JP3450903B2 - Non-reducing dielectric porcelain composition - Google Patents

Non-reducing dielectric porcelain composition

Info

Publication number
JP3450903B2
JP3450903B2 JP16655494A JP16655494A JP3450903B2 JP 3450903 B2 JP3450903 B2 JP 3450903B2 JP 16655494 A JP16655494 A JP 16655494A JP 16655494 A JP16655494 A JP 16655494A JP 3450903 B2 JP3450903 B2 JP 3450903B2
Authority
JP
Japan
Prior art keywords
insulation resistance
powder
low
dielectric constant
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16655494A
Other languages
Japanese (ja)
Other versions
JPH0831232A (en
Inventor
明宏 金内
真一 大沢
信儀 藤川
博史 小島
雅彦 中西
勝浩 小田
隆 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP16655494A priority Critical patent/JP3450903B2/en
Publication of JPH0831232A publication Critical patent/JPH0831232A/en
Application granted granted Critical
Publication of JP3450903B2 publication Critical patent/JP3450903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、磁器コンデンサ、特に
ニッケル,銅等の卑金属を主成分とする内部電極を有す
る積層型磁器コンデンサに適した非還元性誘電体磁器組
成物に関するものである。 【0002】 【従来技術】従来、一般に積層型磁器コンデンサは、表
面に内部電極が塗布されたBaTiO3を主成分とする
誘電体シートを複数枚積層するとともに、各シートの内
部電極を交互に並列に一対の外部接続用電極に接続し、
これを焼結一体化することにより形成されている。この
ような積層型磁器コンデンサは、近年のエレクトロニク
スの発展に伴い電子部品の小型化が急速に進行し、広範
な電子回路に使用されるようになってきている。 【0003】 【発明が解決しようとする問題点】しかしながら、この
従来のBaTiO3を主成分とする誘電体材料を誘電体
として使用した積層型磁器コンデンサは、内部電極とし
て高価な貴金属であるパラジウム(融点1555℃)ま
たはその合金が使用され、特に静電容量が大きいもので
は内部電極枚数が大となってコスト高となるという問題
があった。従って、従来の積層コンデンサでは容積効率
が高く、誘電的特性に優れ、かつ高信頼性であるにも拘
らず価格面がその発展に大きな障害となっていた。 【0004】一方、上記従来の積層型磁器コンデンサの
高価となる欠点を解消するために、内部電極として安価
な卑金属、例えばニッケルを使用することが試みられて
いる。しかしながら、ニッケルなどの卑金属を内部電極
として使用すると、チタン酸バリウム(BaTiO3
等からなる誘電体と卑金属内部電極とを同時焼結する
際、前記卑金属が酸化する事なく金属膜として焼結する
条件はNi/NiOの平衡酸素分圧が1300℃におい
て約0.03Paであるから、それ以下の酸素分圧でな
ければならず、この場合BaTiO3またはその固溶体
からなる誘電体は、一般に前記の酸素分圧下では還元さ
れてしまって絶縁性を失い、その結果、積層型磁器コン
デンサとしての実用的な誘電特性が得られなくなるとい
う欠点を有していた。 【0005】そこで、ニッケルなどの内部電極を有する
積層型磁器コンデンサとして使用できる磁器組成物とし
て、チタン酸バリウム固溶体(Ba,Ca,Sr)Ti
3において、塩基性酸化物である(Ba,Ca,S
r)Oを酸性酸化物であるTiO2に対して化学量論比
より過剰とした非還元性誘電体磁器組成物が特公昭57
−42588号公報等において提案されている。 【0006】これは一般に、ABO3型結晶において
は、酸素八面体(ペロブスカイト)構造の中心に位置す
るBイオンに対して、Bイオンより大きい酸素に対して
12配位をとるAイオンが化学量論比より過剰である場
合、結晶格子が酸素原子を強く引きつけ、還元され難い
ことが知られており、前記公報に記載された発明は、こ
の化学量論比のずれに立脚し、誘電体の非還元性を向上
させたものである。しかしながら、前記公報に記載され
た誘電体磁器組成物は+25℃を基準にした時の−55
〜125℃における比誘電率の温度変化率が+20〜−
80と大きく、誘電特性が低下するという欠点を有して
いた。 【0007】本発明は、1150℃〜1350℃で焼成
しても還元することがなく、また内部電極として使用す
るニッケルなどの卑金属粉末粒子も酸化することがなく
金属膜として焼結し、高い比誘電率と優れた絶縁性を有
し、かつ誘電率の温度変化率が広い温度範囲にわたって
小さく、誘電正接が小さい極めて経済性の高い高誘電率
系の非還元性誘電体磁器組成物を提供することを目的と
するものである。 【0008】 【問題点を解決するための手段】本発明の非還元性誘電
体磁器組成物は、金属元素のモル比による組成式を10
0(Ba1-xCaX1+kTiO3+aRE23+bMnO
+cMgO+dLi2O+eSiO2(REは、Y、G
d、Dy、Ho、Er及びYbのうち少なくとも1種)
と表した時、式中のa,b,c,d,e,x及びkが
0.25≦a≦2.50、0.05≦b≦0.50、
0.50≦c≦8.00、1.50≦d≦4.50、
0.75≦e<2.00、0<x≦0.025、0≦k
<a/50を満足するものである。 【0009】ここで、モル比による組成式を、100
(Ba1-xCaX1+kTiO3+aRE23+bMnO+
cMgO+dLi2O+eSiO2と表した時、BaTi
3100モルに対する希土類元素酸化物RE23のモ
ル比aを、0.25≦a≦2.50としたのは、aが
0.25よりも小さい場合には絶縁抵抗が小さくなり、
積層型磁器コンデンサとしての実用的な誘電特性が得ら
れなくなり、aが2.50よりも大きい場合には比誘電
率が低くなり、焼結性が低下し、絶縁抵抗が小さくなる
からである。aは0.50≦a≦1.00である。 【0010】また、BaTiO3100モルに対するM
nOのモル比bを、0.05≦b≦0.50としたの
は、bが0.05よりも小さい場合には、絶縁抵抗が低
くなり積層型磁器コンデンサとしての実用的な誘電特性
が得られなくなり、bが0.50よりも大きい場合に
は、エージングレートが大きくなり、積層型磁器コンデ
ンサとしての実用的な誘電特性が得られなくなるからで
ある。bは0.10≦b≦0.40、特に0.10≦b
≦0.20である。 【0011】BaTiO3100モルに対するMgOの
モル比cを、0.50≦c≦8.00としたのは、cが
0.50よりも小さい場合には絶縁抵抗が低下するから
であり、cが8.00よりも大きい場合には、比誘電率
が低く、絶縁抵抗も低くなるからである。cは1.00
≦c≦2.00である。 【0012】また、BaTiO3100モルに対するL
2Oのモル比dを、1.50≦d≦4.50としたの
は、dが1.50よりも小さい場合には比誘電率の温度
特性が悪くなり、dが4.50よりも大きい場合には比
誘電率が低くなるからである。dは1.50≦d≦2.
50である。 【0013】さらに、BaTiO3100モルに対する
SiO2のモル比eを、0.75≦e<2.00とした
のは、eが0.75よりも小さい場合には、焼結性が低
下し、焼成温度1350℃で緻密な磁器が得られなくな
り、eが2.00以上となると比誘電率が低く、絶縁抵
抗が低くなるからである。eは0.75≦e≦1.5
0、特には0.75≦e≦1.00である。 【0014】そして、BaのCaによる置換量xを0<
x≦0.025としたのは、xが0.025よりも多く
なると、比誘電率が低くなり、絶縁抵抗も低くなるから
である。xは0<x≦0.010である。 【0015】また、組成式におけるkを0≦k<a/5
0としたのは、kが0よりも小さい場合には絶縁抵抗が
低くなり、kがa/50以上となる場合には焼結性が低
下し緻密化しないからである。kは0.010≦k≦
0.020である。また、本発明においては、BaTi
3の平均結晶粒径は1.5μm以下であることが望ま
しい。これは、BaTiO3の平均結晶粒径が1.5μ
mよりも大きくなると絶縁抵抗が低くなり、誘電率の温
度変化率の絶対値が大きくなる傾向にあるからである。 【0016】即ち、本発明では、BaTiO3100モ
ルに対する希土類元素酸化物RE23のモル比を0.5
0≦a≦1.00、0.10≦b≦0.40、1.00
≦c≦2.00、1.50≦d≦2.50、0.75≦
e≦1.50、0<x≦0.010、0.01≦k≦
0.02であることが望ましい。 【0017】本発明の非還元性誘電体磁器組成物は、例
えば、BaCO3粉末、TiO2粉末、CaCO3粉末を
用い混合後所定温度にて固相反応させ、(Ba,Ca)
TiO3粉末を合成し、粒径1.5μm以下に微粉砕す
る。次にこの合成微粉末(Ba,Ca)TiO3粉末と
MnCO3粉末、MgCO3粉末に、Y23、Gd23
Dy23、Ho23、Er23、Yb23から選ばれる
少なくとも1種の粉末と、Li2CO3粉末と、SiO2
粉末とを加えてそれぞれ所定の割合になるように秤量
し、分散剤、分散媒とともにボールミルにて混合し、原
料スラリーを調整した。このスラリーに有機バインダ
ー、可塑剤を加え、十分撹拌後ドクターブレード法によ
りフィルム状に成形した。このフィルムを積み重ね熱圧
着後所定形状に切断する。そして、この成形体を酸素分
圧3×10-5〜3×10-3Paに制御し、キャリアガス
を窒素ガスとして1150〜1350℃にて焼成するこ
とにより得られる。 【0018】 【作用】本発明においては、1150℃〜1350℃で
焼成しても磁器が還元することがなく、また内部電極と
して使用するニッケルなどの卑金属粉末粒子も酸化する
ことがなく金属膜として焼結し、高い比誘電率と優れた
絶縁性を有し、かつ誘電率の温度変化率が広い温度範囲
にわたって小さく、誘電正接が小さく極めて経済性が高
い。 【0019】MnO、MgO、希土類酸化物(Re
23)の添加は、耐還元性、信頼性の向上に有効に作用
する。これらはアクセプタ準位を形成するものであり、
これらを添加することにより、3×10-5〜3×10-3
Paの低い酸素分圧下で焼成する際に生ずる酸素欠陥に
よって形成されるドナー準位電子を、MnO、MgO、
希土類酸化物を添加することによって形成されるアクセ
プタ準位で再結合せしめることにより、誘電体磁器の半
導体化を抑制し、高い絶縁性を保持するものである。ま
た、エージング特性は、MnO添加量に比例し、MnO
量を限定する事により、エージングの小さい誘電体磁器
組成物が得られる。 【0020】 【実施例】参考例1 出発原料として純度99%以上のBaCO3粉末、Ti
2粉末を用い混合後1150℃にて固相反応させBa
TiO3を合成し、粒径1.5μm以下に微粉砕した。
次にこの合成微粉末BaTiO3とMnCO3粉末、Mg
CO3粉末に、Ho23、Er23、Yb23から選ば
れる少なくとも1種の粉末を加えてそれぞれ表1,2の
割合になるように秤量し、分散剤、分散媒とともにボー
ルミルにて混合し、原料スラリーを調整した。 【0021】このスラリーに有機バインダー、可塑剤を
加え、十分撹拌後ドクターブレード法によりフィルム状
に成形した。このフィルムを積み重ね熱圧着後切断して
(縦)10mm×(横)10mm×(厚み)0.5mm
の試料を得た。この試料を酸素分圧3×10-5Paに制
御し、キャリアガスを窒素ガスとして1250℃にて2
時間焼成した。最後に得られた焼結体の上下両面にIn
−Ga合金を塗布して電気特性用電極とした。 【0022】 【表1】【0023】 【表2】 【0024】次にこれらの評価試料を室温にて48時間
放置した後、周波数1.0kHz、入力信号レベル1.
0Vrmsにて静電容量および誘電正接を測定した。静
電容量から比誘電率を算出した。その後、直流50Vを
1分間印加し、そのときの絶縁抵抗を測定した。また、
−55〜125℃の温度範囲においても上記と同様の条
件にて静電容量および誘電正接を測定し、+25℃での
静電容量に対する各温度での静電容量の変化率を算出し
た。 【0025】上記の結果を表3,4に示す。但し、表1
中のa,b,cは、BaTiO3100モルに対するモ
ル比を示しており、単位はモル部である。また、絶縁抵
抗は静電容量(C,μF)と絶縁抵抗(R,MΩ)との
積(CR,MΩ・μF)で表わした。単位はMΩ・μF
である。 【0026】 【表3】 【0027】 【表4】【0028】表1〜4からも明らかなように、希土類元
素酸化物の添加量aが0.25モル部を下回るNo1で
は絶縁抵抗が低く、逆に3モル部を超えるNo.11、
16、20では比誘電率が低い傾向にあるとともに焼結
性が低下し、絶縁抵抗が低くなる。MgOの量cが1モ
ル部を下回るNo.6では絶縁抵抗が低く、逆に9モル
部を超えるNo.21では比誘電率が低く、絶縁抵抗も
低い。 【0029】また、MnOの量bが8モル部を超えるN
o.26、27では絶縁抵抗が低く、(b+c)値が1
1.2モル部を超えるNo.21、26、34では比誘
電率が低くなる。 【0030】本参考例1の試料ではいずれも比誘電率2
500以上、誘電正接(tanδ)が1.5%以下、絶
縁抵抗1000MΩ・μF以上、比誘電率の温度変化率
が±15%以下と優れた特性を示した。 【0031】参考例2 出発原料として純度99%以上のBaCO3粉末、Ti
2粉末を用い混合後1150℃にて固相反応させBa
TiO3を合成し、粒径1.5μm以下に微粉砕した。
次にこの合成微粉末BaTiO3とMnCO3粉末、Mg
CO3粉末にY23、Gd23、Dy23、Ho23
Er23、Yb23から選ばれる少なくとも1種の粉末
を加え、さらに、Li2CO3粉末、SiO2粉末をそれ
ぞれ表5の割合になるように秤量し、分散剤、分散媒と
ともにボールミルにて混合し、原料スラリーを調整し
た。 【0032】 【表5】【0033】このスラリーに有機バインダー、可塑剤を
加え、十分撹拌後ドクターブレード法によりフィルム状
に成形した。このフィルムを積み重ね熱圧着後切断して
(縦)10mm×(横)10mm×(厚み)0.5mm
の試料を得た。この試料を酸素分圧3×10-5Paに制
御し、キャリアガスを窒素ガスとして1250℃にて2
時間焼成した。最後に得られた焼結体の上下両面にIn
−Ga合金を塗布して電気特性用電極とした。 【0034】次にこれらの評価試料を、参考例1と同様
にして比誘電率、絶縁抵抗、誘電正接および+25℃で
の静電容量に対する各温度での静電容量の変化率を測定
するとともに、評価試料を150℃で1時間熱処理後、
25℃で放置し、1時間後の静電容量に対する10時間
後の静電容量の変化率(エージングレート)を算出し
た。この結果を表6に示す。 【0035】但し、絶縁抵抗は静電容量(C,μF)と
絶縁抵抗(R,MΩ)との積(CR,MΩ・μF)で表
わした。また、表5中におけるa,b,c,d,eはB
aTiO3100モルに対するモル比を示しており、単
位はモル部である。 【0036】 【表6】【0037】表5,6からも明らかなように、希土類酸
化物Re23の添加量aが0.25モル部を下回るNo
13では絶縁抵抗が低く、逆にaが2.5モル部を超え
るNo17では比誘電率が低い傾向にあるとともに焼結
性が低下し、絶縁抵抗が低くなる。また、イオン半径が
大きい希土類元素であるSmを添加したNo25の場
合、誘電損失が大きく、絶縁抵抗が低く、温度特性も悪
い。MgOの量cが0.5モル部を下回るNo7では絶
縁抵抗が低く、逆にcが8モル部を超えるNo12では
比誘電率が低い。また、MnO量bが0.05モル部を
下回るNo1では絶縁抵抗が低く、bが0.5モル部を
超えるNo6ではエージングレートが大きい。Li2
の量dが1.50モル部を下回るNo32では温度特性
が悪く、4.5モル部を上回るNo24では比誘電率が
低い。SiO2量eが0.75モル部を下回るNo18
は焼結性が悪く、eが2.0モル部よりも多いNo31
は比誘電率が低く、絶縁抵抗が悪い。 【0038】実施例 出発原料として純度99%以上のBaCO3粉末、Ti
2粉末、CaCO3粉末を用い混合後1000℃にて固
相反応させ(Ba、Ca)TiO3を合成し、粒径1.
5μm以下に微粉砕した。次にこの合成微粉末(Ba、
Ca)TiO3とMnCO3粉末、MgCO3粉末にY2
3、Gd23、Dy23、Ho23、Er23、Yb2
3から選ばれる少なくとも1種の粉末を加え、Li2CO
3粉末、SiO2粉末をそれぞれ表7の割合になるように
秤量し、分散剤、分散媒とともにボールミルにて混合
し、原料スラリーを調整した。 【0039】 【表7】【0040】このスラリーに有機バインダー、可塑剤を
加え、十分撹拌後ドクターブレード法によりフィルム状
に成形した。このフィルムを積み重ね熱圧着後切断して
(縦)10mm×(横)10mm×(厚み)0.5mm
の試料を得た。この試料を酸素分圧3×105Paに制
御し、キャリアガスを窒素ガスとして1250℃にて2
時間焼成した。最後に得られた焼結体の上下両面にIn
−Ga合金を塗布して電気特性用電極とした。 【0041】次にこれらの評価試料を上記参考例2と同
様にして、比誘電率、絶縁抵抗、誘電正接および+25
℃での静電容量に対する各温度での静電容量の変化率を
測定するとともに、評価試料を150℃で1時間熱処理
後、25℃で放置し、1時間後の静電容量に対する10
時間後の静電容量の変化率(エージングレート)を算出
した。この結果を表8に示す。 【0042】 【表8】 【0043】但し、絶縁抵抗は静電容量(C,μF)と
絶縁抵抗(R,MΩ)との積(CR,MΩ・μF)で表
わした。 【0044】表7,8からも明らかなように、Caのモ
ル比xが0.025モル部を越えるNo39では比誘電
率低く、絶縁抵抗も低い。また、kの値が0を下回るN
o40では絶縁抵抗が低く、kの値がa/50以上のN
o42では焼結性が悪く緻密化せず、比誘電率が低い。
また、イオン半径が大きい希土類元素であるSmを添加
したNo43の場合、誘電損失が大きく、絶縁抵抗が低
く、温度特性も悪い。 【0045】これらの比較例に対し、本発明の試料では
いずれも比誘電率2500以上、誘電正接(tanδ)
が1.0%以下、絶縁抵抗2700MΩ・μF以上、比
誘電率の温度変化率が±15%以下と優れた特性を示し
た。 【0046】 【発明の効果】以上詳述した通り、本発明の非還元性誘
電体磁器組成物は焼成温度が1150〜1350℃の範
囲で、酸素分圧がNi/NiOの平衡酸素分圧以下の焼
成条件で焼成しても、比誘電率、誘電正接、絶縁抵抗、
比誘電率の温度特性において優れた特性を示すことか
ら、ニッケルを主成分とする内部電極を用いた積層形磁
器コンデンサ用の誘電体磁器組成物として実用性に優れ
たものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonporous ceramic capacitor, and more particularly to a non-reducing ceramic capacitor suitable for a laminated ceramic capacitor having internal electrodes mainly composed of a base metal such as nickel or copper. The present invention relates to a dielectric ceramic composition. 2. Description of the Related Art Conventionally, a multilayer ceramic capacitor generally has a structure in which a plurality of dielectric sheets mainly composed of BaTiO 3 having an internal electrode applied to a surface thereof are laminated, and the internal electrodes of each sheet are alternately arranged in parallel. To a pair of external connection electrodes,
It is formed by sintering and integrating this. Such multilayer ceramic capacitors have been used in a wide variety of electronic circuits, as electronic components have been rapidly reduced in size with the development of electronics in recent years. [0003] However, the conventional laminated ceramic capacitor using a dielectric material containing BaTiO 3 as a main component as a dielectric is a conventional palladium (palladium) which is an expensive noble metal as an internal electrode. (Melting point: 1555 ° C.) or an alloy thereof, and particularly when the capacitance is large, there is a problem that the number of internal electrodes increases and the cost increases. Therefore, the conventional multilayer capacitor has a high volumetric efficiency, is excellent in dielectric properties, and has high reliability. [0004] On the other hand, in order to solve the disadvantage of the conventional multilayer ceramic capacitor, which is expensive, it has been attempted to use an inexpensive base metal such as nickel as the internal electrode. However, when a base metal such as nickel is used as the internal electrode, barium titanate (BaTiO 3 )
When simultaneously sintering a dielectric consisting of a base metal and a base metal internal electrode, the condition for sintering the base metal as a metal film without being oxidized is that the equilibrium oxygen partial pressure of Ni / NiO is about 0.03 Pa at 1300 ° C. Therefore, the oxygen partial pressure must be lower than that, and in this case, the dielectric composed of BaTiO 3 or a solid solution thereof is generally reduced under the above oxygen partial pressure and loses the insulating property. There is a disadvantage that practical dielectric properties as a capacitor cannot be obtained. Therefore, as a porcelain composition which can be used as a laminated ceramic capacitor having an internal electrode of nickel or the like, barium titanate solid solution (Ba, Ca, Sr) Ti
O 3 is a basic oxide (Ba, Ca, S
r) A non-reducing dielectric porcelain composition containing O in excess of stoichiometric ratio with respect to TiO 2 as an acidic oxide is disclosed in
No. 42588, for example. Generally, in the ABO 3 type crystal, the stoichiometric amount of the A ion which takes 12 coordination with oxygen larger than the B ion is larger than the B ion located at the center of the oxygen octahedral (perovskite) structure. If the stoichiometric ratio is excessive, it is known that the crystal lattice strongly attracts oxygen atoms and is hardly reduced, and the invention described in the above publication is based on this stoichiometric deviation, It has improved non-reducing properties. However, the dielectric porcelain composition described in the above-mentioned publication has a value of -55 based on + 25 ° C.
The temperature change rate of the relative dielectric constant at -125 ° C is + 20-
It was as large as 80, and had a drawback that the dielectric properties were deteriorated. According to the present invention, even when baked at 1150.degree. C. to 1350.degree. C., no reduction occurs, and base metal powder particles such as nickel used as an internal electrode are sintered as a metal film without being oxidized. Provided is a highly economical non-reducing dielectric ceramic composition having an excellent dielectric constant, excellent insulating properties, a small rate of temperature change of the dielectric constant over a wide temperature range, a small dielectric loss tangent, and an extremely economical high dielectric constant system. The purpose is to do so. The non-reducing dielectric porcelain composition of the present invention has a composition formula of 10 based on the molar ratio of metal elements.
0 (Ba 1-x Ca X ) 1 + k TiO 3 + aRE 2 O 3 + bMnO
+ CMgO + dLi 2 O + eSiO 2 (RE is Y, G
d, Dy, Ho, Er and Yb)
Where a, b, c, d, e, x and k in the formula are 0.25 ≦ a ≦ 2.50, 0.05 ≦ b ≦ 0.50,
0.50 ≦ c ≦ 8.00, 1.50 ≦ d ≦ 4.50,
0.75 ≦ e <2.00, 0 <x ≦ 0.025, 0 ≦ k
<A / 50 is satisfied. Here, the composition formula based on the molar ratio is 100
(Ba 1-x Ca X ) 1 + k TiO 3 + aRE 2 O 3 + bMnO +
When expressed as cMgO + dLi 2 O + eSiO 2 , BaTi
The reason why the molar ratio a of the rare earth element oxide RE 2 O 3 to 100 mol of O 3 is 0.25 ≦ a ≦ 2.50 is that when a is smaller than 0.25, the insulation resistance becomes small,
This is because practical dielectric properties as a laminated ceramic capacitor cannot be obtained, and when a is larger than 2.50, the relative permittivity is reduced, sinterability is reduced, and insulation resistance is reduced. a is 0.50 ≦ a ≦ 1.00. In addition, M per 100 moles of BaTiO 3
The reason why the molar ratio b of nO is set to 0.05 ≦ b ≦ 0.50 is that when b is smaller than 0.05, the insulation resistance becomes low and the practical dielectric properties as a laminated ceramic capacitor are reduced. If b is larger than 0.50, the aging rate increases, and practical dielectric properties as a laminated ceramic capacitor cannot be obtained. b is 0.10 ≦ b ≦ 0.40, especially 0.10 ≦ b
≤0.20. The reason that the molar ratio c of MgO to 100 mol of BaTiO 3 is 0.50 ≦ c ≦ 8.00 is that if c is smaller than 0.50, the insulation resistance is reduced. Is larger than 8.00, the relative dielectric constant is low, and the insulation resistance is low. c is 1.00
≤ c ≤ 2.00. In addition, L per 100 mol of BaTiO 3
The reason why the molar ratio d of i 2 O is set to 1.50 ≦ d ≦ 4.50 is that when d is smaller than 1.50, the temperature characteristic of the relative dielectric constant becomes poor, and d becomes smaller than 4.50. Is too large, the relative dielectric constant becomes low. d is 1.50 ≦ d ≦ 2.
50. Furthermore, the reason why the molar ratio e of SiO 2 to 100 mol of BaTiO 3 is 0.75 ≦ e <2.00 is that when e is smaller than 0.75, the sinterability deteriorates. This is because dense porcelain cannot be obtained at a firing temperature of 1350 ° C., and when e is 2.00 or more, the relative dielectric constant is low and the insulation resistance is low. e is 0.75 ≦ e ≦ 1.5
0, especially 0.75 ≦ e ≦ 1.00. Then, the substitution amount x of Ba for Ca is 0 <
The reason for setting x ≦ 0.025 is that when x is more than 0.025, the relative dielectric constant decreases and the insulation resistance also decreases. x is 0 <x ≦ 0.010. Further, k in the composition formula is 0 ≦ k <a / 5.
The reason for setting the value to 0 is that when k is smaller than 0, the insulation resistance is reduced, and when k is a / 50 or more, the sinterability is reduced and the densification is not performed. k is 0.010 ≦ k ≦
0.020. In the present invention, BaTi
The average crystal grain size of O 3 is desirably 1.5 μm or less. This is because the average crystal grain size of BaTiO 3 is 1.5 μm.
This is because if it is larger than m, the insulation resistance tends to decrease, and the absolute value of the temperature change rate of the dielectric constant tends to increase. That is, in the present invention, the molar ratio of the rare earth element oxide RE 2 O 3 to 100 mol of BaTiO 3 is 0.5
0 ≦ a ≦ 1.00, 0.10 ≦ b ≦ 0.40, 1.00
≤c≤2.00, 1.50≤d≤2.50, 0.75≤
e ≦ 1.50, 0 <x ≦ 0.010, 0.01 ≦ k ≦
Desirably, it is 0.02. The non-reducing dielectric ceramic composition of the present invention is mixed with, for example, BaCO 3 powder, TiO 2 powder and CaCO 3 powder and then subjected to a solid-phase reaction at a predetermined temperature to obtain (Ba, Ca).
A TiO 3 powder is synthesized and pulverized to a particle size of 1.5 μm or less. Next, to this synthetic fine powder (Ba, Ca) TiO 3 powder, MnCO 3 powder and MgCO 3 powder, Y 2 O 3 , Gd 2 O 3 ,
At least one powder selected from Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Yb 2 O 3 , Li 2 CO 3 powder, and SiO 2
The powder was added and weighed to a predetermined ratio, and mixed with a dispersant and a dispersion medium in a ball mill to prepare a raw material slurry. An organic binder and a plasticizer were added to the slurry, and after sufficiently stirring, the slurry was formed into a film by a doctor blade method. The films are stacked and cut into a predetermined shape after thermocompression bonding. Then, the molded body is obtained by controlling the oxygen partial pressure to 3 × 10 −5 to 3 × 10 −3 Pa and firing at 1150 to 1350 ° C. using a nitrogen gas as a carrier gas. According to the present invention, the porcelain does not reduce even when fired at 1150 ° C. to 1350 ° C., and base metal powder particles such as nickel used as internal electrodes are not oxidized and formed into a metal film. It is sintered, has a high relative dielectric constant and excellent insulating properties, has a small temperature change rate of the dielectric constant over a wide temperature range, has a small dielectric loss tangent, and is extremely economical. MnO, MgO, rare earth oxides (Re
The addition of 2 O 3 ) effectively works to improve reduction resistance and reliability. These form acceptor levels,
By adding these, 3 × 10 −5 to 3 × 10 −3
Donor level electrons formed by oxygen defects generated when firing under a low oxygen partial pressure of Pa are MnO, MgO,
The recombination at the acceptor level formed by adding the rare-earth oxide suppresses the dielectric ceramic from becoming a semiconductor and maintains high insulating properties. The aging characteristics are proportional to the amount of MnO added, and MnO
By limiting the amount, a dielectric ceramic composition with small aging can be obtained. EXAMPLES Reference Example 1 BaCO 3 powder having a purity of 99% or more as a starting material, Ti
After mixing using O 2 powder, a solid phase reaction is performed at 1150 ° C.
TiO 3 was synthesized and pulverized to a particle size of 1.5 μm or less.
Next, this synthetic fine powder BaTiO 3 and MnCO 3 powder, Mg
At least one powder selected from Ho 2 O 3 , Er 2 O 3 , and Yb 2 O 3 is added to CO 3 powder and weighed so as to have a ratio shown in Tables 1 and 2, respectively. The mixture was mixed in a ball mill to prepare a raw material slurry. An organic binder and a plasticizer were added to the slurry, and after sufficiently stirring, the slurry was formed into a film by a doctor blade method. This film is stacked and cut after thermocompression bonding (vertical) 10 mm x (horizontal) 10 mm x (thickness) 0.5 mm
Sample was obtained. This sample was controlled at an oxygen partial pressure of 3 × 10 −5 Pa, and the carrier gas was nitrogen at 2250 ° C. at 1250 ° C.
Fired for hours. In the upper and lower surfaces of the finally obtained sintered body, In
An electrode for electrical characteristics was formed by applying a -Ga alloy. [Table 1] [Table 2] Next, after leaving these evaluation samples at room temperature for 48 hours, a frequency of 1.0 kHz and an input signal level of 1.
The capacitance and the dielectric loss tangent were measured at 0 Vrms. The relative permittivity was calculated from the capacitance. Thereafter, a direct current of 50 V was applied for 1 minute, and the insulation resistance at that time was measured. Also,
In the temperature range of −55 to 125 ° C., the capacitance and the dielectric loss tangent were measured under the same conditions as above, and the rate of change of the capacitance at each temperature with respect to the capacitance at + 25 ° C. was calculated. The above results are shown in Tables 3 and 4. However, Table 1
“A”, “b” and “c” in the table indicate the molar ratio with respect to 100 mol of BaTiO 3 , and the unit is a molar part. The insulation resistance was represented by the product (CR, MΩ · μF) of the capacitance (C, μF) and the insulation resistance (R, MΩ). The unit is MΩ ・ μF
It is. [Table 3] [Table 4] As is clear from Tables 1 to 4, No. 1 in which the addition amount a of the rare earth element oxide is less than 0.25 mol part has a low insulation resistance, and conversely, No. 1 in which the addition amount a exceeds 3 mol parts. 11,
In Nos. 16 and 20, the relative permittivity tends to be low, and the sinterability is reduced, and the insulation resistance is reduced. When the amount c of MgO was less than 1 mole part, In No. 6, the insulation resistance was low, and conversely, No. In No. 21, the relative dielectric constant is low and the insulation resistance is low. When the amount b of MnO exceeds 8 mol parts,
o. 26 and 27, the insulation resistance was low and the (b + c) value was 1
No. exceeding 1.2 mole parts. In 21, 26 and 34, the relative permittivity is low. Each of the samples of Reference Example 1 had a relative dielectric constant of 2
It exhibited excellent characteristics of 500 or more, a dielectric loss tangent (tan δ) of 1.5% or less, an insulation resistance of 1000 MΩ · μF or more, and a temperature change rate of relative permittivity of ± 15% or less. Reference Example 2 BaCO 3 powder having a purity of 99% or more, Ti
After mixing using O 2 powder, a solid phase reaction is performed at 1150 ° C.
TiO 3 was synthesized and pulverized to a particle size of 1.5 μm or less.
Next, this synthetic fine powder BaTiO 3 and MnCO 3 powder, Mg
CO 3 powder Y 2 O 3, Gd 2 O 3, Dy 2 O 3, Ho 2 O 3,
At least one kind of powder selected from Er 2 O 3 and Yb 2 O 3 was added, and further, Li 2 CO 3 powder and SiO 2 powder were weighed so as to have the ratios shown in Table 5, respectively. The mixture was mixed in a ball mill to prepare a raw material slurry. [Table 5] An organic binder and a plasticizer were added to the slurry, and after sufficient stirring, a film was formed by a doctor blade method. This film is stacked and cut after thermocompression bonding (vertical) 10 mm x (horizontal) 10 mm x (thickness) 0.5 mm
Sample was obtained. This sample was controlled at an oxygen partial pressure of 3 × 10 −5 Pa, and the carrier gas was nitrogen at 2250 ° C. at 1250 ° C.
Fired for hours. In the upper and lower surfaces of the finally obtained sintered body, In
An electrode for electrical characteristics was formed by applying a -Ga alloy. Next, the relative dielectric constant, insulation resistance, dielectric loss tangent and the rate of change of the capacitance at each temperature with respect to the capacitance at + 25 ° C. were measured for these evaluation samples in the same manner as in Reference Example 1. After heat treating the evaluation sample at 150 ° C. for 1 hour,
It was left at 25 ° C., and the change rate (aging rate) of the capacitance after 10 hours with respect to the capacitance after 1 hour was calculated. Table 6 shows the results. Here, the insulation resistance was represented by the product (CR, MΩ · μF) of the capacitance (C, μF) and the insulation resistance (R, MΩ). In Table 5, a, b, c, d, and e are B
The molar ratio is shown with respect to 100 moles of aTiO 3, and the unit is a mole part. [Table 6] As is clear from Tables 5 and 6, when the addition amount a of the rare earth oxide Re 2 O 3 is less than 0.25 mole part,
In the case of No. 13, the insulation resistance is low. On the contrary, in the case of No. 17 in which a exceeds 2.5 mol parts, the specific permittivity tends to be low, the sinterability is reduced, and the insulation resistance is reduced. In the case of No. 25 to which Sm, which is a rare earth element having a large ionic radius, is added, the dielectric loss is large, the insulation resistance is low, and the temperature characteristics are poor. In the case of No. 7 in which the amount c of MgO is less than 0.5 mol part, the insulation resistance is low, and in the case of No. 12 in which c exceeds 8 mol part, the relative dielectric constant is low. In addition, the insulation resistance is low in No. 1 in which the MnO amount b is less than 0.05 mol part, and the aging rate is large in No. 6 in which b exceeds 0.5 mol part. Li 2 O
No. 32 in which the amount d is less than 1.50 mol parts has poor temperature characteristics, and No. 24 in which the amount d exceeds 4.5 mol parts has a low relative dielectric constant. No18 where the SiO 2 amount e is less than 0.75 mol part
No. 31 has poor sinterability, and e is more than 2.0 mol parts.
Has low dielectric constant and poor insulation resistance. EXAMPLES As starting materials, BaCO 3 powder having a purity of 99% or more, Ti
After mixing using O 2 powder and CaCO 3 powder, a solid-phase reaction was performed at 1000 ° C. to synthesize (Ba, Ca) TiO 3 , and the particle size was 1.
It was pulverized to 5 μm or less. Next, this synthetic fine powder (Ba,
Ca) TiO 3 and MnCO 3 powder, MgCO 3 powder with Y 2 O
3, Gd 2 O 3, Dy 2 O 3, Ho 2 O 3, Er 2 O 3, Yb 2 O
At least one powder selected from the group consisting of Li 2 CO 3
The three powders and the SiO 2 powder were each weighed so as to have the ratios shown in Table 7, and mixed with a dispersant and a dispersion medium in a ball mill to prepare a raw material slurry. [Table 7] An organic binder and a plasticizer were added to the slurry, and the mixture was sufficiently stirred and formed into a film by a doctor blade method. This film is stacked and cut after thermocompression bonding (vertical) 10 mm x (horizontal) 10 mm x (thickness) 0.5 mm
Sample was obtained. This sample was controlled at an oxygen partial pressure of 3 × 10 5 Pa, and the carrier gas was nitrogen gas at 1250 ° C. for 2 hours.
Fired for hours. In the upper and lower surfaces of the finally obtained sintered body, In
An electrode for electrical characteristics was formed by applying a -Ga alloy. Next, in the same manner as in Reference Example 2 above, these evaluation samples were used to determine the relative dielectric constant, insulation resistance, dielectric loss tangent, and +25.
The rate of change of the capacitance at each temperature with respect to the capacitance at 100 ° C. was measured.
The change rate (aging rate) of the capacitance after time was calculated. Table 8 shows the results. [Table 8] Here, the insulation resistance was represented by the product (CR, MΩ · μF) of the capacitance (C, μF) and the insulation resistance (R, MΩ). As is clear from Tables 7 and 8, in No. 39, where the molar ratio x of Ca exceeds 0.025 mol part, the relative dielectric constant is low and the insulation resistance is low. Also, when the value of k is less than 0, N
In the case of o40, the insulation resistance is low, and the value of k is a / 50 or more.
In the case of o42, the sinterability was poor, the film was not densified, and the relative dielectric constant was low.
In the case of No. 43 to which Sm, which is a rare earth element having a large ionic radius, is added, the dielectric loss is large, the insulation resistance is low, and the temperature characteristics are poor. In contrast to these comparative examples, the samples of the present invention all have a relative dielectric constant of 2500 or more and a dielectric loss tangent (tan δ).
Was 1.0% or less, the insulation resistance was 2700 MΩ · μF or more, and the temperature change rate of the relative dielectric constant was ± 15% or less, showing excellent characteristics. As described in detail above, the non-reducing dielectric ceramic composition of the present invention has a firing temperature in the range of 1150 to 1350 ° C. and an oxygen partial pressure of not more than the equilibrium oxygen partial pressure of Ni / NiO. , The relative dielectric constant, dielectric loss tangent, insulation resistance,
Since it shows excellent characteristics in the temperature characteristics of relative permittivity, it is excellent in practicality as a dielectric ceramic composition for a laminated ceramic capacitor using an internal electrode containing nickel as a main component.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中西 雅彦 鹿児島県川内市高城町1810番地 京セラ 株式会社鹿児島川内工場内 (72)発明者 小田 勝浩 鹿児島県川内市高城町1810番地 京セラ 株式会社鹿児島川内工場内 (72)発明者 前田 隆 鹿児島県川内市高城町1810番地 京セラ 株式会社鹿児島川内工場内 (56)参考文献 特開 昭63−103861(JP,A) 特開 平4−264305(JP,A) 特開 平4−264306(JP,A) 特開 昭60−119006(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 3/12 303 C04B 35/46 H01G 4/12 358 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Masahiko Nakanishi 1810 Takagicho, Kawauchi City, Kagoshima Prefecture Kyocera Co., Ltd.Katsushima Kawauchi Plant (72) Inventor Katsuhiro Oda 1810 Takashirocho, Kawauchi City, Kagoshima Prefecture (72) Inventor Takashi Maeda 1810 Takagi-cho, Kawauchi-shi, Kagoshima Prefecture Kyocera Inside the Kagoshima Sendai Plant (56) References JP-A-63-103861 (JP, A) JP-A-4-264305 (JP, A) JP-A-4-264306 (JP, A) JP-A-60-119006 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01B 3/12 303 C04B 35/46 H01G 4 / 12 358

Claims (1)

(57)【特許請求の範囲】 【請求項1】金属元素のモル比による組成式を100
(Ba1-xCax1+kTiO3+aRE23+bMnO+
cMgO+dLi2O+eSiO2(REは、Y、Gd、
Dy、Ho、Er及びYbのうち少なくとも1種)と表
した時、式中のa,b,c,d,e,x及びkが 0.25≦a≦2.50 0.05≦b≦0.50 0.50≦c≦8.00 1.50≦d≦4.50 0.75≦e<2.00 0 <x≦0.025 0 ≦k<a/50 を満足することを特徴とする非還元性誘電体磁器組成
物。
(57) [Claims 1] The composition formula based on the molar ratio of metal elements is 100
(Ba 1-x Ca x ) 1 + k TiO 3 + aRE 2 O 3 + bMnO +
cMgO + dLi 2 O + eSiO 2 (RE is Y, Gd,
Dy, Ho, Er and Yb), a, b, c, d, e, x and k in the formula are 0.25 ≦ a ≦ 2.50 0.05 ≦ b ≦ 0.50 0.50 ≦ c ≦ 8.00 1.50 ≦ d ≦ 4.50 0.75 ≦ e <2.00 0 <x ≦ 0.025 0 ≦ k <a / 50 Non-reducing dielectric porcelain composition.
JP16655494A 1994-07-19 1994-07-19 Non-reducing dielectric porcelain composition Expired - Fee Related JP3450903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16655494A JP3450903B2 (en) 1994-07-19 1994-07-19 Non-reducing dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16655494A JP3450903B2 (en) 1994-07-19 1994-07-19 Non-reducing dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH0831232A JPH0831232A (en) 1996-02-02
JP3450903B2 true JP3450903B2 (en) 2003-09-29

Family

ID=15833419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16655494A Expired - Fee Related JP3450903B2 (en) 1994-07-19 1994-07-19 Non-reducing dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3450903B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW434600B (en) * 1998-02-17 2001-05-16 Murata Manufacturing Co Dielectric ceramic composition, laminated ceramic capacitor, and method for producing the laminate ceramic capacitor
JP3091192B2 (en) 1998-07-29 2000-09-25 ティーディーケイ株式会社 Dielectric porcelain composition and electronic component
JP3709914B2 (en) * 1998-08-11 2005-10-26 株式会社村田製作所 Multilayer ceramic capacitor
JP3760364B2 (en) 1999-07-21 2006-03-29 Tdk株式会社 Dielectric porcelain composition and electronic component
JP4557472B2 (en) * 2001-08-29 2010-10-06 京セラ株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP2005335963A (en) * 2004-05-24 2005-12-08 Matsushita Electric Ind Co Ltd Dielectric ceramic composition and laminated ceramic capacitor using the same
JP2006290675A (en) * 2005-04-11 2006-10-26 Matsushita Electric Ind Co Ltd Dielectric ceramic composition and multilayer ceramic capacitor using the same
KR100632001B1 (en) 2005-07-29 2006-10-09 삼성전기주식회사 Glass compositions for low temperature sintering, glass frit, dielectric compositions and multilayer ceramic condenser using the same
CN101522588B (en) 2006-10-27 2012-08-29 京瓷株式会社 Dielectric ceramic and capacitor
WO2009016860A1 (en) * 2007-07-27 2009-02-05 Kyocera Corporation Dielectric ceramic and laminated ceramic capacitor
JP5225241B2 (en) * 2009-09-24 2013-07-03 株式会社村田製作所 Multilayer ceramic electronic components
JP6696267B2 (en) 2016-03-30 2020-05-20 Tdk株式会社 Dielectric ceramic composition and multilayer ceramic capacitor

Also Published As

Publication number Publication date
JPH0831232A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
JP3046436B2 (en) Ceramic capacitors
JP4521387B2 (en) Reduction-resistant dielectric ceramic composition
US6072688A (en) Ceramic multilayer capacitor
JPH0678189B2 (en) Non-reducing high dielectric constant dielectric ceramic composition
JP2003286079A (en) Nonreducible dielectric ceramic composition
US5264402A (en) Non-reducible dielectric ceramic composition
KR0161348B1 (en) Non-reduced dielectric ceramic compositions
JP3450903B2 (en) Non-reducing dielectric porcelain composition
JP3389408B2 (en) Multilayer capacitors
JPH0825795B2 (en) Non-reducing dielectric ceramic composition
JPH0785460B2 (en) Multilayer porcelain capacitor
US4723193A (en) Low temperature sintered ceramic capacitor with a temperature compensating capability, and method of manufacture
JPH0680562B2 (en) Non-reducing dielectric ceramic composition
JP3250932B2 (en) Non-reducing dielectric porcelain composition
JPH11219844A (en) Dielectric ceramic and laminated ceramic capacitor
JP3368599B2 (en) Non-reducing dielectric porcelain composition
KR100268702B1 (en) compound of dielectric ceramic
JPH0825791B2 (en) Non-reducing dielectric ceramic composition
JPH09315861A (en) Dielectric ceramics composition
JPS61251563A (en) High permittivity ceramic composition
JP2958826B2 (en) Dielectric porcelain composition
JPH0782775B2 (en) Non-reducing dielectric ceramic composition
JP3318951B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JPH1121166A (en) Dielectric porcelain and multilayer ceramic capacitor
JPS63156062A (en) High permittivity ceramic composition and manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees