JP2003100544A - Porcelain capacitor and its manufacturing method - Google Patents

Porcelain capacitor and its manufacturing method

Info

Publication number
JP2003100544A
JP2003100544A JP2001297262A JP2001297262A JP2003100544A JP 2003100544 A JP2003100544 A JP 2003100544A JP 2001297262 A JP2001297262 A JP 2001297262A JP 2001297262 A JP2001297262 A JP 2001297262A JP 2003100544 A JP2003100544 A JP 2003100544A
Authority
JP
Japan
Prior art keywords
ceramic
raw material
internal electrode
laminate
green sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001297262A
Other languages
Japanese (ja)
Other versions
JP4208448B2 (en
Inventor
Yoichi Mizuno
洋一 水野
Hirotoshi Kawamura
浩敏 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2001297262A priority Critical patent/JP4208448B2/en
Publication of JP2003100544A publication Critical patent/JP2003100544A/en
Application granted granted Critical
Publication of JP4208448B2 publication Critical patent/JP4208448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the following problem that, recently, demands for the improvement of the performance of electronic equipment limitlessly increase and, accordingly, demands for the electric characteristics of electronic parts become increasingly strict and, in addition, demands for the electric characteristics of porcelain capacitors also become increasingly strict and, particularly, porcelain capacitors having better temperature characteristics and life characteristics are demanded. SOLUTION: In a porcelain capacitor, a dielectric layer is formed of two or more kinds of ceramic particles containing different kinds of component elements or containing identical component elements at different concentrations. The component elements may have concentration gradients between internal electrodes, or the elements may have such concentration gradients that the concentrations become higher as becoming closer to the internal electrodes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、温度特性及び寿命
特性に優れた磁器コンデンサとその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic capacitor having excellent temperature characteristics and life characteristics and a method for manufacturing the same.

【0002】[0002]

【従来の技術】一般に、磁器コンデンサはチップ状の素
体と、該素体の両側に形成された一対の電極とからな
る。積層タイプの磁器コンデンサの場合、該素体は一般
に誘電体層と内部電極とが交互に多数層積層された積層
体からなる。該内部電極のうち、隣り合う内部電極は誘
電体層を介して対向し、別々の外部電極と電気的に接続
されている。
2. Description of the Related Art Generally, a porcelain capacitor comprises a chip-shaped element body and a pair of electrodes formed on both sides of the element body. In the case of a laminated type ceramic capacitor, the element body is generally composed of a laminated body in which a plurality of dielectric layers and internal electrodes are alternately laminated. Among the internal electrodes, adjacent internal electrodes face each other via a dielectric layer and are electrically connected to different external electrodes.

【0003】ここで、前記誘電体層としては、例えばチ
タン酸ジルコン酸バリウム{Ba(TiZr)O}を
主成分とし、これに希土類元素を添加した、耐還元性を
有する誘電体磁器組成物が使用されている。また、前記
内部電極としては、例えばNi金属粉末を主成分とする
導電性ペーストを焼結させたものが使用されている。
Here, as the dielectric layer, for example, a dielectric ceramic composition having barium titanate zirconate {Ba (TiZr) O 3 } as a main component and a rare earth element added thereto and having reduction resistance is used. Is used. Further, as the internal electrodes, for example, one obtained by sintering a conductive paste containing Ni metal powder as a main component is used.

【0004】前記素体は、セラミックグリーンシートと
内部電極パターンとを交互に一体的に積層させたチップ
状の積層体を脱バインダした後、非酸化性雰囲気中にお
いて1200〜1300℃程度の高温で焼成し、その
後、弱酸化性雰囲気中で再酸化させることにより製造さ
れている。
After debinding the chip-shaped laminated body in which the ceramic green sheets and the internal electrode patterns are alternately laminated integrally, the element body is heated at a high temperature of about 1200 to 1300 ° C. in a non-oxidizing atmosphere. It is manufactured by firing and then reoxidizing it in a weakly oxidizing atmosphere.

【0005】[0005]

【発明が解決しようとする課題】ところで、電子機器の
性能向上のため、磁器コンデンサについて、温度特性や
寿命特性の良いものが求められ、そのため、種々の磁器
コンデンサが提案されている。
By the way, in order to improve the performance of electronic equipment, a ceramic capacitor having good temperature characteristics and life characteristics is required, and therefore various ceramic capacitors have been proposed.

【0006】しかし、近年における電子機器の性能の向
上に対する要求はとどまるところがなく、そのため、電
子部品の電気的特性に対する要求も益々厳しいものがあ
り、磁器コンデンサについても、その電気的特性に対す
る要求は益々厳しいものがあり、特に、温度特性や寿命
特性の更に良いものが求められている。
However, in recent years, the demands for improving the performance of electronic devices are not limited, and therefore, the demands for the electrical characteristics of electronic parts are more and more strict, and the demands for the electrical properties of porcelain capacitors are also increasing. There are some strict requirements, and in particular, those with even better temperature characteristics and life characteristics are required.

【0007】本発明は、温度特性及び寿命特性に優れた
磁器コンデンサとその製造方法を提供することを目的と
する。
It is an object of the present invention to provide a porcelain capacitor having excellent temperature characteristics and life characteristics and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明に係る磁器コンデ
ンサは、誘電体磁器組成物からなる誘電体層と、該誘電
体層を挟持している内部電極と、該内部電極に電気的に
接続されている外部電極とを備え、該誘電体磁器組成物
が所定の成分元素の濃度を異にする2種以上のセラミッ
ク粒子からなることを特徴とするものである。
A ceramic capacitor according to the present invention comprises a dielectric layer made of a dielectric ceramic composition, an internal electrode sandwiching the dielectric layer, and an electrical connection to the internal electrode. And a dielectric ceramic composition, wherein the dielectric ceramic composition is composed of two or more kinds of ceramic particles having different concentrations of predetermined constituent elements.

【0009】ここで、前記所定の成分元素は前記内部電
極間で濃度勾配を有していてもよい。ここで、所定の成
分元素について濃度勾配を有するとは、内部電極に近付
くにつれて、又は遠ざかるにつれて所定の成分元素の濃
度が連続的に増加又は減少することをいう。また、ある
セラミック粒子について、特定の成分元素の濃度が高く
なるにつれて他の成分元素の濃度が低くなってもよい
し、その逆でもよい。更に、セラミック粒子内における
所定の成分元素の濃度は均一でもよいし、表面近傍と内
部で濃度勾配を有していてもよい。
Here, the predetermined component element may have a concentration gradient between the internal electrodes. Here, having a concentration gradient with respect to a predetermined component element means that the concentration of the predetermined component element continuously increases or decreases as it approaches or moves away from the internal electrode. Further, with respect to a certain ceramic particle, the concentration of another component element may decrease as the concentration of a specific component element increases, or vice versa. Further, the concentration of the predetermined component element in the ceramic particles may be uniform, or may have a concentration gradient in the vicinity of the surface and inside.

【0010】前記所定の成分元素はBa、Ti,Zr,
希土類元素,Mn,Si,Cr,V,Co,Mo及びW
から選択された1種又は2種以上を挙げることができる
が、磁器コンデンサの寿命特性を良好ならしめるもので
あればこれら以外の元素でもよい。
The predetermined constituent elements are Ba, Ti, Zr,
Rare earth elements, Mn, Si, Cr, V, Co, Mo and W
One or two or more selected from the above can be listed, but any other element may be used as long as the life characteristics of the porcelain capacitor can be improved.

【0011】また、この発明に係る磁器コンデンサの製
造方法は、基本工程として、セラミック原料を調整する
セラミック原料調整工程と、セラミック原料を用いてセ
ラミックグリーンシートを形成するシート形成工程と、
該セラミックグリーンシートに導電性ペーストからなる
内部電極パターンを印刷する印刷工程と、該内部電極パ
ターンを印刷したセラミックグリーンシートを積層して
積層体を得る積層工程と、該積層体を内部電極パターン
毎に裁断してチップ状の積層体を得る裁断工程と、該チ
ップ状の積層体を非酸化性雰囲気中で焼成する焼成工程
と、該焼成工程を経た該積層体を弱酸化性雰囲気中で焼
成する再酸化工程とを備えている。
Further, the method of manufacturing a porcelain capacitor according to the present invention comprises, as basic steps, a ceramic raw material adjusting step of adjusting a ceramic raw material, a sheet forming step of forming a ceramic green sheet using the ceramic raw material,
A printing step of printing an internal electrode pattern made of a conductive paste on the ceramic green sheet, a stacking step of stacking the ceramic green sheets printed with the internal electrode pattern to obtain a laminate, and the stack for each internal electrode pattern. Cutting step to obtain a chip-shaped laminated body by cutting into a chip, a firing step of firing the chip-shaped laminated body in a non-oxidizing atmosphere, and a firing of the laminated body after the firing step in a weakly oxidizing atmosphere. And a reoxidation step of

【0012】そして、この発明に係る一の磁器コンデン
サの製造方法は、該原料調製工程が、2種以上の化合
物、例えばHoとMn、を仮焼してなる添
加成分粉末を形成する工程と、強誘電性を有する主成分
粉末と該添加成分粉末とを混合する工程とを備え、他の
磁器コンデンサの製造方法は、該原料調製工程が、強誘
電性を有する2種以上の主成分粉末、例えばBaTiO
とBaZrO、を混合する工程を備え、この発明に
係る更に他の磁器コンデンサの製造方法は、該導電性ペ
ーストが成分元素を含み、該成分元素はBa,Ti,Z
r,希土類元素,Mn,Si,Cr,V,Co,Mo及
びWから選択された1種又は2種以上からなることを特
徴とするものである。
In the method for manufacturing a porcelain capacitor according to the present invention, the raw material preparing step is an additive component powder obtained by calcining two or more kinds of compounds, for example, Ho 2 O 3 and Mn 3 O 4 . And a step of mixing the main component powder having ferroelectricity with the additive component powder, another manufacturing method of a porcelain capacitor is characterized in that the raw material preparing step is two types having ferroelectricity. The above main component powder, for example, BaTiO 3.
No. 3 and BaZrO 3 are mixed, and the method for manufacturing a porcelain capacitor according to still another embodiment of the present invention is such that the conductive paste contains component elements, and the component elements are Ba, Ti, Z.
It is characterized by comprising one or more selected from r, rare earth elements, Mn, Si, Cr, V, Co, Mo and W.

【0013】[0013]

【実施例】実施例1: まず、BaTi0.854Zr0.146
3粉末を合成し、これをポットミルで解砕し、粒径D
50(%)=0.55μmの主成分粉末を得た。また、
Ho23を29.6g、Mn34を9.6g、各々秤量
し、これらをビーズとともにポットミルに入れ、湿式で
攪拌・混合し、得られたスラリーを取り出して乾燥さ
せ、これを1000℃で2時間仮焼してHo−Mnの仮
焼物を得た。次に、このHo−Mnの仮焼物をビーズと
ともにポットミルに入れ、乾式で粉砕し、粒度D50
(%)=1.5μmの添加成分粉末を得た。
EXAMPLES Example 1: First, BaTi 0.854 Zr 0.146
O 3 powder was synthesized and crushed with a pot mill to give a particle size D
A main component powder of 50 (%) = 0.55 μm was obtained. Also,
29.6 g of Ho 2 O 3 and 9.6 g of Mn 3 O 4 were weighed and put in a pot mill together with beads, stirred and mixed by a wet method, and the resulting slurry was taken out and dried. It was calcined at ℃ for 2 hours to obtain a Ho-Mn calcined product. Next, this Ho-Mn calcined product is put into a pot mill together with beads and pulverized by a dry method to obtain a particle size D50.
(%) = 1.5 μm of additive component powder was obtained.

【0014】次に、主成分{BaTi0.854Zr0.146
3}粉末500gにSiO2を1.26g添加し、これら
をZrO2ビーズとともにポットミルに入れ、湿式で攪
拌・混合し、粒度D50(%)が0.46μmになった
とき、先に準備した添加成分(Ho−Mn仮焼物)粉末
を3.92g添加し、1時間・攪拌・混合し、得られた
スラリーを取り出して乾燥させ、誘電体材料粉末を得
た。なお、前記各粉末の粒度D50(%)はレーザー回
折粒度分布計によって測定した。
Next, the main component {BaTi 0.854 Zr 0.146 O
3 } powder, 1.26 g of SiO 2 was added to 500 g, and these were put in a pot mill together with ZrO 2 beads, stirred and mixed by a wet method, and when the particle size D50 (%) reached 0.46 μm, the addition prepared in advance 3.92 g of the component (Ho-Mn calcined product) powder was added, stirred and mixed for 1 hour, and the obtained slurry was taken out and dried to obtain a dielectric material powder. The particle size D50 (%) of each powder was measured by a laser diffraction particle size distribution meter.

【0015】次に、この誘電体材料粉末1000g(1
00重量部)に、アクリル酸エステルポリマー、グリセ
リン、縮合リン酸塩の水溶液からなる有機バインダーを
15重量%添加し、更に、50重量%の水を加え、これ
らをボールミルに入れ、粉砕及び混合してスラリーを作
成した。
Next, 1000 g (1
(00 parts by weight), 15% by weight of an organic binder composed of an aqueous solution of an acrylic ester polymer, glycerin, and a condensed phosphate is added, and further 50% by weight of water is added. To make a slurry.

【0016】次に、このスラリーを真空脱泡機に入れて
脱泡した後、リバースロールコータに入れ、ポリエステ
ルフィルム上にこのスラリーからなる薄膜を形成した。
そして、この薄膜をポリエステルフィルム上で100℃
に加熱して乾燥させ、打ち抜き、厚さ約5μmで、10
cm×10cmの正方形のグリーンシートを得た。
Next, this slurry was put into a vacuum defoaming machine to defoam, and then put into a reverse roll coater to form a thin film of this slurry on the polyester film.
Then, this thin film is placed on a polyester film at 100 ° C.
Heat to dry and punch out, thickness about 5μm, 10
A square green sheet of cm × 10 cm was obtained.

【0017】一方、平均粒径が0.5μmのニッケル粉
末10gと、エチルセルロース0.9gをブチルカルビ
トール9.1gに溶解させたものとを撹拌機に入れ、1
0時間撹拌して、内部電極用の導電性ペーストを得た。
そして、上記グリーンシートにこの導電性ペーストから
なる導電パターンを印刷し、乾燥させた。
On the other hand, 10 g of nickel powder having an average particle size of 0.5 μm and 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol were placed in a stirrer, and 1
After stirring for 0 hour, a conductive paste for internal electrodes was obtained.
Then, a conductive pattern made of this conductive paste was printed on the green sheet and dried.

【0018】次に、上記導電パターンの印刷面を上にし
てグリーンシートを11枚積層した。この際、隣接する
上下のシートにおいて、その印刷面がパターンの長手方
向に約半分程ずれるように配置した。更に、この積層物
の上下両面に導電パターンの印刷の施されていないグリ
ーンシートを積層した。
Next, 11 green sheets were laminated with the printed surface of the conductive pattern facing up. At this time, the adjacent upper and lower sheets were arranged such that their printing surfaces were displaced by about half in the longitudinal direction of the pattern. Further, green sheets on which conductive patterns were not printed were laminated on the upper and lower surfaces of this laminate.

【0019】次に、この積層物を約50℃の温度で厚さ
方向に約40トンの圧力を加えて圧着させ、その後、こ
の積層物を格子状に裁断し、縦4.0mm×横2.0m
mの積層チップを得た。
Next, this laminate is pressure-bonded at a temperature of about 50 ° C. in the thickness direction by about 40 tons, and thereafter, the laminate is cut into a lattice shape, and the length is 4.0 mm × width 2 0.0 m
m laminated chips were obtained.

【0020】次に、内部電極が露出する積層チップの端
面にNi外部電極をディップで形成し、この積層チップ
を雰囲気焼成が可能な炉に入れ、N雰囲気中で加熱し
て有機バインダを除去させ、続いて、酸素分圧が10
−5〜10−10atmの条件下、1260℃〜136
0℃で1〜5時間焼成し、その後、N雰囲気下、60
0〜800℃で再酸化処理を行ない、積層磁器コンデン
サを得た。
Next, a Ni external electrode is formed by dipping on the end face of the laminated chip from which the internal electrode is exposed, and the laminated chip is placed in a furnace capable of atmospheric firing and heated in an N 2 atmosphere to remove the organic binder. The oxygen partial pressure is 10
1260 ° C to 136 under the condition of -5 to 10 -10 atm.
Baking at 0 ° C. for 1 to 5 hours, then under N 2 atmosphere, 60
Reoxidation treatment was performed at 0 to 800 ° C. to obtain a laminated ceramic capacitor.

【0021】次に、積層磁器コンデンサの誘電体層を形
成しているセラミック粒子30〜50個についてTEM
−EDSを用いて成分組成を分析し、その結果をHoと
Mnの濃度に注目して3種(粒子A,B,C)に分類し
たところ、表1の実施例1の欄に示すようになった。そ
して、粒子A/粒子B/粒子Cの組成比は35/26/
39であった。
Next, TEM is performed on 30 to 50 ceramic particles forming the dielectric layer of the laminated ceramic capacitor.
-EDS was used to analyze the component composition, and the results were classified into three types (particles A, B, and C) by paying attention to the concentrations of Ho and Mn, and as shown in the column of Example 1 in Table 1. became. The composition ratio of particle A / particle B / particle C is 35/26 /
It was 39.

【0022】なお、この誘電体層は図1に示すような微
細構造になっていると考えられる。また、表1の各組成
値は、セラミック粒子の一粒を3点分析して得られた3
個の組成値の平均値である。
It is considered that this dielectric layer has a fine structure as shown in FIG. The composition values shown in Table 1 were obtained by three-point analysis of one ceramic particle.
It is the average value of the individual composition values.

【0023】次に、得られた積層磁器コンデンサの電気
的特性を測定したところ、表2に示す通りであった。
Next, the electrical characteristics of the obtained laminated ceramic capacitor were measured, and the results were as shown in Table 2.

【0024】電気的特性は次の要領で測定した。The electrical characteristics were measured as follows.

【0025】(A) 比誘電率εは、温度20℃、周波数1
kHz、電圧(実効値)1.0Vの条件で静電容量を測
定し、この測定値と、一対の内部電極14の対向面積
と、一対の内部電極間の誘電体磁器層の厚さから計算で
求めた。
(A) The relative permittivity ε is a temperature of 20 ° C. and a frequency of 1
Capacitance was measured under the condition of kHz and voltage (effective value) of 1.0 V, and calculated from the measured value, the facing area of the pair of internal electrodes 14, and the thickness of the dielectric ceramic layer between the pair of internal electrodes. I asked for.

【0026】(B) 誘電損失tanδ(%)は、上記した
比誘電率の測定の場合と同一の条件で測定した。
(B) Dielectric loss tan δ (%) was measured under the same conditions as in the above-mentioned measurement of relative permittivity.

【0027】(C) 容量変化率ΔC(%)は、恒温槽の
中に試料を入れ、−25℃及び+85℃の各温度におい
て、周波数1kHz、電圧(実効値)1.0Vの条件で
静電容量を測定し、20℃の静電容量に対する静電容量
の変化率を求めることによって得た。
(C) The capacity change rate ΔC (%) was measured by placing the sample in a constant temperature bath and statically at a temperature of -25 ° C and + 85 ° C at a frequency of 1 kHz and a voltage (effective value) of 1.0 V. It was obtained by measuring the capacitance and determining the rate of change of the capacitance with respect to the capacitance of 20 ° C.

【0028】(D) 加速寿命(sec)は、150℃/2
0V/μmの直流電界下にて絶縁抵抗率(ρ)が1×1
10Ωcmになるまでの時間を測定して得た。
(D) Accelerated life (sec) is 150 ° C / 2
Insulation resistivity (ρ) is 1 × 1 under 0V / μm DC electric field
It was obtained by measuring the time to reach 0 10 Ωcm.

【0029】実施例2: まず、BaTiOとBaZ
rOを合成し、これらを各々粉砕して粒度D50
(%)=0.52μmのBaTiOと、粒度D50
(%)=0.65μmのBaZrOを形成した。
Example 2: First, BaTiO 3 and BaZ
rO 3 was synthesized, and each was crushed to obtain a particle size D50.
(%) = 0.52 μm BaTiO 3 and particle size D50
(%) = 0.65 μm of BaZrO 3 was formed.

【0030】次に、BaTiO229.45g,Ba
ZrO270.55g,Ho 2.96g,Si
1.26g,Mn0.96gを秤量し、これ
らをZrOビーズとともにポットミルに入れ、粒度D
50(%)=0.48μmになるまで湿式で撹拌・混合
し、得られたスラリーを取り出して乾燥させ、誘電体材
料粉末を得た。
Next, BaTiO 3Three229.45g, Ba
ZrOThree270.55g, HoTwoO Three2.96 g, Si
OTwo1.26 g, MnThreeOFourWeigh 0.96g, this
ZrOTwoPut the beads in a pot mill together with the beads, and the particle size D
Stir and mix by wet method until 50 (%) = 0.48 μm
Then, the obtained slurry is taken out and dried, and the dielectric material
A raw powder was obtained.

【0031】次に、実施例1と同様にして積層磁器コン
デンサを作成し、誘電体層を形成しているセラミック粒
子30〜50個についてTEM−EDSを用いて成分組
成を分析し、その結果をTiとZrの濃度に注目して3
種(粒子D,E,F)に分類をしたところ、表1に示す
ようになった。そして、粒子D,粒子E,粒子Fの組成
比は29/40/31であった。この誘電体層も図1に
示すような微細構造をしているものと考えられる。ただ
し、図1中、粒子Aは粒子Dと、粒子Bは粒子Eと、粒
子Cは粒子Fと置き換えて考える。
Next, a laminated ceramic capacitor was prepared in the same manner as in Example 1, and 30 to 50 ceramic particles forming the dielectric layer were analyzed for component composition using TEM-EDS. Pay attention to the concentration of Ti and Zr 3
The results are shown in Table 1 when the particles (particles D, E, F) are classified. The composition ratio of the particles D, the particles E, and the particles F was 29/40/31. It is considered that this dielectric layer also has a fine structure as shown in FIG. However, in FIG. 1, particle A is replaced with particle D, particle B is replaced with particle E, and particle C is replaced with particle F.

【0032】次に、得られた積層磁器コンデンサの電気
的特性を実施例1と同様にして測定したところ、表2に
示す通りであった。
Next, the electrical characteristics of the obtained laminated ceramic capacitor were measured in the same manner as in Example 1, and the results are shown in Table 2.

【0033】比較例1: 予め合成し、解砕したBaT
0.854Zr0.1463{D50(%)=0.53μm}
500gにHo2.96g,SiO1.26
g,Mn0.96gを添加し、これらをZrO2
ビーズとともにポットミルに入れ、湿式で攪拌・混合
し、粒度D50(%)=0.45μmとなるまで撹拌・
混合し、得られたスラリーを取り出して乾燥させ、誘電
体材料粉末を得た。
Comparative Example 1: BaT which was previously synthesized and crushed
i 0.854 Zr 0.146 O 3 {D50 (%) = 0.53 μm}
Ho 2 O 3 2.96 g, SiO 2 1.26 in 500 g.
g, Mn 3 O 4 0.96 g was added, and these were added to ZrO 2
Put in beads in a pot mill, stir and mix by wet method, stir until particle size D50 (%) = 0.45 μm
After mixing, the resulting slurry was taken out and dried to obtain a dielectric material powder.

【0034】次に、実施例1と同様にして積層磁器コン
デンサを作成し、誘電体層を形成しているセラミック粒
子30〜50個についてTEM−EDSを用いて成分組
成を分析したところ、表1の比較例1に示すようになっ
た。この誘電体層の微細構造は図3に示すようになって
いると考えられる。
Next, a laminated ceramic capacitor was prepared in the same manner as in Example 1, and 30 to 50 ceramic particles forming the dielectric layer were analyzed for composition by TEM-EDS. Comparative Example 1 was obtained. It is considered that the fine structure of this dielectric layer is as shown in FIG.

【0035】次に、得られた積層磁器コンデンサの電気
的特性を実施例1と同様にして測定したところ、表2に
示す通りであった。
Next, the electrical characteristics of the obtained laminated ceramic capacitor were measured in the same manner as in Example 1, and the results are shown in Table 2.

【0036】実施例3: 予め合成し、解砕したBaT
0.854Zr0.1463{D50(%)=0.53μm}
500gにHo2.96g,SiO1.26
g,Mn0.96gを添加し、これらをZrO2
ビーズとともにポットミルに入れ、湿式で攪拌・混合
し、粒度D50(%)=0.45μmとなるまで撹拌・
混合し、得られたスラリーを取り出して乾燥させ、誘電
体材料粉末を得た。そして、実施例1と同様にしてグリ
ーンシートを形成した。
Example 3 Pre-synthesized and crushed BaT
i 0.854 Zr 0.146 O 3 {D50 (%) = 0.53 μm}
Ho 2 O 3 2.96 g, SiO 2 1.26 in 500 g.
g, Mn 3 O 4 0.96 g was added, and these were added to ZrO 2
Put in beads in a pot mill, stir and mix by wet method, stir until particle size D50 (%) = 0.45 μm
After mixing, the resulting slurry was taken out and dried to obtain a dielectric material powder. Then, a green sheet was formed in the same manner as in Example 1.

【0037】一方、平均粒径が0.5μmのニッケル粉
末10gと、エチルセルロース0.9gをブチルカルビ
トール9.1gに溶解させたものと、添加材(焼結遅延
材)2.5gを撹拌機に入れ、10時間撹拌して、内部
電極用の導電性ペーストを得た。添加材としてはZrO
が上記グリーンシートより20mol%多い材料を用
いた。そして、上記グリーンシートにこの導電性ペース
トからなる導電パターンを印刷し、乾燥させた。
On the other hand, 10 g of nickel powder having an average particle size of 0.5 μm, 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol, and 2.5 g of an additive material (sintering delay material) were stirred. And was stirred for 10 hours to obtain a conductive paste for internal electrodes. ZrO as an additive
2 used a material 20 mol% more than the green sheet. Then, a conductive pattern made of this conductive paste was printed on the green sheet and dried.

【0038】そして、実施例1と同様にして積層磁器コ
ンデンサを作成し、誘電体層を形成しているセラミック
粒子30〜50個についてTEM−EDSを用いて成分
組成を分析したところ、表1の実施例3に示すようにな
った。また、得られた積層磁器コンデンサの電気的特性
を実施例1と同様にして測定したところ、表2に示す通
りであった。なお、この誘電体層の微細構造は図2に示
すような微細構造になっていると考えられる。
Then, a laminated ceramic capacitor was prepared in the same manner as in Example 1, and 30 to 50 ceramic particles forming the dielectric layer were analyzed for composition by TEM-EDS. As shown in Example 3. The electrical characteristics of the obtained laminated ceramic capacitor were measured in the same manner as in Example 1, and the results are shown in Table 2. The fine structure of this dielectric layer is considered to have a fine structure as shown in FIG.

【0039】実施例4: 予め合成し、解砕したBaT
0.854Zr0.1463{D50(%)=0.53μm}
500gにHo2.96g,SiO1.26
g,Mn0.96gを添加し、これらをZrO2
ビーズとともにポットミルに入れ、湿式で攪拌・混合
し、粒度D50(%)が0.45μmになるまで撹拌・
混合し、得られたスラリーを取り出して乾燥させ、誘電
体材料粉末を得た。そして、実施例1と同様にしてグリ
ーンシートを形成した。
Example 4: Pre-synthesized and crushed BaT
i 0.854 Zr 0.146 O 3 {D50 (%) = 0.53 μm}
Ho 2 O 3 2.96 g, SiO 2 1.26 in 500 g.
g, Mn 3 O 4 0.96 g was added, and these were added to ZrO 2
Put the beads in a pot mill, stir and mix them in a wet manner, and stir until the particle size D50 (%) becomes 0.45 μm.
After mixing, the resulting slurry was taken out and dried to obtain a dielectric material powder. Then, a green sheet was formed in the same manner as in Example 1.

【0040】一方、平均粒径が0.5μmのニッケル粉
末10gと、エチルセルロース0.9gをブチルカルビ
トール9.1gに溶解させたものと、添加材(焼結遅延
材)2.5gを撹拌機に入れ、10時間撹拌して、内部
電極用の導電性ペーストを得た。添加材としてはMn
が上記グリーンシートより2atomic%多い材料を用
いた。そして、上記グリーンシートにこの導電性ペース
トからなる導電パターンを印刷し、乾燥させた。
On the other hand, 10 g of nickel powder having an average particle size of 0.5 μm, 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol, and 2.5 g of an additive material (sinter retarder) were stirred. And was stirred for 10 hours to obtain a conductive paste for internal electrodes. Mn 3 as an additive
A material in which O 4 is 2 atomic% higher than that of the green sheet was used. Then, a conductive pattern made of this conductive paste was printed on the green sheet and dried.

【0041】そして、実施例1と同様にして積層磁器コ
ンデンサを作成し、誘電体層を形成しているセラミック
粒子30〜50個についてTEM−EDSを用いて成分
組成を分析したところ、表1に示すようになった。ま
た、得られた積層磁器コンデンサの電気的特性を実施例
1と同様にして測定したところ、表2に示す通りであっ
た。なお、この誘電体層の微細構造も図2に示すような
微細構造になっていると考えられる。ただし、図2中、
粒子Hは粒子Kと、粒子Iは粒子Lと、粒子Jは粒子M
と置き換えて考える。
Then, a laminated ceramic capacitor was prepared in the same manner as in Example 1, and 30 to 50 ceramic particles forming the dielectric layer were analyzed for composition by TEM-EDS. Came to show. The electrical characteristics of the obtained laminated ceramic capacitor were measured in the same manner as in Example 1, and the results are shown in Table 2. It is considered that the fine structure of this dielectric layer also has a fine structure as shown in FIG. However, in FIG.
Particle H is particle K, particle I is particle L, particle J is particle M
Replace it with

【0042】実施例5: 予め合成し、解砕したBaT
0.854Zr0.1463{D50(%)=0.53μm}
500gにHo2.96g,SiO1.26
g,Mn0.96gを添加し、これらをZrO2
ビーズとともにポットミルに入れ、湿式で攪拌・混合
し、粒度D50(%)=0.45μmとなるまで撹拌・
混合し、得られたスラリーを取り出して乾燥させ、誘電
体材料粉末を得た。そして、実施例1と同様にしてグリ
ーンシートを形成した。
Example 5: BaT pre-synthesized and crushed
i 0.854 Zr 0.146 O 3 {D50 (%) = 0.53 μm}
Ho 2 O 3 2.96 g, SiO 2 1.26 in 500 g.
g, Mn 3 O 4 0.96 g was added, and these were added to ZrO 2
Put in beads in a pot mill, stir and mix by wet method, stir until particle size D50 (%) = 0.45 μm
After mixing, the resulting slurry was taken out and dried to obtain a dielectric material powder. Then, a green sheet was formed in the same manner as in Example 1.

【0043】一方、平均粒径が0.5μmのニッケル粉
末10gと、エチルセルロース0.9gをブチルカルビ
トール9.1gに溶解させたものと、添加材(焼結遅延
材)2.5gを撹拌機に入れ、10時間撹拌して、内部
電極用の導電性ペーストを得た。添加材としてはMn,
Cr,Co,Vが上記グリーンシートより2atomic%多
い材料を用いた。そして、上記グリーンシートにこの導
電性ペーストからなる導電パターンを印刷し、乾燥させ
た。
On the other hand, 10 g of nickel powder having an average particle size of 0.5 μm, 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol, and 2.5 g of an additive material (sintering delay material) were stirred. And was stirred for 10 hours to obtain a conductive paste for internal electrodes. As an additive material, Mn,
A material in which Cr, Co, and V are 2 atomic% more than the above green sheet was used. Then, a conductive pattern made of this conductive paste was printed on the green sheet and dried.

【0044】そして、実施例1と同様にして積層磁器コ
ンデンサを作成し、誘電体層を形成しているセラミック
粒子30〜50個についてTEM−EDSを用いて成分
組成を分析したところ、表1に示すようになった。ま
た、得られた積層磁器コンデンサの電気的特性を実施例
1と同様にして測定したところ、表2に示す通りであっ
た。なお、この誘電体層の微細構造も図2に示すような
微細構造になっていると考えられる。ただし、図2中、
粒子Hは粒子Nと、粒子Iは粒子Oと、粒子Jは粒子P
と置き換えて考える。
Then, a laminated ceramic capacitor was prepared in the same manner as in Example 1, and 30 to 50 ceramic particles forming the dielectric layer were analyzed for composition by TEM-EDS. Came to show. The electrical characteristics of the obtained laminated ceramic capacitor were measured in the same manner as in Example 1, and the results are shown in Table 2. It is considered that the fine structure of this dielectric layer also has a fine structure as shown in FIG. However, in FIG.
Particle H is particle N, particle I is particle O, particle J is particle P
Replace it with

【0045】実施例6: 予め合成し、解砕したBaT
0.854Zr0.1463{D50(%)=0.53μm}
500gにHo2.96g,SiO1.26
g,Mn0.96gを添加し、これらをZrO2
ビーズとともにポットミルに入れ、湿式で攪拌・混合
し、粒度D50(%)が0.45μmになるまで撹拌・
混合し、得られたスラリーを取り出して乾燥させ、誘電
体材料粉末を得た。そして、実施例1と同様にしてグリ
ーンシートを形成した。
Example 6: BaT pre-synthesized and crushed
i 0.854 Zr 0.146 O 3 {D50 (%) = 0.53 μm}
Ho 2 O 3 2.96 g, SiO 2 1.26 in 500 g.
g, Mn 3 O 4 0.96 g was added, and these were added to ZrO 2
Put the beads in a pot mill, stir and mix them in a wet manner, and stir until the particle size D50 (%) becomes 0.45 μm.
After mixing, the resulting slurry was taken out and dried to obtain a dielectric material powder. Then, a green sheet was formed in the same manner as in Example 1.

【0046】一方、平均粒径が0.5μmのニッケル粉
末10gと、エチルセルロース0.9gをブチルカルビ
トール9.1gに溶解させたものと、添加材(焼結遅延
材)2.5gを撹拌機に入れ、10時間撹拌して、内部
電極用の導電性ペーストを得た。添加材としてはSm,
Gd,Yが上記グリーンシートより2atomic%多い材料
を用いた。そして、上記グリーンシートにこの導電性ペ
ーストからなる導電パターンを印刷し、乾燥させた。
On the other hand, 10 g of nickel powder having an average particle size of 0.5 μm, 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol, and 2.5 g of an additive material (sinter retarder) were stirred. And was stirred for 10 hours to obtain a conductive paste for internal electrodes. Sm as an additive,
A material in which Gd and Y were 2 atomic% higher than the above green sheet was used. Then, a conductive pattern made of this conductive paste was printed on the green sheet and dried.

【0047】そして、実施例1と同様にして積層磁器コ
ンデンサを作成し、誘電体層を形成しているセラミック
粒子30〜50個についてTEM−EDSを用いて成分
組成を分析したところ、表1に示すようになった。ま
た、得られた積層磁器コンデンサの電気的特性を実施例
1と同様にして測定したところ、表2に示す通りであっ
た。なお、この誘電体層の微細構造も図2に示すような
微細構造になっていると考えられる。ただし、図2中、
粒子Hは粒子Qと、粒子Iは粒子Rと、粒子Jは粒子S
と置き換えて考える。
Then, a laminated ceramic capacitor was prepared in the same manner as in Example 1, and 30 to 50 ceramic particles forming the dielectric layer were analyzed for composition by TEM-EDS. Came to show. The electrical characteristics of the obtained laminated ceramic capacitor were measured in the same manner as in Example 1, and the results are shown in Table 2. It is considered that the fine structure of this dielectric layer also has a fine structure as shown in FIG. However, in FIG.
Particle H is particle Q, particle I is particle R, particle J is particle S
Replace it with

【0048】実施例7: 予め合成し、解砕したBaT
0.854Zr0.1463{D50(%)=0.53μm}
500gにHo2.96g,SiO1.26
g,Mn0.96gを添加し、これらをZrO2
ビーズとともにポットミルに入れ、湿式で攪拌・混合
し、粒度D50(%)が0.45μmになるまで撹拌・
混合し、得られたスラリーを取り出して乾燥させ、誘電
体材料粉末を得た。そして、実施例1と同様にしてグリ
ーンシートを形成した。
Example 7: BaT previously synthesized and crushed
i 0.854 Zr 0.146 O 3 {D50 (%) = 0.53 μm}
Ho 2 O 3 2.96 g, SiO 2 1.26 in 500 g.
g, Mn 3 O 4 0.96 g was added, and these were added to ZrO 2
Put the beads in a pot mill, stir and mix them in a wet manner, and stir until the particle size D50 (%) becomes 0.45 μm.
After mixing, the resulting slurry was taken out and dried to obtain a dielectric material powder. Then, a green sheet was formed in the same manner as in Example 1.

【0049】一方、平均粒径が0.5μmのニッケル粉
末10gと、エチルセルロース0.9gをブチルカルビ
トール9.1gに溶解させたものと、添加材(焼結遅延
材)2.5gを撹拌機に入れ、10時間撹拌して、内部
電極用の導電性ペーストを得た。添加材としてはMo,
Wが上記グリーンシートより2atomic%多い材料を用い
た。そして、上記グリーンシートにこの導電性ペースト
からなる導電パターンを印刷し、乾燥させた。
On the other hand, 10 g of nickel powder having an average particle diameter of 0.5 μm, 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol, and 2.5 g of an additive material (sintering delay material) were stirred. And was stirred for 10 hours to obtain a conductive paste for internal electrodes. Mo as an additive material,
A material in which W is 2 atomic% higher than that of the green sheet was used. Then, a conductive pattern made of this conductive paste was printed on the green sheet and dried.

【0050】そして、実施例1と同様にして積層磁器コ
ンデンサを作成し、誘電体層を形成しているセラミック
粒子30〜50個についてTEM−EDSを用いて成分
組成を分析したところ、表1に示すようになった。ま
た、得られた積層磁器コンデンサの電気的特性を実施例
1と同様にして測定したところ、表2に示す通りであっ
た。なお、この誘電体層の微細構造も図2に示すような
微細構造になっていると考えられる。ただし、図2中、
粒子Hは粒子Tと、粒子Iは粒子Uと、粒子Jは粒子V
と置き換えて考える。
Then, a laminated ceramic capacitor was prepared in the same manner as in Example 1, and 30 to 50 ceramic particles forming the dielectric layer were analyzed for composition by TEM-EDS. Came to show. The electrical characteristics of the obtained laminated ceramic capacitor were measured in the same manner as in Example 1, and the results are shown in Table 2. It is considered that the fine structure of this dielectric layer also has a fine structure as shown in FIG. However, in FIG.
Particle H is particle T, particle I is particle U, particle J is particle V
Replace it with

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】表1,2から、誘電体層を構成している誘
電体磁器組成物が成分組成を異にする粒子から構成され
る場合、磁器コンデンサの寿命特性が良好になることが
わかる。
From Tables 1 and 2, it is understood that when the dielectric ceramic composition forming the dielectric layer is composed of particles having different component compositions, the life characteristics of the ceramic capacitor are improved.

【0054】[0054]

【発明の効果】本発明によれば、電気的特性の良い、特
に寿命特性に優れた磁器コンデンサを得ることができる
という効果がある。
According to the present invention, there is an effect that it is possible to obtain a porcelain capacitor having good electric characteristics, particularly excellent life characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1,2に係る誘電体層の微細構造を模式
的に示した説明図である。
FIG. 1 is an explanatory view schematically showing a fine structure of a dielectric layer according to Examples 1 and 2.

【図2】実施例3〜7に係る誘電体層の微細構造を模式
的に示した説明図である。
FIG. 2 is an explanatory view schematically showing the fine structure of dielectric layers according to Examples 3 to 7.

【図3】比較例1に係る誘電体層の微細構造を模式的に
示した説明図である。
FIG. 3 is an explanatory view schematically showing a fine structure of a dielectric layer according to Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 35/495 C04B 35/00 J Fターム(参考) 4G030 AA10 AA11 AA16 AA17 AA19 AA22 AA23 AA24 AA25 AA28 AA37 AA61 BA09 CA03 CA08 GA19 GA24 GA34 4G031 AA06 AA07 AA11 AA12 AA13 AA16 AA17 AA18 AA19 AA22 AA30 AA39 BA09 CA03 CA08 GA08 GA17 5E001 AB03 AE02 AH01 AH09 AJ01 AJ02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C04B 35/495 C04B 35/00 JF term (reference) 4G030 AA10 AA11 AA16 AA17 AA19 AA22 AA23 AA24 AA25 AA28 AA37 AA61 BA09 CA03 CA08 GA19 GA24 GA34 4G031 AA06 AA07 AA11 AA12 AA13 AA16 AA17 AA18 AA19 AA22 AA30 AA39 BA09 CA03 CA08 GA08 GA17 5E001 AB03 AE02 AH01 AH09 AJ01 AJ02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 誘電体磁器組成物からなる誘電体層と、
該誘電体層を挟持している内部電極と、該内部電極に電
気的に接続されている外部電極とを備え、該誘電体磁器
組成物が所定の成分元素の濃度を異にする2種以上のセ
ラミック粒子からなることを特徴とする磁器コンデン
サ。
1. A dielectric layer made of a dielectric ceramic composition,
Two or more kinds of internal electrodes sandwiching the dielectric layer and external electrodes electrically connected to the internal electrode, wherein the dielectric ceramic composition has different concentrations of predetermined constituent elements. A porcelain capacitor characterized by comprising ceramic particles of.
【請求項2】 前記所定の成分元素は前記内部電極間で
濃度勾配を有していることを特徴とする請求項1に記載
の磁器コンデンサ。
2. The ceramic capacitor according to claim 1, wherein the predetermined component element has a concentration gradient between the internal electrodes.
【請求項3】 前記所定の成分元素は前記内部電極に近
いセラミック粒子程濃度が高くなる濃度勾配を有してい
ることを特徴とする請求項2に記載の磁器コンデンサ。
3. The porcelain capacitor according to claim 2, wherein the predetermined component element has a concentration gradient such that the concentration is higher as the ceramic particles are closer to the internal electrodes.
【請求項4】 前記所定の成分元素はBa,Ti,Z
r,希土類元素,Mn,Si,Cr,V,Co,Mo及
びWから選択された1種又は2種以上からなることを特
徴とする請求項1〜3のいずれかに記載の磁器コンデン
サ。
4. The predetermined constituent element is Ba, Ti, Z
The porcelain capacitor according to any one of claims 1 to 3, which is composed of one or more selected from r, rare earth elements, Mn, Si, Cr, V, Co, Mo and W.
【請求項5】 セラミック原料を調整するセラミック原
料調整工程と、セラミック原料を用いてセラミックグリ
ーンシートを形成するシート形成工程と、該セラミック
グリーンシートに導電性ペーストからなる内部電極パタ
ーンを印刷する印刷工程と、該内部電極パターンを印刷
したセラミックグリーンシートを積層して積層体を得る
積層工程と、該積層体を内部電極パターン毎に裁断して
チップ状の積層体を得る裁断工程と、該チップ状の積層
体を非酸化性雰囲気中で焼成する焼成工程と、該焼成工
程を経た該積層体を酸化性雰囲気中で焼成する再酸化工
程とを備え、該原料調製工程が、2種以上の化合物を仮
焼して添加成分粉末を形成する工程と、強誘電性を有す
る主成分粉末と該添加成分粉末とを混合する工程とを備
えていることを特徴とする磁器コンデンサの製造方法。
5. A ceramic raw material adjusting step of adjusting a ceramic raw material, a sheet forming step of forming a ceramic green sheet using the ceramic raw material, and a printing step of printing an internal electrode pattern made of a conductive paste on the ceramic green sheet. A step of laminating ceramic green sheets printed with the internal electrode patterns to obtain a laminate, a step of cutting the laminate for each internal electrode pattern to obtain a chip-like laminate, and a step of cutting the chips. And a reoxidation step of firing the laminated body that has undergone the firing step in an oxidizing atmosphere, wherein the raw material preparation step comprises two or more compounds. Calcination to form an additive component powder, and a step of mixing the ferroelectric component main component powder with the additive component powder. Manufacturing method of porcelain capacitor.
【請求項6】 セラミック原料を調整するセラミック原
料調整工程と、セラミック原料を用いてセラミックグリ
ーンシートを形成するシート形成工程と、該セラミック
グリーンシートに導電性ペーストからなる内部電極パタ
ーンを印刷する印刷工程と、該内部電極パターンを印刷
したセラミックグリーンシートを積層して積層体を得る
積層工程と、該積層体を内部電極パターン毎に裁断して
チップ状の積層体を得る裁断工程と、該チップ状の積層
体を非酸化性雰囲気中で焼成する焼成工程と、該焼成工
程を経た該積層体を酸化性雰囲気中で焼成する再酸化工
程とを備え、該原料調製工程が、強誘電性を有する2種
以上の主成分粉末を混合する工程を備えていることを特
徴とする磁器コンデンサの製造方法。
6. A ceramic raw material adjusting step of adjusting a ceramic raw material, a sheet forming step of forming a ceramic green sheet using the ceramic raw material, and a printing step of printing an internal electrode pattern made of a conductive paste on the ceramic green sheet. A step of laminating ceramic green sheets printed with the internal electrode patterns to obtain a laminate, a step of cutting the laminate for each internal electrode pattern to obtain a chip-like laminate, and a step of cutting the chips. And a re-oxidation step of firing the laminated body that has undergone the firing step in an oxidizing atmosphere, and the raw material preparation step has ferroelectricity. A method of manufacturing a porcelain capacitor, comprising a step of mixing two or more kinds of main component powders.
【請求項7】 セラミック原料を調整するセラミック原
料調整工程と、セラミック原料を用いてセラミックグリ
ーンシートを形成するシート形成工程と、該セラミック
グリーンシートに導電性ペーストからなる内部電極パタ
ーンを印刷する印刷工程と、該内部電極パターンを印刷
したセラミックグリーンシートを積層して積層体を得る
積層工程と、該積層体を内部電極パターン毎に裁断して
チップ状の積層体を得る裁断工程と、該チップ状の積層
体を非酸化性雰囲気中で焼成する焼成工程と、該焼成工
程を経た該積層体を酸化性雰囲気中で焼成する再酸化工
程とを備え、該導電性ペーストはBa,Ti,Zr,希
土類元素,Mn,Si,Cr,V,Co,Mo及びWか
ら選択された1種又は2種以上の元素を含むことを特徴
とする磁器コンデンサの製造方法。
7. A ceramic raw material adjusting step of adjusting a ceramic raw material, a sheet forming step of forming a ceramic green sheet using the ceramic raw material, and a printing step of printing an internal electrode pattern made of a conductive paste on the ceramic green sheet. A step of laminating ceramic green sheets printed with the internal electrode patterns to obtain a laminate, a step of cutting the laminate for each internal electrode pattern to obtain a chip-like laminate, and a step of cutting the chips. And a reoxidation step of firing the laminated body that has undergone the firing step in an oxidizing atmosphere. The conductive paste is made of Ba, Ti, Zr, Porcelain condensate containing one or more elements selected from rare earth elements, Mn, Si, Cr, V, Co, Mo and W Manufacturing method of service.
JP2001297262A 2001-09-27 2001-09-27 Porcelain capacitor and manufacturing method thereof Expired - Lifetime JP4208448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001297262A JP4208448B2 (en) 2001-09-27 2001-09-27 Porcelain capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001297262A JP4208448B2 (en) 2001-09-27 2001-09-27 Porcelain capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003100544A true JP2003100544A (en) 2003-04-04
JP4208448B2 JP4208448B2 (en) 2009-01-14

Family

ID=19118372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001297262A Expired - Lifetime JP4208448B2 (en) 2001-09-27 2001-09-27 Porcelain capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4208448B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930876B1 (en) * 2004-01-30 2005-08-16 Tdk Corporation Multilayer ceramic capacitor
US6975502B2 (en) 2004-03-31 2005-12-13 Tdk Corporation Multilayer ceramic capacitor
US6987662B2 (en) 2004-01-30 2006-01-17 Tdk Corporation Multilayer ceramic capacitor
US7046502B2 (en) 2004-03-31 2006-05-16 Tdk Corporation Multilayer ceramic capacitor
JP2007119275A (en) * 2005-10-26 2007-05-17 Kyocera Corp Dielectric ceramic
JP2009035431A (en) * 2007-07-31 2009-02-19 Taiyo Yuden Co Ltd Dielectric porcelain, method for producing the same, and laminated ceramic capacitor using the same
KR20150077352A (en) 2013-12-27 2015-07-07 가부시키가이샤 무라타 세이사쿠쇼 Monolithic ceramic capacitor
KR20150077336A (en) 2013-12-27 2015-07-07 가부시키가이샤 무라타 세이사쿠쇼 Monolithic ceramic capacitor
KR20160076841A (en) * 2014-12-23 2016-07-01 삼성전기주식회사 multilayer ceramic electronic component and method of manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE40665E1 (en) 2004-01-30 2009-03-17 Tdk Corporation Multilayer ceramic capacitor
US6987662B2 (en) 2004-01-30 2006-01-17 Tdk Corporation Multilayer ceramic capacitor
US6930876B1 (en) * 2004-01-30 2005-08-16 Tdk Corporation Multilayer ceramic capacitor
US6975502B2 (en) 2004-03-31 2005-12-13 Tdk Corporation Multilayer ceramic capacitor
US7046502B2 (en) 2004-03-31 2006-05-16 Tdk Corporation Multilayer ceramic capacitor
KR100683542B1 (en) 2004-03-31 2007-02-15 티디케이가부시기가이샤 Stacked ceramic condensor
JP2007119275A (en) * 2005-10-26 2007-05-17 Kyocera Corp Dielectric ceramic
JP2009035431A (en) * 2007-07-31 2009-02-19 Taiyo Yuden Co Ltd Dielectric porcelain, method for producing the same, and laminated ceramic capacitor using the same
KR20150077352A (en) 2013-12-27 2015-07-07 가부시키가이샤 무라타 세이사쿠쇼 Monolithic ceramic capacitor
KR20150077336A (en) 2013-12-27 2015-07-07 가부시키가이샤 무라타 세이사쿠쇼 Monolithic ceramic capacitor
US9263190B2 (en) 2013-12-27 2016-02-16 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor having high moisture resistance
US9390855B2 (en) 2013-12-27 2016-07-12 Murata Manufacturing Co., Ltd. Monolithic ceramic capacitor containing perovskite compound
KR20160076841A (en) * 2014-12-23 2016-07-01 삼성전기주식회사 multilayer ceramic electronic component and method of manufacturing the same
KR101659182B1 (en) * 2014-12-23 2016-09-22 삼성전기주식회사 multilayer ceramic electronic component and method of manufacturing the same
US10269492B2 (en) 2014-12-23 2019-04-23 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and method of manufacturing the same

Also Published As

Publication number Publication date
JP4208448B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
CN101517672B (en) Multilayer ceramic capacitor and method for production thereof
JP6213337B2 (en) Dielectric porcelain composition and electronic component
JP5246185B2 (en) Dielectric ceramic and multilayer ceramic capacitor
KR101494851B1 (en) Laminated ceramic capacitor and method for producing laminated ceramic capacitor
JP2001006966A (en) Ceramic capacitor and its manufacture
CN104246929B (en) Laminated ceramic capacitor
JP2002080276A (en) Dielectric ceramic composition and ceramic capacitor
JP2015046589A (en) Laminated ceramic electronic part
JP4697582B2 (en) Dielectric ceramic, dielectric ceramic manufacturing method, and multilayer ceramic capacitor
CN114914085B (en) Dielectric composition, electronic component, and laminated electronic component
JP2017120854A (en) Ceramic electronic component
KR20100103388A (en) Barium titanate dielectric powder, method for manufacturing the same, method for manufacturing ceramic green sheet, and method for manufacturing laminated ceramic capacitor
CN105967680B (en) Dielectric ceramic compositions and ceramic electronic components
KR101650746B1 (en) Laminate ceramic capacitor and method for producing same
JP2003100544A (en) Porcelain capacitor and its manufacturing method
JP5786704B2 (en) Dielectric porcelain composition and electronic component
JP2011241129A (en) Dielectric ceramic composition and ceramic electronic component
JP2002321983A (en) Manufacturing method of dielectric ceramic material and dielectric ceramic capacitor
JP7396157B2 (en) Dielectric ceramic compositions and electronic components
JP4622518B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2003124049A (en) Laminated ceramic capacitor
JP2002265265A (en) Dielectric porcelain composition and porcelain capacitor
JP3908458B2 (en) Method for producing dielectric ceramic composition
JPWO2011162044A1 (en) Dielectric ceramic composition and multilayer ceramic electronic component
JP2022088409A (en) Ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R150 Certificate of patent or registration of utility model

Ref document number: 4208448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250