JP3146966B2 - Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same - Google Patents

Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same

Info

Publication number
JP3146966B2
JP3146966B2 JP05180096A JP5180096A JP3146966B2 JP 3146966 B2 JP3146966 B2 JP 3146966B2 JP 05180096 A JP05180096 A JP 05180096A JP 5180096 A JP5180096 A JP 5180096A JP 3146966 B2 JP3146966 B2 JP 3146966B2
Authority
JP
Japan
Prior art keywords
ceramic
particles
multilayer ceramic
laminate
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05180096A
Other languages
Japanese (ja)
Other versions
JPH09241074A (en
Inventor
信之 和田
秀彦 田中
幸生 浜地
晴信 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP05180096A priority Critical patent/JP3146966B2/en
Priority to DE69701294T priority patent/DE69701294T2/en
Priority to EP97103627A priority patent/EP0794542B1/en
Priority to CN97103131A priority patent/CN1097833C/en
Priority to US08/813,327 priority patent/US5757610A/en
Priority to KR1019970007809A priority patent/KR100242590B1/en
Publication of JPH09241074A publication Critical patent/JPH09241074A/en
Application granted granted Critical
Publication of JP3146966B2 publication Critical patent/JP3146966B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Inorganic Insulating Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非還元性誘電体セラ
ミック、及びそれを用いた積層セラミックコンデンサや
多層セラミック基板などの積層セラミック電子部品に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-reducing dielectric ceramic and a multilayer ceramic electronic component using the same, such as a multilayer ceramic capacitor or a multilayer ceramic substrate.

【0002】[0002]

【従来の技術】積層セラミック電子部品の小型化及び低
コスト化が進んでおり、これまでもセラミック層の薄層
化及び内部電極の卑金属化が進められている。例えば、
積層セラミック電子部品の1つである積層セラミックコ
ンデンサにおいては、セラミック層の厚みは5μm近く
まで薄層化が進行し、内部電極もCu、Niなどが使用
されているのが現状である。
2. Description of the Related Art Multilayer ceramic electronic components have been reduced in size and cost, and ceramic layers have been made thinner and internal electrodes have been made base metal. For example,
In a multilayer ceramic capacitor which is one of the multilayer ceramic electronic components, the thickness of the ceramic layer has been reduced to near 5 μm, and at present, Cu, Ni or the like is used for the internal electrodes.

【0003】ところが、このようにセラミック層が薄層
化してくるとセラミック層にかかる電界が高くなり、電
界による誘電率の変化が大きい誘電体では使用上問題が
生じる。これを解決する誘電体として、コアシェル構造
を有するセラミックが提案され使用されてきている。こ
のコアシェル構造は、一つの焼結体粒子内において、中
心部のコアと周辺部のシェルで結晶構造、組成が異なっ
た材料であり、誘電率の電界特性、温度特性に優れた材
料である。そして、このコアシェル構造は、セラミック
の焼結の過程で粒子表面から必要成分を粒子内に拡散さ
せて得ている。
However, when the ceramic layer becomes thinner as described above, the electric field applied to the ceramic layer increases, and a problem arises in the use of a dielectric whose dielectric constant is largely changed by the electric field. Ceramics having a core-shell structure have been proposed and used as dielectrics to solve this problem. The core-shell structure is a material having a different crystal structure and composition between the core at the center and the shell at the periphery in one sintered body particle, and is excellent in electric field characteristics of dielectric constant and temperature characteristics. The core-shell structure is obtained by diffusing necessary components from the particle surface into the particles in the course of sintering the ceramic.

【0004】又、内部電極にCuやNiを用いた場合、
電極金属が酸化しない条件で焼成すると、一般にセラミ
ック自体も還元され、絶縁性を保てなくなる。このた
め、還元されない誘電体材料として、たとえばチタン酸
バリウムの場合では組成を化学量論比から一般式ABO
3 におけるAサイト側にずらしたり、又はアクセプター
元素を添加するなどした非還元性材料が使用されてい
る。
When Cu or Ni is used for the internal electrode,
When firing is performed under conditions where the electrode metal is not oxidized, the ceramic itself is generally reduced and the insulating property cannot be maintained. Therefore, for example, in the case of barium titanate as a non-reduced dielectric material, the composition is determined from the stoichiometric ratio by the general formula
A non-reducing material is used which is shifted to the A site side in 3 , or an acceptor element is added.

【0005】[0005]

【発明が解決しようとする課題】上述の通り、従来のコ
アシェル構造を有する誘電体は、焼結過程で粒子表面か
らある種の成分を拡散させて焼結させたものである。し
たがって、原料の粒子径を細かくすると、シェルを形成
する成分が粒子の中心まで拡散してしまってコアシェル
構造を示さなくなり、コアシェル構造の特徴が失われ
る。現状ではコアシェル構造が得られる焼結体の粒子径
は最小で1μm程度である。
As described above, a conventional dielectric having a core-shell structure is obtained by diffusing certain components from the particle surface in the sintering process and sintering them. Therefore, when the particle diameter of the raw material is reduced, the components forming the shell diffuse to the center of the particle, so that the core-shell structure is not exhibited, and the characteristics of the core-shell structure are lost. At present, the particle size of the sintered body from which a core-shell structure is obtained is at least about 1 μm.

【0006】したがって、このようなコアシェル構造を
有する誘電体を積層セラミック電子部品のセラミック層
とした場合には、セラミック層の厚さが5μm以下の薄
層になると、層内の厚さ方向に存在する粒子の数が少な
くなり、積層セラミック電子部品の信頼性が低下すると
いう問題点を有していた。このため、積層セラミック電
子部品のセラミック層の薄層化に限界があった。
Therefore, when a dielectric having such a core-shell structure is used as a ceramic layer of a multilayer ceramic electronic component, if the thickness of the ceramic layer becomes as thin as 5 μm or less, it is present in the thickness direction in the layer. However, there is a problem that the number of particles to be reduced is reduced and the reliability of the multilayer ceramic electronic component is reduced. For this reason, there has been a limit in making the ceramic layer of the multilayer ceramic electronic component thinner.

【0007】そこで、本発明の目的は、焼結体の粒子径
の小さい、コアシェル構造でない構造を持った、誘電率
の温度特性及び電界特性に優れた非還元性誘電体セラミ
ックを提供し、さらに厚さ3μm以下のような薄いセラ
ミック層からなる積層セラミック電子部品を提供するこ
とにある。
Accordingly, an object of the present invention is to provide a non-reducing dielectric ceramic having a sintered body having a small particle size, a structure other than a core-shell structure, and having excellent temperature characteristics and electric field characteristics of a dielectric constant. An object of the present invention is to provide a multilayer ceramic electronic component comprising a thin ceramic layer having a thickness of 3 μm or less.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の非還元性誘電体セラミックは、最大粒子径
が0.5μm以下、平均粒子径が0.1〜0.3μmで
表される複数の粒子からなる焼結体であって、前記複数
の粒子は、個々の粒子内で一様な組成及び結晶系を示
し、かつ互いの粒子間で同一の組成及び結晶系を示して
いることを特徴とする。
In order to achieve the above object, the non-reducing dielectric ceramic of the present invention has a maximum particle diameter of 0.5 μm or less and an average particle diameter of 0.1 to 0.3 μm. A plurality of particles, wherein the plurality of particles have a uniform composition and crystal system in each particle, and have the same composition and crystal system among each other. It is characterized by the following.

【0009】又、本発明の非還元性誘電体セラミック
は、前記粒子の粒界に前記粒子とは構成成分が異なる厚
さ5nm以下の粒界相が存在することを特徴とする。
[0009] The non-reducing dielectric ceramic of the present invention is characterized in that a grain boundary phase having a thickness of 5 nm or less having a different component from that of the particles is present at the grain boundaries of the particles.

【0010】又、本発明の積層セラミック電子部品は、
前記非還元性誘電体セラミックをセラミック層の積層体
とし、該積層体のセラミック層の間に卑金属からなる導
体が形成されていることを特徴とする。
Further, the multilayer ceramic electronic component of the present invention comprises:
The non-reducible dielectric ceramic is a laminate of ceramic layers, and a conductor made of a base metal is formed between the ceramic layers of the laminate.

【0011】又、本発明の積層セラミック電子部品は、
前記非還元性誘電体セラミックをセラミック層の積層体
とし、該積層体のセラミック層の間に卑金属からなる内
部導体が形成されており、前記前記積層体の表面に、前
記内部導体と電気接続する卑金属からなる外部導体が形
成されていることを特徴とする。
Further, the multilayer ceramic electronic component of the present invention comprises:
The non-reducing dielectric ceramic is a laminate of ceramic layers, and an internal conductor made of a base metal is formed between the ceramic layers of the laminate, and the surface of the laminate is electrically connected to the internal conductor. An outer conductor made of a base metal is formed.

【0012】上述の通り、本発明の非還元性誘電体セラ
ミックは、焼結体の平均粒子径が0.1〜0.3μmと
小さいため、セラミック層の厚さが5μm以下のような
薄層になっても、層内の厚さ方向に多くの粒子が積み重
なることになり、セラミック層の信頼性が高まる。
As described above, in the non-reducing dielectric ceramic of the present invention, the average particle diameter of the sintered body is as small as 0.1 to 0.3 μm, so that the thickness of the ceramic layer is 5 μm or less. However, many particles are stacked in the thickness direction in the layer, and the reliability of the ceramic layer is improved.

【0013】又、焼結体の個々の粒子内では一様な組成
及び結晶系であるため、焼成過程でセラミックの構造が
変化せず、安定している。又、粒子径が小さいことによ
ってセラミックの誘電性が抑制され、コアシェル構造の
セラミック同様の優れた電界特性及び温度特性を示す。
In addition, since the individual particles of the sintered body have a uniform composition and crystal system, the structure of the ceramic does not change during the firing process and is stable. Further, since the particle diameter is small, the dielectric properties of the ceramic are suppressed, and excellent electric field characteristics and temperature characteristics similar to those of a ceramic having a core-shell structure are exhibited.

【0014】さらに、焼結体の粒子の粒界に、粒子とは
構成成分が異なる厚さ5.0nm以下の粒界相が存在す
る場合には、この粒界相に電界が集中し、粒子自体にか
かる電界が抑制されるため、粒子の信頼性が向上する。
粒界では酸素の拡散速度が早いため、信頼性不良の要因
である酸素欠陥への酸素拡散も十分に起こり、粒界に電
界集中が起こっても信頼性が低下することはない。しか
しながら、粒界相が5nm以上になると、粒子と比較し
て誘電率の低い粒界相の影響が大となり、セラミックと
しての誘電率の低下が大きくなり好ましくない。
Further, when there is a grain boundary phase having a thickness of 5.0 nm or less having a different component from the particles at the grain boundary of the particles of the sintered body, an electric field is concentrated on the grain boundary phase, and Since the electric field applied to itself is suppressed, the reliability of the particles is improved.
Since the diffusion speed of oxygen is high at the grain boundary, oxygen diffusion to oxygen defects, which is a cause of poor reliability, also occurs sufficiently, and reliability does not decrease even if electric field concentration occurs at the grain boundary. However, when the grain boundary phase is 5 nm or more, the influence of the grain boundary phase having a lower dielectric constant than that of the particles becomes large, and the dielectric constant of the ceramic is greatly reduced.

【0015】又、3個以上の粒子間に存在する、いわゆ
る3重点に粒界相とは構成成分が異なる相が存在して
も、電界方向に対して粒子に直列に存在する確率が少な
いため、誘電特性に与える影響はなく、問題ない。
Further, even if there is a phase having a component different from the grain boundary phase at the so-called triple point existing between three or more particles, there is little probability that the particles exist in series in the electric field direction. There is no effect on the dielectric properties and there is no problem.

【0016】そして、上記非還元性誘電体セラミックを
セラミック層とし、内部導体及び外部導体に卑金属を用
いることにより、導体コストの低い安価な積層セラミッ
ク電子部品が得られる。
By using the non-reducing dielectric ceramic as a ceramic layer and using a base metal for the inner conductor and the outer conductor, an inexpensive multilayer ceramic electronic component with low conductor cost can be obtained.

【0017】[0017]

【発明の実施の形態】本発明の非還元性誘電体セラミッ
ク及びそれを用いた積層セラミック電子部品について、
積層セラミックコンデンサを例に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The non-reducing dielectric ceramic of the present invention and a multilayer ceramic electronic component using the same are described below.
Description will be made by taking a multilayer ceramic capacitor as an example.

【0018】積層セラミックコンデンサは、図1に示す
ように、内部導体としての内部電極3を介在して複数枚
のセラミック層としての誘電体セラミック2を積層して
得られた積層体1の両端面に外部導体としての外部電極
5及びニッケル、銅などのめっき被膜6、はんだ, 錫な
どのめっき被膜7が形成され、直方体形状のチップタイ
プとされる。
As shown in FIG. 1, the multilayer ceramic capacitor has both ends of a laminated body 1 obtained by laminating a plurality of dielectric ceramics 2 as ceramic layers via an internal electrode 3 as an internal conductor. An external electrode 5 as an external conductor, a plating film 6 of nickel, copper, or the like, and a plating film 7 of solder, tin, or the like are formed thereon, thereby obtaining a chip having a rectangular parallelepiped shape.

【0019】次に、この積層セラミックコンデンサの製
造方法を以下に説明する。まず、チタン酸バリウムなど
の主成分と特性改質などを目的とした添加剤を出発原料
とし、これらを所定量秤量し湿式混合して混合粉末を得
る。その後、この粉末に有機バインダと溶媒を添加して
スラリー化した後、このスラリーを用いてセラミックグ
リーンシートを作製する。その後、このセラミックグリ
ーンシート上に、ニッケル、銅などの卑金属からなる内
部電極層を形成する。なお、内部電極層を形成する方法
としては、スクリーン印刷法、蒸着法、めっき法などが
ある。
Next, a method of manufacturing the multilayer ceramic capacitor will be described below. First, a main component such as barium titanate and an additive for the purpose of property modification are used as starting materials, and a predetermined amount thereof is weighed and wet-mixed to obtain a mixed powder. Thereafter, an organic binder and a solvent are added to the powder to form a slurry, and a ceramic green sheet is produced using the slurry. Thereafter, an internal electrode layer made of a base metal such as nickel or copper is formed on the ceramic green sheet. In addition, as a method of forming the internal electrode layer, there are a screen printing method, an evaporation method, a plating method, and the like.

【0020】次に、内部電極層を形成したセラミックグ
リーンシートを必要枚数積層し、内部電極層を有しない
セラミックグリーンシートで挟んで圧着し、積層体とす
る。その後、還元性雰囲気中、所定の温度で焼成し、積
層体1を形成する。
Next, a required number of ceramic green sheets having internal electrode layers formed thereon are laminated, sandwiched by ceramic green sheets having no internal electrode layers, and pressed to form a laminate. Thereafter, firing is performed at a predetermined temperature in a reducing atmosphere to form the laminate 1.

【0021】次に、積層体1の両端面に、内部電極3と
接続するように、外部電極5を形成する。この外部電極
5の材料としては、内部電極3と同じ材料を使用するこ
とができる。又、銀、パラジウム、銀−パラジウム合
金、銅、銅合金などが使用可能であり、又、これらの金
属粉末にB2 3 −SiO2 −BaO系ガラス、Li2
O−SiO2 −BaO系ガラスなどのガラスフリットを
添加したものも使用されるが、積層セラミックコンデン
サの使用用途、使用場所などを考慮に入れて、適当な材
料が選択される。
Next, external electrodes 5 are formed on both end faces of the laminate 1 so as to be connected to the internal electrodes 3. As the material of the external electrode 5, the same material as that of the internal electrode 3 can be used. Also, silver, palladium, silver - palladium alloys, copper, copper alloy is available and also these metal powders into B 2 O 3 -SiO 2 -BaO-based glass, Li 2
Although a glass frit such as an O—SiO 2 —BaO-based glass is also used, an appropriate material is selected in consideration of a use application, a use place, and the like of the multilayer ceramic capacitor.

【0022】なお、外部電極5は、通常、材料となる金
属粉末ペーストを焼成後の積層体1に塗布して焼き付け
ることで通常得るが、焼成前の積層体に塗布して積層体
の焼成と同時に形成してもよい。
The external electrode 5 is usually obtained by applying a metal powder paste as a material to the fired laminate 1 and baking it. However, the external electrode 5 is applied to the fired laminate before firing. They may be formed simultaneously.

【0023】その後、外部電極5上にニッケル、銅など
のめっきを施し、めっき被膜6を形成する。最後に、こ
のめっき被膜6の上にはんだ, 錫などのめっき被膜7を
形成し、チップ型の積層セラミックコンデンサを得る。
Thereafter, plating of nickel, copper or the like is performed on the external electrode 5 to form a plating film 6. Finally, a plating film 7 such as solder or tin is formed on the plating film 6 to obtain a chip-type multilayer ceramic capacitor.

【0024】(実施例)まず、表1に示す種類と割合
(モル部)の出発原料に、適当量の有機溶媒を加え、2
mmφのジルコニアの粉砕メディアを有する樹脂製ポッ
ト内で混合粉砕した。なお、表1において、試料番号1
〜7が本発明の実施例である。そして、試料番号毎の出
発原料の詳細は次の通りである。
(Example) First, an appropriate amount of an organic solvent was added to the starting materials having the types and ratios (molar parts) shown in Table 1 to obtain a starting material.
The mixture was pulverized in a resin pot having a zirconia pulverization medium of mmφ. In Table 1, sample number 1
7 are examples of the present invention. Details of the starting material for each sample number are as follows.

【0025】[0025]

【表1】 [Table 1]

【0026】即ち、試料番号1では、水熱合成法で作製
した平均粒径0.1μmのチタン酸バリウム(BaTi
3 )と、混合粉砕時の有機溶媒に可溶のMn化合物を
出発原料とした。
That is, in sample No. 1, barium titanate (BaTi) having an average particle diameter of 0.1 μm manufactured by a hydrothermal synthesis method was used.
O 3 ) and a Mn compound soluble in an organic solvent during mixing and pulverization were used as starting materials.

【0027】又、試料番号2では、加水分解法で作製し
た後仮焼した平均粒径0.2μmのチタン酸バリウム
(BaTiO3 )と、混合粉砕時の有機溶媒に可溶のM
n化合物及びMg化合物を出発原料とした。
In sample No. 2, barium titanate (BaTiO 3 ) having an average particle size of 0.2 μm prepared by hydrolysis and calcined was mixed with an organic solvent soluble in an organic solvent at the time of mixing and pulverization.
The n compound and the Mg compound were used as starting materials.

【0028】又、試料番号3では、水熱合成法で作製し
た平均粒径0.3μmのチタン酸バリウム(BaTiO
3 )と、微粉砕した炭酸マンガンを出発原料とした。
In sample No. 3, barium titanate (BaTiO 3) having an average particle diameter of 0.3 μm manufactured by a hydrothermal synthesis method was used.
3 ) and pulverized manganese carbonate was used as a starting material.

【0029】又、試料番号4では加水分解法で作製した
チタン酸バリウム(BaTiO3 )とチタン酸カルシウ
ム(CaTiO3 )を9/1のモル比になるように混合
し950℃で仮焼して得た平均粒径0.2μmの粉末
と、混合粉砕時の有機溶媒に可溶のMn化合物を出発原
料とした。
In sample No. 4, barium titanate (BaTiO 3 ) and calcium titanate (CaTiO 3 ) prepared by a hydrolysis method were mixed at a molar ratio of 9/1 and calcined at 950 ° C. The obtained powder having an average particle size of 0.2 μm and a Mn compound soluble in an organic solvent at the time of mixing and pulverization were used as starting materials.

【0030】又、試料番号5では、水熱合成法で作製し
た平均粒径0.2μmのチタン酸バリウム(BaTiO
3 )と、微粉砕した炭酸マンガンと、微粉砕したLi−
Ba−Siガラス粉末を出発原料とした。
In sample No. 5, barium titanate (BaTiO) having an average particle size of 0.2 μm produced by a hydrothermal synthesis method was used.
3 ), finely ground manganese carbonate, and finely ground Li-
Ba-Si glass powder was used as a starting material.

【0031】又、試料番号6では、炭酸バリウム、酸化
チタン、酸化ジルコニウムをBa/(Ti+Zr)のモ
ル比が1であってTi/Zrが7/3のモル比になるよ
うに混合し1100℃で仮焼した後粉砕して作製した、
固相法による平均粒径0.25μmのチタン酸ジルコン
酸バリウム{Ba(Zr,Ti)O3 }と、微粉砕した
炭酸マンガンと、混合粉砕時の有機溶媒に可溶のLi−
Ba−Si化合物を出発原料とした。
In sample No. 6, barium carbonate, titanium oxide and zirconium oxide were mixed so that the molar ratio of Ba / (Ti + Zr) was 1 and the molar ratio of Ti / Zr was 7/3, and 1100 ° C. And calcined and then crushed.
Barium zirconate titanate {Ba (Zr, Ti) O 3 } having an average particle size of 0.25 μm by solid phase method, finely pulverized manganese carbonate, and Li−
A Ba-Si compound was used as a starting material.

【0032】又、試料番号7では、炭酸バリウムと酸化
チタンをBa/Tiのモル比が1となるように混合し仮
焼した後粉砕して作製した、固相法による平均粒径0.
3μmのチタン酸バリウム(BaTiO3 )と、混合粉
砕時の有機溶媒に可溶のMn化合物及びB−Ba−Si
化合物を出発原料とした。
In sample No. 7, barium carbonate and titanium oxide were mixed so that the molar ratio of Ba / Ti became 1, calcined, and then pulverized.
3 μm of barium titanate (BaTiO 3 ), a Mn compound soluble in an organic solvent during mixing and pulverization, and B-Ba-Si
Compound was used as starting material.

【0033】なお、上記有機溶剤に可溶の化合物とは、
それぞれ金属のアルコキシド、アセチルアセトネート又
は金属石鹸のことである。
The compound soluble in the organic solvent is
These are metal alkoxides, acetylacetonates or metal soaps, respectively.

【0034】次に、この混合粉砕物に有機バインダを所
定量添加しスラリーを作製し、ドクターブレードにより
有機フィルム上に焼成後2μmになるような薄層のセラ
ミックグリーンシートを得た。
Next, a predetermined amount of an organic binder was added to the mixed and pulverized product to prepare a slurry, and a thin ceramic green sheet having a thickness of 2 μm after firing on an organic film by a doctor blade was obtained.

【0035】次に、得られたセラミックグリーンシート
上にNiを主体とした導電層を印刷法で形成した。その
後、導電層が形成されたセラミックグリーンシートを導
電層が引き出される側が互い違いとなるように6枚積層
し、内部電極を有しないセラミックグリーンシートに挟
んで、積層体とした。
Next, a conductive layer mainly composed of Ni was formed on the obtained ceramic green sheet by a printing method. Thereafter, six ceramic green sheets on which the conductive layers were formed were stacked such that the sides from which the conductive layers were drawn out were alternated, and sandwiched between ceramic green sheets having no internal electrodes to form a laminate.

【0036】その後、この積層体をN2 雰囲気中で加熱
してバインダを飛ばした後、還元雰囲気中で表1に示す
焼成温度で焼成してセラミック焼結体を得た。
Thereafter, the laminate was heated in an N 2 atmosphere to remove the binder, and then fired at a firing temperature shown in Table 1 in a reducing atmosphere to obtain a ceramic sintered body.

【0037】そして、最後にガラスフリットを添加した
Agペーストを塗布して焼き付けて、内部電極と電気的
に接続された外部電極を形成して、非還元性誘電体セラ
ミックをセラミック層とした積層セラミックコンデンサ
を完成させた。
Finally, an Ag paste to which glass frit is added is applied and baked to form an external electrode electrically connected to the internal electrode, thereby forming a multilayer ceramic using a non-reducible dielectric ceramic as a ceramic layer. The capacitor was completed.

【0038】(比較例)まず、表1に示す種類と割合
(モル部)の出発原料に、適当量の有機溶媒を加え、2
mmφのジルコニアの粉砕メディアを含む樹脂ポット内
で混合粉砕した。なお、表1において、試料番号8〜1
0が比較例である。そして、試料番号毎の出発原料の詳
細は次の通りである。
(Comparative Example) First, an appropriate amount of an organic solvent was added to the starting materials having the types and ratios (molar parts) shown in Table 1,
The mixture was pulverized in a resin pot containing a zirconia pulverization medium of mmφ. In Table 1, sample numbers 8 to 1
0 is a comparative example. Details of the starting material for each sample number are as follows.

【0039】即ち、試料番号8では、試料番号1と同じ
出発原料を用いた。又、試料番号9では、試料番号5と
同じ出発原料を用いた。さらに、試料番号10では、試
料番号7と同種の出発原料を用いたが、B−Ba−Si
化合物の量を試料番号7と異ならせた。
That is, in Sample No. 8, the same starting material as Sample No. 1 was used. In sample number 9, the same starting material as sample number 5 was used. Further, in Sample No. 10, the same starting material as Sample No. 7 was used, but B-Ba-Si
The amount of compound was different from sample no.

【0040】その後、表1に示す焼成温度で、その他は
実施例と同様にして、非還元性誘電体セラミックをセラ
ミック層とした積層セラミックコンデンサを完成させ
た。
Thereafter, a multilayer ceramic capacitor using a non-reducing dielectric ceramic as a ceramic layer was completed at the firing temperatures shown in Table 1 and otherwise in the same manner as in the example.

【0041】次に、得られた実施例及び比較例の各積層
セラミックコンデンサについて、セラミック層の粒子及
び粒界を観察した。即ち、積層セラミックコンデンサを
破断して熱エッチングした面を走査型電子顕微鏡で観察
し、写真から粒子径を求めた。又、粒界を透過型電子顕
微鏡で観察し、粒界相の有無とその厚みを求めた。以上
の結果を表1に示す。
Next, with respect to each of the obtained multilayer ceramic capacitors of Examples and Comparative Examples, the particles and grain boundaries of the ceramic layers were observed. That is, the surface of the multilayer ceramic capacitor that had been broken and thermally etched was observed with a scanning electron microscope, and the particle size was determined from the photograph. Further, the grain boundaries were observed with a transmission electron microscope to determine the presence or absence of a grain boundary phase and its thickness. Table 1 shows the above results.

【0042】又、セラミック層の粒子及び粒界の組成を
透過型分析電子顕微鏡で分析したところ、個々の粒子内
で一様な組成を有し、かつ粒子間で同一の組成を有して
おり、又、粒子と粒界相では構成成分が異なることが確
認された。又、セラミックの粒子の構造を透過型電子顕
微鏡で観察したところ、個々の粒子内ではコアシェルな
どの構造を示さず一様な結晶構造を有しかつ粒子間で同
一の結晶構造を有していることが確認された。
When the composition of the particles and the grain boundaries of the ceramic layer was analyzed by a transmission analysis electron microscope, it was found that the composition had a uniform composition within each particle and the same composition among the particles. It was also confirmed that the constituent components differed between the particles and the grain boundary phase. Also, when the structure of the ceramic particles is observed with a transmission electron microscope, the individual particles have a uniform crystal structure without showing a core-shell structure or the like, and have the same crystal structure among the particles. It was confirmed that.

【0043】次に、得られた積層セラミックコンデンサ
の電気的特性を求めた。即ち、静電容量及び誘電損失を
周波数1kHz、電圧1Vrms、温度25℃で測定
し、静電容量から誘電率を算出した。又、25℃で10
Vの直流電圧を印加して絶縁抵抗を測定し、比抵抗を求
めた。又、温度変化に対する静電容量(即ち、誘電率)
の変化率を、25℃を基準とした85℃及び125℃で
の変化率として求めた。さらに、3kV/mmの直流バ
イアスを印加したときの静電容量(即ち、誘電率)の変
化率を、バイアス印加なしを基準として求めた。これら
の結果を表2に示す。
Next, the electrical characteristics of the obtained multilayer ceramic capacitor were determined. That is, the capacitance and the dielectric loss were measured at a frequency of 1 kHz, a voltage of 1 Vrms, and a temperature of 25 ° C., and the dielectric constant was calculated from the capacitance. Also, at 25 ° C, 10
A DC voltage of V was applied, the insulation resistance was measured, and the specific resistance was determined. Also, capacitance against temperature change (ie, dielectric constant)
Was determined as the rate of change at 85 ° C. and 125 ° C. based on 25 ° C. Further, the rate of change of the capacitance (that is, the dielectric constant) when a DC bias of 3 kV / mm was applied was determined on the basis of no bias application. Table 2 shows the results.

【0044】[0044]

【表2】 [Table 2]

【0045】以上の観察及び分析結果から明らかなよう
に、本発明の実施例のセラミック誘電体は、最大粒子径
が0.5μm以下、平均粒子径が0.1〜0.3μmで
あって、個々の粒子内で一様な組成及び結晶系を示して
いる。又、試料番号5〜7においては、粒子とは構成成
分が異なる厚さ0.5〜5.0nmの粒界相を有してい
る。
As is clear from the above observation and analysis results, the ceramic dielectric of the example of the present invention has a maximum particle diameter of 0.5 μm or less , an average particle diameter of 0.1 to 0.3 μm, It shows a uniform composition and crystal system within the individual particles. Further, Sample Nos. 5 to 7 have a grain boundary phase having a thickness of 0.5 to 5.0 nm which is different from the constituent components of the particles.

【0046】そして、このような構造を有する本発明の
非還元性誘電体セラミックは、積層セラミックコンデン
サとしたときに、125℃での誘電率の変化率が15%
未満と、X7R特性を満足する誘電率温度特性を示す。
又、直流バイアスを印加したときの誘電率変化は20%
未満と小さく良好である。
When the non-reducing dielectric ceramic of the present invention having such a structure is used as a multilayer ceramic capacitor, the change rate of the dielectric constant at 125 ° C. is 15%.
When the value is less than the above, the dielectric constant-temperature characteristic satisfying the X7R characteristic is exhibited.
The change in dielectric constant when a DC bias is applied is 20%.
Less than and good.

【0047】これに対して、試料番号8に示すように、
最大粒子径が0.5μmを超えるときは、誘電損失が5
%を超えて大きくなり、温度による誘電率の変化率が1
5%を超えて大きくなり、直流バイアスを印加したとき
の誘電率の変化率が20%を超えて大きくなり、好まし
くない。又、試料番号9に示すように、平均粒子径が
0.3μmを超え最大粒子径が0.5μmを超えるとき
は、誘電損失が5%を超えて大きくなり、温度による誘
電率の変化率が15%を超えて大きくなり、直流バイア
スを印加したときの誘電率の変化率が20%を超えて大
きくなり、好ましくない。さらに、試料番号10に示す
ように、粒界相の厚さが5.0nmを超える場合は、温
度による誘電率の変化率、直流バイアスを印加したとき
の誘電率の変化率には問題ないが、誘電率が低下するた
め好ましくない。
On the other hand, as shown in sample 8,
When the maximum particle size exceeds 0.5 μm, the dielectric loss is 5
%, And the rate of change of the dielectric constant with temperature is 1
The dielectric constant becomes larger than 5%, and the change rate of the dielectric constant when a DC bias is applied becomes larger than 20%, which is not preferable. Further, as shown in Sample No. 9, when the average particle diameter exceeds 0.3 μm and the maximum particle diameter exceeds 0.5 μm, the dielectric loss increases beyond 5%, and the rate of change of the dielectric constant with temperature increases. This is undesirably larger than 15%, and the rate of change of the dielectric constant when a DC bias is applied is larger than 20%. Further, as shown in Sample No. 10, when the thickness of the grain boundary phase exceeds 5.0 nm, there is no problem in the rate of change of the dielectric constant with temperature and the rate of change of the dielectric constant when a DC bias is applied. This is not preferable because the dielectric constant decreases.

【0048】又、上記各試料について、温度150℃で
直流電圧18Vを1000時間連続印加する信頼性試験
を行なったところ、本発明の実施例品は絶縁抵抗などの
特性の劣化は見られなかった。これに対して、比較例の
試料番号8、9のものは、粒子径が大きいために、絶縁
抵抗が劣化するものが見られ信頼性に問題があった。な
お、上記実施例では、混合粉砕時に有機溶媒を使用して
いるため、有機溶媒に可溶性の化合物として、各金属の
アルコキシド、アセチルアセトネート又は金属石鹸を用
いているが、混合粉砕時に溶媒として水を用いた場合に
は、硝酸塩、酢酸塩、硼酸塩、塩化物などの水溶性化合
物を適宜用いることができる。
When a reliability test was conducted on each of the above-mentioned samples by continuously applying a DC voltage of 18 V at a temperature of 150 ° C. for 1000 hours, no deterioration in characteristics such as insulation resistance was observed in the products of the examples of the present invention. . On the other hand, in the samples of Comparative Examples 8 and 9, the insulation resistance was deteriorated due to the large particle diameter, and there was a problem in reliability. In the above example, since an organic solvent is used during mixing and pulverization, alkoxide, acetylacetonate or metal soap of each metal is used as a compound soluble in the organic solvent. When is used, water-soluble compounds such as nitrates, acetates, borates, and chlorides can be used as appropriate.

【0049】又、上記実施例では還元雰囲気中で焼成し
ているが、空気中雰囲気で焼成するとセラミックの粒子
成長が進行し、特に、温度による誘電率の変化率及び直
流バイアス印加時の誘電率の変化率が大きくなり、好ま
しくない。
In the above embodiment, firing is performed in a reducing atmosphere. However, firing in an air atmosphere promotes ceramic particle growth. In particular, the rate of change of the dielectric constant with temperature and the dielectric constant when a DC bias is applied are increased. Is large, which is not preferable.

【0050】又、上記実施例では、外部電極としてAg
を用いているが、外部電極に卑金属を用いる方が、卑金
属である内部電極との電気的接合性に優れたものとな
り、より好ましい。
In the above embodiment, Ag was used as the external electrode.
However, it is more preferable to use a base metal for the external electrode, since the electrical connection with the internal electrode, which is a base metal, is excellent.

【0051】又、上記実施例において試料番号1〜3に
ついては、BaTiO3 のBaとTiのモル比を化学量
論比からずらした組成のものについても確認したが、焼
結性及び焼結体特性に特に大きな差は認められなかっ
た。
In the above examples, samples Nos. 1 to 3 were also confirmed to have a composition in which the molar ratio of Ba: Ti of BaTiO 3 was shifted from the stoichiometric ratio. No significant difference was observed in the characteristics.

【0052】さらに、上記実施例では、積層セラミック
部品が積層セラミックコンデンサの場合について示した
が、多層セラミック基板などの他の積層セラミック部品
の場合においても、良好な特性を示すことが確認されて
いる。
Further, in the above-described embodiment, the case where the multilayer ceramic component is a multilayer ceramic capacitor has been described, but it has been confirmed that good characteristics can be exhibited also in the case of another multilayer ceramic component such as a multilayer ceramic substrate. .

【0053】[0053]

【発明の効果】以上の説明で明らかなように、本発明に
示す構造を有する非還元性誘電体セラミックは、誘電率
の温度特性及び電界特性が優れる。
As is clear from the above description, the non-reducing dielectric ceramic having the structure shown in the present invention is excellent in the temperature characteristic and the electric field characteristic of the dielectric constant.

【0054】したがって、この非還元性誘電体セラミッ
クを誘電体とし、この誘電体セラミックの間及び表面に
に卑金属からなる導体を形成することにより、積層セラ
ミックコンデンサ、多層基板などの積層セラミック電子
部品の小型化、低コスト化を図ることができる。
Therefore, the non-reducing dielectric ceramic is used as a dielectric, and a conductor made of a base metal is formed between the dielectric ceramics and on the surface of the dielectric ceramic to form a multilayer ceramic electronic component such as a multilayer ceramic capacitor or a multilayer substrate. The size and cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である積層セラミックコンデ
ンサの断面図である。
FIG. 1 is a cross-sectional view of a multilayer ceramic capacitor according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 積層体 2、4 誘電体セラミック 3 内部電極 5 外部電極 6、7 めっき被膜 DESCRIPTION OF SYMBOLS 1 Laminated body 2, 4 Dielectric ceramic 3 Internal electrode 5 External electrode 6, 7 Plating film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H05K 3/46 H05K 3/46 H T (56)参考文献 特開 平7−69634(JP,A) 特開 平7−37749(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35 H01B 3/00 H01G 4/12,4/30 H05K 3/46 ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 7 identifications FI H05K 3/46 H05K 3/46 H T ( 56) references Patent Rights 7-69634 (JP, a) Patent Rights 7-37749 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 35 H01B 3/00 H01G 4/12, 4/30 H05K 3/46

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 最大粒子径が0.5μm以下、平均粒子
径が0.1〜0.3μmで表される複数の粒子からなる
焼結体であって、前記複数の粒子は、個々の粒子内で一
様な組成及び結晶系を示し、かつ互いの粒子間で同一の
組成及び結晶系を示していることを特徴とする、非還元
性誘電体セラミック。
1. A sintered body comprising a plurality of particles having a maximum particle diameter of 0.5 μm or less and an average particle diameter of 0.1 to 0.3 μm, wherein the plurality of particles are individual particles. A non-reducible dielectric ceramic characterized by exhibiting a uniform composition and crystal system within the same, and exhibiting the same composition and crystal system between particles of each other.
【請求項2】 前記粒子の粒界に前記粒子とは構成成分
が異なる厚さ5nm以下の粒界相が存在することを特徴
とする、請求項1記載の非還元性誘電体セラミック。
2. The non-reducible dielectric ceramic according to claim 1, wherein a grain boundary phase having a thickness of 5 nm or less having a different component from that of the particles is present at the grain boundaries of the particles.
【請求項3】 前記請求項1又は請求項2記載の非還元
性誘電体セラミックをセラミック層の積層体とし、該積
層体のセラミック層の間に卑金属からなる導体が形成さ
れていることを特徴とする、積層セラミック電子部品。
3. A non-reducing dielectric ceramic according to claim 1 or 2, wherein the non-reducing dielectric ceramic is a laminate of ceramic layers, and a conductor made of a base metal is formed between the ceramic layers of the laminate. A multilayer ceramic electronic component.
【請求項4】 前記請求項1又は請求項2記載の非還元
性誘電体セラミックをセラミック層の積層体とし、該積
層体のセラミック層の間に卑金属からなる内部導体が形
成されており、前記前記積層体の表面に、前記内部導体
と電気接続する卑金属からなる外部導体が形成されてい
ることを特徴とする、積層セラミック電子部品。
4. The non-reducing dielectric ceramic according to claim 1 or 2 is a laminate of ceramic layers, and an internal conductor made of a base metal is formed between the ceramic layers of the laminate. An outer conductor made of a base metal which is electrically connected to the inner conductor is formed on a surface of the multilayer body, wherein the multilayer ceramic electronic component is provided.
JP05180096A 1996-03-08 1996-03-08 Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same Expired - Lifetime JP3146966B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP05180096A JP3146966B2 (en) 1996-03-08 1996-03-08 Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same
DE69701294T DE69701294T2 (en) 1996-03-08 1997-03-04 Ceramic dielectric and monolithic ceramic electronic component using this
EP97103627A EP0794542B1 (en) 1996-03-08 1997-03-04 Dielectric ceramic and monolithic ceramic electronic part using the same
CN97103131A CN1097833C (en) 1996-03-08 1997-03-07 Dielectric ceramic and monolithic ceramic electronic part using the same
US08/813,327 US5757610A (en) 1996-03-08 1997-03-07 Dielectric ceramic and monolithic ceramic electronic part using the same
KR1019970007809A KR100242590B1 (en) 1996-03-08 1997-03-08 Deelectric ceramic and monolithic ceramic electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05180096A JP3146966B2 (en) 1996-03-08 1996-03-08 Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same

Publications (2)

Publication Number Publication Date
JPH09241074A JPH09241074A (en) 1997-09-16
JP3146966B2 true JP3146966B2 (en) 2001-03-19

Family

ID=12897012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05180096A Expired - Lifetime JP3146966B2 (en) 1996-03-08 1996-03-08 Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same

Country Status (1)

Country Link
JP (1) JP3146966B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19964160B4 (en) * 1998-01-20 2005-02-17 Murata Mfg. Co., Ltd., Nagaokakyo Dielectric ceramic for a laminated ceramic electronic element e.g. a miniature capacitor
DE19964161B4 (en) * 1998-01-20 2005-03-10 Murata Manufacturing Co Dielectric ceramic for a laminated ceramic electronic element e.g. a miniature capacitor
JP3424742B2 (en) 1998-11-11 2003-07-07 株式会社村田製作所 Multilayer semiconductor ceramic electronic components with positive resistance temperature characteristics
JP3934352B2 (en) 2000-03-31 2007-06-20 Tdk株式会社 Multilayer ceramic chip capacitor and manufacturing method thereof
JP2001316176A (en) * 2000-04-28 2001-11-13 Murata Mfg Co Ltd Dielectric ceramic, laminated ceramic capacitor and manufacturing method of dielectric ceramic
JP4660935B2 (en) * 2001-02-05 2011-03-30 株式会社村田製作所 Method for producing barium titanate-based ceramic powder having tetragonal perovskite structure
JP4663141B2 (en) * 2001-03-07 2011-03-30 京セラ株式会社 Dielectric porcelain and multilayer electronic components

Also Published As

Publication number Publication date
JPH09241074A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
JP3391269B2 (en) Dielectric ceramic and its manufacturing method, and multilayer ceramic electronic component and its manufacturing method
KR100242590B1 (en) Deelectric ceramic and monolithic ceramic electronic part
JP3391268B2 (en) Dielectric ceramic and its manufacturing method, and multilayer ceramic electronic component and its manufacturing method
US6485701B2 (en) Oxide having perovskite structure, barium titanate, and manufacturing method therefor, dielectric ceramic, and ceramic electronic component
JP3039397B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3282520B2 (en) Multilayer ceramic capacitors
JP3878778B2 (en) Dielectric porcelain composition and electronic component
JP3146967B2 (en) Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same
JP3326513B2 (en) Multilayer ceramic chip capacitors
JP2001006966A (en) Ceramic capacitor and its manufacture
JPH1012479A (en) Laminated ceramics capacitor
JP2000143341A (en) Dielectric ceramic composition and multilayer ceramic part
WO2012043208A1 (en) Dielectric ceramic, multilayer ceramic electronic component, and methods for producing same
JP3603607B2 (en) Dielectric ceramic, multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
JP4660935B2 (en) Method for producing barium titanate-based ceramic powder having tetragonal perovskite structure
JP3376963B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JP4354224B2 (en) Dielectric porcelain and multilayer electronic components
JP7037945B2 (en) Ceramic capacitors and their manufacturing methods
JP3146966B2 (en) Non-reducing dielectric ceramic and multilayer ceramic electronic component using the same
JP3945033B2 (en) Manufacturing method of multilayer ceramic capacitor
JP4048808B2 (en) Dielectric ceramic composition and multilayer ceramic electronic component
JP3130214B2 (en) Multilayer ceramic chip capacitors
JP2003165768A (en) Dielectric ceramic composition and laminated ceramic electronic part
JP3678072B2 (en) Dielectric ceramic composition and multilayer ceramic component
JP3125386B2 (en) Method for producing dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 13

EXPY Cancellation because of completion of term