1とした。
Further, as shown in Table 1, Samples 2, 3, 5 and 6 were obtained under the same conditions as Sample 4 except that only the baking temperature was changed. Further, as shown in Table 1, the dielectric ceramic was fired under the same conditions as in Sample 4 except that the firing temperature was 1050 ° C., but it was not sintered. This was designated as Sample 1 for convenience.

【0032】表1に示すように、試料3〜5として得ら
れた誘電体磁器は、誘電率が3070〜3510であ
り、何れも3000以上の誘電率が得られた。また、こ
れらの絶縁抵抗は520〜810MΩと、何れも500
MΩ以上であった。これらの試料のd/Dは、0.03
2〜0.293であり、0.03〜0.30の範囲にあ
る。また、これら試料のシェル3とコア2の体積比は、
0.22〜13.09であり、0.20〜14.6の範
囲にある。
As shown in Table 1, the dielectric ceramics obtained as Samples 3 to 5 had a dielectric constant of 3070 to 3510, and all obtained dielectric constants of 3000 or more. Further, their insulation resistance is 520 to 810 MΩ, all of which are 500
MΩ or more. The d / D of these samples was 0.03
2 to 0.293, and is in the range of 0.03 to 0.30. The volume ratio between the shell 3 and the core 2 of these samples is
0.22 to 13.09, which is in the range of 0.20 to 14.6.

【0033】これに対し、表1に示すように、焼成温度
を1050℃とした試料1は、焼結できず、特性を比較
すべき試料を得ることができなかった。焼成温度を11
00℃とした試料2は、3920と高い誘電率が得られ
たが、絶縁抵抗が480MΩと、500MΩに満たなか
った。この試料2のd/Dは、0.028と0.03に
満たず、シェル3とコア2の体積比は、0.19と、
0.20に満たない。また、焼成温度を1300℃とし
た試料6は、絶縁抵抗が950MΩと、高い絶縁抵抗が
得られたが、誘電率が2860と、3000に満たなか
った。この試料2のd/Dは、0.329と0.30を
越えており、シェル3とコア2の体積比は24.0と、
14.6を越えている。
On the other hand, as shown in Table 1, Sample 1 in which the firing temperature was 1050 ° C. could not be sintered, and a sample whose characteristics were to be compared could not be obtained. Firing temperature 11
Sample 2 at 00 ° C. had a high dielectric constant of 3920, but the insulation resistance was 480 MΩ, which was less than 500 MΩ. The d / D of this sample 2 was less than 0.028 and 0.03, and the volume ratio between the shell 3 and the core 2 was 0.19,
Less than 0.20. Sample 6 at a firing temperature of 1300 ° C. had a high insulation resistance of 950 MΩ, but had a dielectric constant of 2860 or less than 3000. The d / D of this sample 2 exceeded 0.329 and 0.30, and the volume ratio between the shell 3 and the core 2 was 24.0.
It is over 14.6.

【0034】[0034]

【表1】 [Table 1]

【0035】(実施例2)前記実施例1の前記表1の試
料番号4に示した積層セラミックコンデンサを得る製造
工程において、表2に示すように、1200℃の焼成温
度を保持する時間を、それぞれ0時間、0.5時間、
1.0時間、1.5時間、2.0時間、2.5時間と変
え、それ以外は前記実施例1の前記表1の試料番号4に
示した積層セラミックコンデンサと同様にして、それぞ
れ表2に試料番号7〜12として示した積層セラミック
コンデンサを得た。
(Example 2) In the manufacturing process for obtaining the multilayer ceramic capacitor shown in Sample 1 of Table 1 of Example 1 above, as shown in Table 2, the time for maintaining the firing temperature of 1200 ° C was 0 hour, 0.5 hour,
The time was changed to 1.0 hour, 1.5 hours, 2.0 hours, and 2.5 hours, and the other conditions were the same as in the case of the multilayer ceramic capacitor shown in Sample No. 4 of Table 1 of Example 1 above. The multilayer ceramic capacitors shown as sample numbers 7 to 12 in FIG. 2 were obtained.

【0036】この積層セラミックコンデンサの積層体チ
ップを構成する誘電体磁器の構造は、図1により前述し
たコア・シェル粒子構造を有する。ここで、シェル3の
平均深さdと誘電体磁器粒子1の平均径Dとを測定し、
その比d/Dを求め、さらにこの値からコア2とシェル
3の体積比を求めたところ、表2に示す通りである。
The structure of the dielectric ceramic constituting the multilayer chip of the multilayer ceramic capacitor has the core-shell particle structure described above with reference to FIG. Here, the average depth d of the shell 3 and the average diameter D of the dielectric ceramic particles 1 were measured,
The ratio d / D was determined, and the volume ratio between the core 2 and the shell 3 was determined from this value. The result is as shown in Table 2.

【0037】表2に示すように、試料8〜11を構成す
る誘電体磁器は、誘電率が3080〜3910であり、
何れも3000以上の誘電率が得られた。また、これら
の絶縁抵抗は540〜780MΩと、何れも500MΩ
以上であった。これらの試料のd/Dは、0.033〜
0.299であり、0.03〜0.30の範囲にある。
また、これら試料のシェル3とコア2の体積比は、0.
23〜14.39であり、0.2〜14.6の範囲にあ
る。
As shown in Table 2, the dielectric ceramics constituting Samples 8 to 11 have a dielectric constant of 3080 to 3910,
In each case, a dielectric constant of 3000 or more was obtained. In addition, these insulation resistances are 540 to 780 MΩ, all of which are 500 MΩ.
That was all. The d / D of these samples is between 0.033 and
0.299, which is in the range of 0.03 to 0.30.
The volume ratio between the shell 3 and the core 2 of these samples was 0.1.
23 to 14.39, which is in the range of 0.2 to 14.6.

【0038】これに対し、表2に示すように、1200
℃の焼成温度に達した後、その温度を維持せずに降温し
て焼成した試料7は、4230と高い誘電率が得られた
が、絶縁抵抗が380MΩと、500MΩに満たなかっ
た。この試料2のd/Dは、0.027と0.03に満
たず、シェル3とコア2の体積比は、0.18と、0.
2に満たない。また、1200℃の焼成温度を2.5時
間維持して焼成した試料12は、絶縁抵抗が900MΩ
と高い絶縁抵抗が得られたが、誘電率が2560と、3
000に満たなかった。この試料2のd/Dは、0.3
21と0.30を越えており、シェル3とコア2の体積
比は20.79と、14.6を越えている。
On the other hand, as shown in Table 2, 1200
After reaching the sintering temperature of ° C., the sample 7 baked by lowering the temperature without maintaining the temperature had a high dielectric constant of 4230, but the insulation resistance was 380 MΩ, which was less than 500 MΩ. The d / D of this sample 2 was less than 0.027 and 0.03, and the volume ratio between the shell 3 and the core 2 was 0.18 and 0.1.
Less than 2. In addition, Sample 12 baked at a calcination temperature of 1200 ° C. for 2.5 hours has an insulation resistance of 900 MΩ.
High insulation resistance was obtained, but the dielectric constant was 2560 and 3
Less than 000. The d / D of this sample 2 is 0.3
21 and more than 0.30, and the volume ratio of the shell 3 to the core 2 is 20.79 and more than 14.6.

【0039】[0039]

【表2】 [Table 2]

【0040】(実施例3)前記実施例3の前記表1の試
料番号4に示した積層セラミックコンデンサと同様にし
て表3の試料16に示す積層セラミックコンデンサを製
造した。また、セラミック混合物に焼結助剤として添加
するSiO2 の量を、それぞれ0.5重量%、1.0重
量%、1.5重量%、2.5重量%、3.0重量%、
5.0重量%と変え、それ以外は同様にして表3に試料
番号13〜15、試料番号16、17として示した積層
セラミックコンデンサを得た。
Example 3 A multilayer ceramic capacitor shown in Sample 16 of Table 3 was manufactured in the same manner as the multilayer ceramic capacitor shown in Sample No. 4 of Table 1 of Example 3 above. The amount of SiO 2 added as a sintering aid to the ceramic mixture was 0.5% by weight, 1.0% by weight, 1.5% by weight, 2.5% by weight, 3.0% by weight, respectively.
The multilayer ceramic capacitors shown in Table 3 as Sample Nos. 13 to 15 and Sample Nos. 16 and 17 were obtained in the same manner except that the content was changed to 5.0 wt%.

【0041】この積層セラミックコンデンサの積層体チ
ップを構成する誘電体磁器の構造は、図1により前述し
たコア・シェル粒子構造を有する。ここで、シェル3の
平均深さdと誘電体磁器粒子1の平均径Dとを測定し、
その比d/Dを求め、さらにこの値からコア2とシェル
3の体積比を求めたところ、表3に示す通りである。表
3に示した全ての試料のd/Dは、0.037〜0.2
96であり、0.03〜0.30の範囲にある。また、
これら試料のシェル3とコア2の体積比は、0.26〜
13.72であり、0.2〜14.6の範囲にある。
The structure of the dielectric ceramic constituting the multilayer chip of the multilayer ceramic capacitor has the core-shell particle structure described above with reference to FIG. Here, the average depth d of the shell 3 and the average diameter D of the dielectric ceramic particles 1 were measured,
The ratio d / D was determined, and the volume ratio between the core 2 and the shell 3 was determined from this value. The d / D of all the samples shown in Table 3 was 0.037 to 0.2.
96, which is in the range of 0.03 to 0.30. Also,
The volume ratio of the shell 3 to the core 2 of these samples is 0.26 to
13.72, which is in the range of 0.2 to 14.6.

【0042】表3に示すように、試料14〜17を構成
する誘電体磁器は、誘電率が3080〜3910であ
り、何れも3000以上の誘電率が得られた。また、こ
れらの絶縁抵抗は540〜780MΩと、何れも500
MΩ以上であった。これらの試料の粒界の厚さと誘電体
磁器粒子の粒径との比t/Dは、0.005〜0.03
6であり、0.005〜0.05の範囲にある。
As shown in Table 3, the dielectric ceramics constituting Samples 14 to 17 had a dielectric constant of 3080 to 3910, and all obtained dielectric constants of 3000 or more. Further, their insulation resistance is 540 to 780 MΩ, all of which are 500
MΩ or more. The ratio t / D between the thickness of the grain boundary of these samples and the particle size of the dielectric ceramic particles is 0.005 to 0.03.
6, which is in the range of 0.005 to 0.05.

【0043】これに対し、表3に示すように、焼結助剤
として添加したSiO2 の量が0.5重量%と少ない試
料13は、3840と高い誘電率が得られたが、絶縁抵
抗が450MΩと、500MΩに満たなかった。この試
料2のt/Dは、0.002と0.005に満たない。
また、焼結助剤として添加したSiO2 の量が5.0重
量%と多い試料18は、絶縁抵抗が800MΩと高い絶
縁抵抗が得られたが、誘電率が2790と、3000に
満たなかった。この試料2のt/Dは、0.052と
0.05を越えている。
On the other hand, as shown in Table 3, in Sample 13 in which the amount of SiO 2 added as a sintering aid was as small as 0.5% by weight, a high dielectric constant of 3840 was obtained. Was 450 MΩ, which was less than 500 MΩ. The t / D of this sample 2 is less than 0.002 and 0.005.
In addition, Sample 18 having a large amount of SiO 2 added as a sintering aid of 5.0% by weight had a high insulation resistance of 800 MΩ, but had a dielectric constant of 2790 or less than 3000. . The t / D of this sample 2 exceeds 0.052 and 0.05.

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【発明の効果】以上説明した通り、本発明による誘電体
磁器では、誘電体粒子がB温度特性に優れたコア・シェ
ル粒子構造をとるものにおいて、高い誘電率と高い絶縁
抵抗を得るという相反する要請を同時に満足することが
できるようになる。これにより、積層セラミックコンデ
ンサ等のセラミック層の薄層化に対応し、高静電容量で
且つ高信頼を備えた積層セラミックコンデンサを提供で
きるようになる。
As described above, in the dielectric porcelain according to the present invention, when the dielectric particles have a core-shell particle structure excellent in the B temperature characteristic, a high dielectric constant and a high insulation resistance are obtained. You will be able to satisfy the request at the same time. Accordingly, it is possible to provide a multilayer ceramic capacitor having high capacitance and high reliability, which can cope with a thin ceramic layer such as a multilayer ceramic capacitor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による誘電体磁器の粒子構造を模式的に
示した断面図である。
FIG. 1 is a cross-sectional view schematically showing a particle structure of a dielectric ceramic according to the present invention.

【図2】前記誘電体磁器を使用して作られた本発明によ
る積層セラミックコンデンサの例を示す部分断面斜視図
である。
FIG. 2 is a partial cross-sectional perspective view showing an example of a multilayer ceramic capacitor according to the present invention made using the dielectric ceramic.

【図3】同積層セラミック電子部品の例の積層体の各層
を分離して示した分解斜視図である。
FIG. 3 is an exploded perspective view showing layers of the multilayer body of the example of the multilayer ceramic electronic component separately.

【符号の説明】 1 磁器粒子 2 コア 3 シェル 4 粒界 12 外部電極 13 積層体 15 内部電極 16 内部電極 17 セラミック層[Description of Signs] 1 porcelain particles 2 core 3 shell 4 grain boundary 12 external electrode 13 laminate 15 internal electrode 16 internal electrode 17 ceramic layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢澤 健二 東京都台東区上野6丁目16番20号 太陽誘 電株式会社内 Fターム(参考) 4G031 AA06 AA11 BA09 BA12 CA03 CA05 5E001 AB03 AE01 AE02 AE05 AF06 5G303 AA01 AB05 AB11 CB03 CB35 CC08 DA04  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenji Yazawa 6-16-20 Ueno, Taito-ku, Tokyo Taiyo Denki Co., Ltd. F-term (reference) 4G031 AA06 AA11 BA09 BA12 CA03 CA05 5E001 AB03 AE01 AE02 AE05 AF06 5G303 AA01 AB05 AB11 CB03 CB35 CC08 DA04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 BaTiO3 を主体とし、誘電体磁器粒
子(1)が強誘電体相のコア(2)と、このコア(2)
を囲んで形成され、BaTiO3 に添加物が拡散したシ
ェル(3)とを有する誘電体磁器において、前記シェル
(3)の誘電体磁器粒子(1)の表面からの平均深さd
と誘電体磁器粒子(1)の平均径Dとの比d/Dが0.
03≦d/D≦0.3であることを特徴とする誘電体磁
器。
1. A core (2) mainly composed of BaTiO 3 and having a dielectric ceramic particle (1) having a ferroelectric phase, and the core (2).
And a shell (3) formed around BaTiO 3 and the additive diffused into BaTiO 3 , wherein the average depth d of the shell (3) from the surface of the dielectric ceramic particles (1) is d.
And the ratio d / D of the average diameter D of the dielectric ceramic particles (1) to 0.
A dielectric ceramic, wherein 03 ≦ d / D ≦ 0.3.
【請求項2】 前記シェル(3)とコア(2)との体積
比が0.20〜14.6であることを特徴とする請求項
1に記載の誘電体磁器。
2. The dielectric ceramic according to claim 1, wherein a volume ratio of the shell (3) and the core (2) is 0.20 to 14.6.
【請求項3】 隣接する前記誘電体磁器粒子(1)のシ
ェル(2)の境界部分に、ガラス成分が析出した粒界
(4)を有し、前記粒界(4)の平均厚さtと前記誘電
体磁器粒子(1)の誘電体磁器粒子(1)の平均径Dと
の比t/Dが0.005≦t/D≦0.05であること
を特徴とする請求項1または2に記載の誘電体磁器。
3. A grain boundary (4) in which a glass component is deposited at a boundary between shells (2) of adjacent dielectric ceramic particles (1), and an average thickness t of the grain boundary (4). The ratio t / D between the dielectric ceramic particles (1) and the average diameter D of the dielectric ceramic particles (1) satisfies 0.005 ≦ t / D ≦ 0.05. 3. The dielectric porcelain according to 2.
【請求項4】 セラミック層(17)と内部電極(1
5)、(16)とが交互に積層された積層体(13)
と、この積層体(13)の端部に設けられた外部電極
(12)、(12)とを有し、前記内部電極(15)、
(16)がセラミック層(17)の縁に達していること
により、積層体(13)の端面に内部電極(15)、
(16)が各々導出され、同積層体(13)の端面に導
出された内部電極(15)、(16)が前記外部電極
(12)、(12)に各々接続されている積層セラミッ
ク電子部品において、前記積層体(13)を構成するセ
ラミック層(17)が前記請求項1〜3の何れかの誘電
体磁器からなることを特徴とする積層セラミック電子部
品。
4. A ceramic layer (17) and an internal electrode (1).
A laminate (13) in which 5) and (16) are alternately laminated.
And external electrodes (12) and (12) provided at the ends of the laminate (13).
Since (16) reaches the edge of the ceramic layer (17), the internal electrodes (15),
A multilayer ceramic electronic component in which (16) is led out, and the internal electrodes (15) and (16) led out to the end face of the laminate (13) are connected to the external electrodes (12) and (12), respectively. 3. The multilayer ceramic electronic component according to claim 1, wherein the ceramic layer (17) constituting the multilayer body (13) is made of the dielectric ceramic according to claim 1.
JP2000026953A 2000-02-04 2000-02-04 Dielectric ceramic and laminated ceramic electric part Withdrawn JP2001220224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000026953A JP2001220224A (en) 2000-02-04 2000-02-04 Dielectric ceramic and laminated ceramic electric part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000026953A JP2001220224A (en) 2000-02-04 2000-02-04 Dielectric ceramic and laminated ceramic electric part

Publications (1)

Publication Number Publication Date
JP2001220224A true JP2001220224A (en) 2001-08-14

Family

ID=18552607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000026953A Withdrawn JP2001220224A (en) 2000-02-04 2000-02-04 Dielectric ceramic and laminated ceramic electric part

Country Status (1)

Country Link
JP (1) JP2001220224A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193667A (en) * 2000-12-27 2002-07-10 Kyocera Corp Dielectric ceramic and stacked electronic part
US6829136B2 (en) 2002-11-29 2004-12-07 Murata Manufacturing Co., Ltd. Dielectric ceramic, method for making the same, and monolithic ceramic capacitor
JP2004345927A (en) * 2003-05-26 2004-12-09 Murata Mfg Co Ltd Method for manufacturing irreducible dielectric ceramic, irreducible dielectric ceramic, and laminated ceramic capacitor
US6853536B2 (en) 2003-01-24 2005-02-08 Murata Manufacturing Co., Ltd. Dielectric ceramic, method of producing the same, and monolithic ceramic capacitor
US6900977B2 (en) 2003-03-03 2005-05-31 Murata Manufacturing Co., Ltd. Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP2006137647A (en) * 2004-11-15 2006-06-01 Japan Atomic Energy Agency Method for evaluating dielectric ceramic
JP2006199563A (en) * 2005-01-24 2006-08-03 Murata Mfg Co Ltd Dielectric ceramic, method of manufacturing the same and laminated ceramic capacitor
JP2008081350A (en) * 2006-09-27 2008-04-10 Kyocera Corp Dielectric ceramic, its production method, and capacitor
JP2008159939A (en) * 2006-12-25 2008-07-10 Kyocera Corp Multilayer ceramic capacitor
JP2008179493A (en) * 2007-01-23 2008-08-07 Tdk Corp Dielectric porcelain composition and electronic component
WO2008105240A1 (en) * 2007-02-26 2008-09-04 Murata Manufacturing Co., Ltd. Dielectric ceramic and layer-built ceramic capacitor
WO2010143904A2 (en) * 2009-06-12 2010-12-16 서울대학교 산학협력단 Sintered material for dielectric substance and process for manufacturing same
CN102585444A (en) * 2012-03-15 2012-07-18 深圳光启创新技术有限公司 Composite material, dielectric substrate based on composite material and manufacturing method for composite material
US8238077B2 (en) 2007-03-27 2012-08-07 Kyocera Corporation Dielectric ceramics and multilayer ceramic capacitor
CN102632655A (en) * 2012-03-15 2012-08-15 深圳光启创新技术有限公司 Medium substrate based on composite material and manufacturing method thereof
US8420559B2 (en) 2008-03-24 2013-04-16 Kyocera Corporation Multilayer ceramic capacitor
CN103289315A (en) * 2012-02-29 2013-09-11 深圳光启创新技术有限公司 Composite material, dielectric substance based on composite material and manufacturing method of composite material
JP2015226211A (en) * 2014-05-28 2015-12-14 京セラ株式会社 Piezoelectric component
CN108063051A (en) * 2016-11-09 2018-05-22 三星电机株式会社 Dielectric combination and the multilayer ceramic capacitor comprising dielectric combination
US10872726B2 (en) 2018-08-09 2020-12-22 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor including dielectric layers having improved reliability

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193667A (en) * 2000-12-27 2002-07-10 Kyocera Corp Dielectric ceramic and stacked electronic part
JP4627876B2 (en) * 2000-12-27 2011-02-09 京セラ株式会社 Dielectric porcelain and multilayer electronic components
US6829136B2 (en) 2002-11-29 2004-12-07 Murata Manufacturing Co., Ltd. Dielectric ceramic, method for making the same, and monolithic ceramic capacitor
US6853536B2 (en) 2003-01-24 2005-02-08 Murata Manufacturing Co., Ltd. Dielectric ceramic, method of producing the same, and monolithic ceramic capacitor
US6900977B2 (en) 2003-03-03 2005-05-31 Murata Manufacturing Co., Ltd. Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP2004345927A (en) * 2003-05-26 2004-12-09 Murata Mfg Co Ltd Method for manufacturing irreducible dielectric ceramic, irreducible dielectric ceramic, and laminated ceramic capacitor
JP4513278B2 (en) * 2003-05-26 2010-07-28 株式会社村田製作所 Non-reducing dielectric ceramic manufacturing method, non-reducing dielectric ceramic and multilayer ceramic capacitor
JP2006137647A (en) * 2004-11-15 2006-06-01 Japan Atomic Energy Agency Method for evaluating dielectric ceramic
JP4701364B2 (en) * 2004-11-15 2011-06-15 独立行政法人 日本原子力研究開発機構 Evaluation method of dielectric porcelain
JP2006199563A (en) * 2005-01-24 2006-08-03 Murata Mfg Co Ltd Dielectric ceramic, method of manufacturing the same and laminated ceramic capacitor
JP4720193B2 (en) * 2005-01-24 2011-07-13 株式会社村田製作所 Dielectric ceramic and manufacturing method thereof, and multilayer ceramic capacitor
JP2008081350A (en) * 2006-09-27 2008-04-10 Kyocera Corp Dielectric ceramic, its production method, and capacitor
JP2008159939A (en) * 2006-12-25 2008-07-10 Kyocera Corp Multilayer ceramic capacitor
JP2008179493A (en) * 2007-01-23 2008-08-07 Tdk Corp Dielectric porcelain composition and electronic component
TWI407465B (en) * 2007-02-26 2013-09-01 Murata Manufacturing Co Dielectric ceramics and laminated ceramic capacitors
JP5440779B2 (en) * 2007-02-26 2014-03-12 株式会社村田製作所 Dielectric ceramic and multilayer ceramic capacitor
US7796373B2 (en) 2007-02-26 2010-09-14 Murata Manufacturing Co., Ltd. Dielectric ceramic and monolithic ceramic capacitor
KR101229823B1 (en) * 2007-02-26 2013-02-05 가부시키가이샤 무라타 세이사쿠쇼 Dielectric ceramic and layer-built ceramic capacitor
WO2008105240A1 (en) * 2007-02-26 2008-09-04 Murata Manufacturing Co., Ltd. Dielectric ceramic and layer-built ceramic capacitor
US8238077B2 (en) 2007-03-27 2012-08-07 Kyocera Corporation Dielectric ceramics and multilayer ceramic capacitor
US8420559B2 (en) 2008-03-24 2013-04-16 Kyocera Corporation Multilayer ceramic capacitor
WO2010143904A3 (en) * 2009-06-12 2011-03-31 서울대학교 산학협력단 Sintered material for dielectric substance and process for manufacturing same
WO2010143904A2 (en) * 2009-06-12 2010-12-16 서울대학교 산학협력단 Sintered material for dielectric substance and process for manufacturing same
JP2010285336A (en) * 2009-06-12 2010-12-24 Seoul National Univ Research & Development Business Foundation Sintered material for dielectric substance and method for producing the same, and sintered material for dielectric substance which has core-shell fine structure and method for producing the same
CN103289315B (en) * 2012-02-29 2017-02-15 深圳光启创新技术有限公司 Composite material, dielectric substance based on composite material and manufacturing method of composite material
CN103289315A (en) * 2012-02-29 2013-09-11 深圳光启创新技术有限公司 Composite material, dielectric substance based on composite material and manufacturing method of composite material
CN102585444A (en) * 2012-03-15 2012-07-18 深圳光启创新技术有限公司 Composite material, dielectric substrate based on composite material and manufacturing method for composite material
CN102632655A (en) * 2012-03-15 2012-08-15 深圳光启创新技术有限公司 Medium substrate based on composite material and manufacturing method thereof
JP2015226211A (en) * 2014-05-28 2015-12-14 京セラ株式会社 Piezoelectric component
CN108063051A (en) * 2016-11-09 2018-05-22 三星电机株式会社 Dielectric combination and the multilayer ceramic capacitor comprising dielectric combination
USRE49923E1 (en) 2016-11-09 2024-04-16 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic capacitor containing the same
US10872726B2 (en) 2018-08-09 2020-12-22 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor including dielectric layers having improved reliability
US10872727B2 (en) 2018-08-09 2020-12-22 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor including dielectric layers having improved reliability

Similar Documents

Publication Publication Date Title
JP2001240466A (en) Porcelain of dielectrics and electronic parts of laminated ceramics
JP2001220224A (en) Dielectric ceramic and laminated ceramic electric part
KR100278416B1 (en) Dielectric Ceramic, Method for Producing the Same, Laminated Ceramic Electronic Element, and Method for Producing the Same
JPH11273986A (en) Dielectric ceramic and its manufacture and laminated ceramic electronic part and its manufacture
JPH07211132A (en) Conductive paste, and manufacture of laminated ceramic capacitor using same
JP2006111466A (en) Dielectric ceramic composition and electronic component
JP2012182355A (en) Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
JP2762427B2 (en) Multilayer ceramic chip capacitors
US20060171099A1 (en) Electrode paste for thin nickel electrodes in multilayer ceramic capacitors and finished capacitor containing same
KR100374471B1 (en) Dielectric Ceramic Material and Monolithic Ceramic Electronic Element
JP2000340450A (en) Laminated ceramic capacitor and manufacture thereof
TWI245750B (en) Method for producing raw material powder for dielectric ceramic, dielectric ceramic, and multiplayer ceramic capacitor
JP4721576B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2872838B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2004096010A (en) Laminated ceramic electronic component fabricating process
WO2011162044A1 (en) Dielectric ceramic composition and multilayer ceramic electronic component
JP4385726B2 (en) Conductive paste and method for producing multilayer ceramic capacitor using the same
JP2005101317A (en) Ceramic electronic component and its manufacturing method
JP4048808B2 (en) Dielectric ceramic composition and multilayer ceramic electronic component
JP3130214B2 (en) Multilayer ceramic chip capacitors
JP3146966B2 (en) Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same
JP2003318060A (en) Manufacturing method of laminated electronic component
JP2002305125A (en) Capacitor array
JP2010212503A (en) Laminated ceramic capacitor
JP2004179349A (en) Laminated electronic component and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090616