JPH0782775B2 - Non-reducing dielectric ceramic composition - Google Patents
Non-reducing dielectric ceramic compositionInfo
- Publication number
- JPH0782775B2 JPH0782775B2 JP60142314A JP14231485A JPH0782775B2 JP H0782775 B2 JPH0782775 B2 JP H0782775B2 JP 60142314 A JP60142314 A JP 60142314A JP 14231485 A JP14231485 A JP 14231485A JP H0782775 B2 JPH0782775 B2 JP H0782775B2
- Authority
- JP
- Japan
- Prior art keywords
- dielectric
- composition
- batio
- ceramic composition
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁器コンデンサ、特にニッケルから成る内部電
極を有する積層型磁器コンデンサの非還元性誘電体磁器
組成物に関するものである。Description: TECHNICAL FIELD The present invention relates to a non-reducing dielectric porcelain composition for a porcelain capacitor, particularly a laminated porcelain capacitor having internal electrodes made of nickel.
従来、一般に積層型磁器コンデンサは表面に内部電極が
塗布されたシート状のBaTiO3を主成分とする誘電体を複
数枚積層するとともに各シートの内部電極を交互に並列
に一対の外部接続用電極に接続し、これを焼結一体化す
ることにより形成されている。このような積層型磁器コ
ンデンサは近年のエレクトロニクスの進展に伴ない電子
部品の小型化が急速に進行し、広範な電子回路に使用さ
れるようになってきている。Conventionally, in general, a laminated porcelain capacitor is formed by laminating a plurality of sheet-like dielectrics containing BaTiO 3 as a main component with internal electrodes coated on the surface, and by alternately arranging the internal electrodes of each sheet in parallel. Is formed by sintering and integrating the same. Such multilayer ceramic capacitors have been rapidly used in a wide range of electronic circuits due to rapid miniaturization of electronic components accompanying the recent progress of electronics.
しかしながら、この従来のBaTiO3を主成分とする誘電体
材料は1250℃〜1350℃の高温で焼成する必要があり、こ
の材料を積層型磁器コンデンサの誘電体として使用した
場合、内部電極は前記誘電体の焼成温度にて溶融するこ
となく、かつ酸化することがない高価な貴金属であるパ
ラジウム(融点1555℃)またはその合金が使用され、特
に静電容量が大きいものでは内部電極数が大となってコ
スト高となる欠点を有していた。したがって従来の積層
型磁器コンデンサは容量効率が高く、その他誘電的特性
に優れ、かつ高信頼性にあるにも拘わらず価格面がその
進展に大きな障害となっていた。However, this conventional BaTiO 3 -based dielectric material must be fired at a high temperature of 1250 ° C to 1350 ° C, and when this material is used as the dielectric of a laminated ceramic capacitor, the internal electrodes are Palladium (melting point 1555 ° C), which is an expensive noble metal that does not melt at the firing temperature of the body and does not oxidize, or its alloy is used. Especially, in the case of large capacitance, the number of internal electrodes becomes large. It had the drawback of high cost. Therefore, the conventional multilayer ceramic capacitor has high capacity efficiency, excellent dielectric characteristics, and high reliability, but its price is a major obstacle to its progress.
そこで、上記従来の積層型磁器コンデンサの高価となる
欠点を解消するために内部電極として安価な卑金属、例
えばニッケルを使用することが試みられている。しかし
ながら、ニッケルなどの卑金属を内部電極として使用す
ると、チタン酸バリウム(BaTiO3)等から成る誘電体と
卑金属内部電極とを同時焼結する際、前記卑金属が酸化
することなく金属膜として焼結する条件はNi/NiOの平衡
酸素分圧が1300℃において約3×10-7atmであるから、
それ以下の酸素分圧でなければならず、この場合チタン
酸バリウムまたはその固溶体からなる誘電体は、一般に
前記の酸素分圧下では還元されてしまって絶縁性を失な
い、その結果積層型磁器コンデンサとしての実用的な誘
電体特性が得られなくなるという欠点を有していた。Therefore, it has been attempted to use an inexpensive base metal, such as nickel, as the internal electrodes in order to solve the disadvantage that the conventional multilayer ceramic capacitor is expensive. However, when a base metal such as nickel is used as the internal electrode, when the dielectric composed of barium titanate (BaTiO 3 ) and the base metal internal electrode are simultaneously sintered, the base metal is sintered as a metal film without being oxidized. The condition is that the equilibrium oxygen partial pressure of Ni / NiO is about 3 × 10 -7 atm at 1300 ° C.
The oxygen partial pressure should be lower than that, and in this case, the dielectric made of barium titanate or a solid solution thereof is generally reduced under the above-mentioned oxygen partial pressure and does not lose its insulating property, and as a result, a multilayer ceramic capacitor. However, it has a drawback that the practical dielectric property as described above cannot be obtained.
また一方、ニッケルなどの内部電極を有する積層型磁器
コンデンサとして使用できる非還元性誘電体磁器組成物
として、チタン酸バリウム固溶体(Ba,Ca,Sr)TiO3にお
いて塩基性酸化物である(Ba,Ca,Sr)Oを、酸性酸化物
であるTiO2に対して化学量論比より過剰とし、ニッケル
などの卑金属を内部電極として使用できる非還元性誘電
体磁器組成物が特公昭57−42588号公報等において提案
されている。On the other hand, as a non-reducing dielectric ceramic composition that can be used as a laminated ceramic capacitor having internal electrodes such as nickel, barium titanate solid solution (Ba, Ca, Sr) TiO 3 is a basic oxide (Ba, A non-reducing dielectric ceramic composition in which Ca, Sr) O is used in excess of the stoichiometric ratio with respect to TiO 2 which is an acidic oxide and a base metal such as nickel can be used as an internal electrode is disclosed in Japanese Patent Publication No. 57-42588. It is proposed in the gazette and the like.
これは一般に、ABO3型結晶においては、酸素八面体(ペ
ロブスカイト)構造の中心に位置するBイオンに対し
て、Bイオンより大きい酸素に対して12配位をとるAイ
オンが化学量論比より過剰である場合、結晶格子が酸素
原子を強く引きつけ、還元され難いことが知られてお
り、前記公報に記載された発明は、この化学量論比のず
れに立脚し、誘電体の非還元性を向上させたものであ
る。This is generally because, in the ABO 3 type crystal, the A ion having 12 coordination with oxygen larger than the B ion is more stoichiometric than the B ion located at the center of the oxygen octahedral (perovskite) structure. It is known that when the amount is excessive, the crystal lattice strongly attracts oxygen atoms and is difficult to be reduced, and the invention described in the above publication is based on the deviation of the stoichiometric ratio, and the non-reducing property of the dielectric material. Is improved.
しかしながら、前記公報に記載された誘電体磁器組成物
は誘電率の温度変化率が大きく、誘電体特性が低下する
という欠点を有していた。However, the dielectric ceramic composition described in the above publication has a drawback that the rate of change of the dielectric constant with temperature is large and the dielectric properties are deteriorated.
また誘電率の温度変化率が小さい高誘電率系誘電体磁器
組成物としてBaTiO3にスズ酸ビスマス〔Bi2(Sn
O3)3〕、ジルコニウム酸ビスマス〔Bi2(ZrO3)3〕
などのビスマス系化合物あるいはジルコニウム酸ニッケ
ル〔(NiZrO3)〕やジルコニウム酸マグネシウム〔(Mg
ZrO3)〕を添加したものがある。これはビスマス系化合
物あるいはジルコニウム酸ニッケルやジルコニウム酸マ
グネシウムの強いデプレッサー効果によりBaTiO3のキュ
リー点近傍での誘電率の極大値を低下させ、誘電率の温
度変化率を小さくさせたものである。しかしながらニッ
ケルなどの卑金属を内部電極としBaTiO3にビスマス系化
合物あるいはジルコニウム酸ニッケルやジルコニウム酸
マグネシウムを添加した誘電体を前記Ni/NiOの平衡酸素
分圧以下で同時焼成する場合、前記誘電体は還元されて
しまって絶縁性を失ない、その結果、満足な誘電体特性
が得られなくなるという欠点を有していた。In addition, as a high-dielectric-constant dielectric ceramic composition with a small rate of change in permittivity with temperature, BaTiO 3 was added to bismuth stannate [Bi 2
O 3) 3], zirconium bismuth [Bi 2 (ZrO 3) 3]
Bismuth compounds such as nickel zirconate [(NiZrO 3 )] and magnesium zirconate [(Mg
ZrO 3 )] is added. This is because the maximum value of the dielectric constant near the Curie point of BaTiO 3 is lowered by the strong depressor effect of the bismuth compound or nickel zirconate or magnesium zirconate, and the temperature change rate of the dielectric constant is reduced. However, when a base metal such as nickel is used as an internal electrode and a dielectric material obtained by adding a bismuth-based compound or nickel zirconate or magnesium zirconate to BaTiO 3 is co-fired below the equilibrium oxygen partial pressure of Ni / NiO, the dielectric is reduced. Therefore, the insulating property is not lost, and as a result, satisfactory dielectric properties cannot be obtained.
更に、前記Ni/NiOの平衡酸素分圧付近で焼成しても誘電
体自身は還元されず誘電率の温度変化率が小さい非還元
性高誘電率系誘電体磁器組成物としてBaTiO3−MnO−MgO
系組成物が特開昭57−71866号公報において提案されて
いる。Furthermore, BaTiO 3 as the Ni / dielectric be calcined near the equilibrium oxygen partial pressure of NiO own non-reducing temperature change rate is small in dielectric constant without being reduced high dielectric constant type dielectric ceramic composition -MnO- MgO
A system composition has been proposed in JP-A-57-71866.
これはMnO及びMgOがBaTiO3の還元を抑制する作用をな
し、前記平衡酸素分圧付近で焼成しても誘電体は還元さ
れず、充分な絶縁性を有し、更にMgOは前記ビスマス系
化合物と同様のデプレッサー効果を有していることから
誘電率の温度変化率を小さくしたものである。しかしな
がら、前記公報に記載された誘電体磁器組成物は誘電率
それ自体が低く、MgO添加量を増してE.I.A.規格(Elect
ronic Industries Association Standard)の誘電率の
温度変化率(但し、−55℃〜+125℃の範囲で+25℃を
基準とする)を±15%以内にすると誘電率が2200以下と
更に低くなり、実用的な誘電体特性が得られなくなると
いう欠点を有していた。This is because MnO and MgO have the effect of suppressing the reduction of BaTiO 3 , and the dielectric is not reduced even when fired in the vicinity of the equilibrium oxygen partial pressure, and has sufficient insulating properties, and MgO is the bismuth-based compound. Since it has a depressor effect similar to the above, the temperature change rate of the dielectric constant is reduced. However, the dielectric porcelain composition described in the above publication has a low dielectric constant itself, and the amount of MgO added is increased to increase the EIA standard (Electrification).
(ronic Industries Association Standard) Dielectric constant temperature change rate (however, +25 ℃ in the range of -55 ℃ ~ +125 ℃) within ± 15%, the dielectric constant will be lower than 2200, practical It has a drawback that excellent dielectric characteristics cannot be obtained.
本発明は前記欠点に鑑み案出されたもので、その目的は
BaTiO3,CaZrO3およびMnOの組成物において、1250℃〜13
50℃における酸素分圧が3×10-10atm〜3×10-8atmの
雰囲気で焼成するとき還元することがなく、また内部電
極として使用するニッケルなどの卑金属粉末粒子を酸化
することがなく金属膜として焼成し、高い比誘電率と優
れた絶縁性を有し、かつ誘電率の温度変化率が広い温度
範囲にわたって小さく、誘電正接が小さい極めて経済性
の高い高誘電率系の非還元性誘電体磁器組成物を提供す
ることにある。The present invention has been devised in view of the above-mentioned drawbacks, and its purpose is
In the composition of BaTiO 3 , CaZrO 3 and MnO, 1250 ℃ ~ 13
No reduction occurs when firing in an atmosphere with an oxygen partial pressure at 50 ° C. of 3 × 10 −10 atm to 3 × 10 −8 atm, and base metal powder particles such as nickel used as internal electrodes are not oxidized. It is fired as a metal film, has a high relative permittivity and excellent insulation, has a small temperature change rate of the permittivity over a wide temperature range, and has a small dielectric loss tangent. It is to provide a dielectric ceramic composition.
本発明の非還元性誘電体磁器組成物は組成式が (BaTiO3)X・(CaZrO3)Y・(MnO)Z で示される三成分系磁器組成物で、第1図において下記
A,B,C,Dの各点で囲まれた範囲内の組成から成ることを
特徴とするものである、ただし、上記組成式中、X,Y,Z
はモル分率を表わし、X+Y+Z=100を満足する。The non-reducing dielectric porcelain composition of the present invention is a three-component porcelain composition having a composition formula of (BaTiO 3 ) X · (CaZrO 3 ) Y · (MnO) Z, which is shown below in FIG.
A, B, C, is characterized by comprising a composition within the range surrounded by each point, provided that X, Y, Z in the above composition formula
Represents the mole fraction and satisfies X + Y + Z = 100.
X Y Z A 96.0 1.5 2.5 B 88.5 1.5 10.0 C 85.5 4.5 10.0 D 93.0 4.5 2.5 本発明はBaTiO3にCaZrO3及びMnOを同時に添加すること
により前記ビスマス系化合物あるいはジルコニウム酸ニ
ッケルやジルコニウム酸マグネシウムと同様のデプレッ
サー効果が得られ、BaTiO3のキュリー点近傍での誘電率
の極大値を低くし、誘電率の温度変化を小さくするとと
もに、CaZrO3の添加と3×10-10atm〜3×10-8atmの低
い酸素分圧下で焼成する際に生ずる酸素欠陥とによって
形成されるドナー準位電子を、MnOを添加することによ
って形成されるアクセプタ準位で再結合せしめることに
より、誘電体磁器の半導体化を抑制し、高い絶縁性を保
持させたものである。X Y Z A 96.0 1.5 2.5 B 88.5 1.5 10.0 C 85.5 4.5 10.0 D 93.0 4.5 2.5 The present invention is the same as the above-mentioned bismuth-based compound or nickel zirconate or magnesium zirconate by adding CaZrO 3 and MnO to BaTiO 3 at the same time. depressor effect is obtained, to lower the maximum value of the dielectric constant at the Curie point near the BaTiO 3, as well as reduce the temperature change of the dielectric constant, the addition of CaZrO 3 and 3 × 10 -10 atm~3 × 10 - The semiconductor of the dielectric porcelain is obtained by recombining the donor level electron formed by the oxygen defect generated during firing under a low oxygen partial pressure of 8 atm with the acceptor level formed by adding MnO. It suppresses deterioration and maintains high insulation.
次に本発明を実施例に基づき説明する。出発原料として
BaCO3,TiO2を1150℃及びCaCo3,ZrO2を1220℃にて固相反
応させBaTiO3及びCaZrO3を合成するとともに微粉砕し
た。次に前記合成微粉末BaTiO3とCaZrO3及びMnCO3をそ
れぞれ第1表の割合になる様に秤量し、分散剤および分
散媒とともにボールミルにて混合して原料スラリーを調
製した。そして次にこの原料スラリーに可塑剤とともに
有機バインダーを加え、充分撹拌、真空脱泡ののち、ド
クターブレード法によりフィルム状に成形した。次いで
前記フィルムを20枚積み重ね、ホットプレスにより熱圧
着し、得られた板状試料(厚さ0.5mm)を縦約10mm、横
約10mmに切断した。この試料を酸素分圧3×10-10atm〜
3×10-8atmに制御し、キャリアガスをN2ガスとして125
0℃〜1350℃にて2時間焼成した。最後に得られた焼成
体の上下両面にインジウム−ガリウム(In−Ga合金を塗
布した。Next, the present invention will be described based on examples. As a starting material
BaCO 3 and TiO 2 were solid-phase reacted at 1150 ℃ and CaCo 3 and ZrO 2 at 1220 ℃ to synthesize BaTiO 3 and CaZrO 3 and finely pulverized. Next, the synthetic fine powders BaTiO 3 , CaZrO 3 and MnCO 3 were weighed so as to have the proportions shown in Table 1 and mixed with a dispersant and a dispersion medium in a ball mill to prepare a raw material slurry. Then, an organic binder was added to this raw material slurry together with a plasticizer, and the mixture was thoroughly stirred and degassed under vacuum, and then formed into a film by the doctor blade method. Next, 20 of the above films were stacked and thermocompression bonded by hot pressing, and the obtained plate-like sample (thickness 0.5 mm) was cut into a length of about 10 mm and a width of about 10 mm. The oxygen partial pressure of this sample is 3 × 10 -10 atm
It is controlled to 3 × 10 -8 atm and the carrier gas is N 2 gas 125
Firing was performed at 0 ° C to 1350 ° C for 2 hours. An indium-gallium (In-Ga alloy) was applied to both upper and lower surfaces of the finally obtained fired body.
そしてこれらの評価試料を室温にて48時間放置した後、
周波数1.00KHz、入力信号レベル1.0Vrmsにて静電容量お
よび誘電正接を測定し、静電容量から比誘電率を算出し
た。その後直流50Vを1分間印加し、その時の絶縁抵抗
を測定した。また−55℃〜+125℃の温度範囲において
も上記と同様の条件にて静電容量及び誘電正接を測定
し、+25℃での静電容量に対する各温度での静電容量の
変化率を算出した。And after leaving these evaluation samples at room temperature for 48 hours,
The capacitance and dielectric loss tangent were measured at a frequency of 1.00 KHz and an input signal level of 1.0 Vrms, and the relative permittivity was calculated from the capacitance. After that, DC 50V was applied for 1 minute, and the insulation resistance at that time was measured. Also, in the temperature range of -55 ° C to + 125 ° C, the capacitance and the dielectric loss tangent were measured under the same conditions as above, and the rate of change of the capacitance at each temperature with respect to the capacitance at + 25 ° C was calculated. .
上記の結果を第1表に示す。但し、表中の絶縁抵抗は静
電容量(C,μF)と絶縁抵抗(R,MΩ)との積(C・R,M
Ω・μF)で表わした。The above results are shown in Table 1. However, the insulation resistance in the table is the product of the capacitance (C, μF) and the insulation resistance (R, MΩ) (C ・ R, M
Ω · μF).
第1表から明らかな様に、試料番号1,2,3,4はCaZrO3の
モル分率が15未満の場合であり、MnOのモル分率が2.5以
上同時に添加してもデプレッサ効果が作用せず、前述の
比誘電率の温度変化率が±15%を越えてE.I.A.規格から
はずれてしまい、また絶縁抵抗か890MΩ・μF以下と極
めて低く、比誘電率も2547以下と小さくなっている。ま
た試料番号37,38,39,40に示すように、CaZrO3のモル分
率が4.5を超える場合、および試料番号5,20,30に示すよ
うに、MnOのモル分率が2.5未満の場合には、前述の比誘
電率の温度変化率が±15%を超え、E.I.A.規格からはず
れてしまう。また試料番号12,36はMnOの添加量がモル分
率で10.0を超えた場合で、比誘電率が2490以下となり、
いずれも実用的な誘電特性が得られていない。 As is clear from Table 1, sample Nos. 1, 2, 3 , and 4 are when the CaZrO 3 mole fraction is less than 15, and the depressor effect works even if the MnO mole fraction is 2.5 or more at the same time. However, the temperature change rate of the relative permittivity exceeds ± 15% and deviates from the EIA standard, and the insulation resistance is extremely low at 890 MΩ · μF or less, and the relative permittivity is also small at 2547 or less. When the molar fraction of CaZrO 3 exceeds 4.5, as shown in sample numbers 37, 38, 39, 40, and when the molar fraction of MnO is less than 2.5, as shown in sample numbers 5, 20, 30. However, the above-mentioned temperature change rate of relative permittivity exceeds ± 15%, which is outside the EIA standard. In addition, sample numbers 12 and 36, when the addition amount of MnO exceeds 10.0 in mole fraction, the relative dielectric constant is 2490 or less,
None of them have practical dielectric properties.
それに対し、本発明の請求範囲内の誘電体磁器組成物
は、比誘電率が2591〜3347と十分大きく、絶縁抵抗C・
Rが1016〜2733MΩ・μFと非常に大きく、かつ前述の
比誘電率の温度変化率も±15%以内となり、いずれも優
れた優電特性を有している。On the other hand, the dielectric ceramic composition within the scope of the claims of the present invention has a sufficiently large relative permittivity of 2591 to 3347 and an insulation resistance of C.
R is as large as 1016 to 2733 MΩ · μF, and the rate of change in the relative permittivity with temperature is within ± 15%, and all of them have excellent electric charge characteristics.
第1図におけるABCDの各点に囲まれた本発明の範囲内の
誘電体磁器組成物は比誘電率、誘電正接tanδ、絶縁抵
抗C・R、比誘電率の温度特性のいずれの特性において
も満足し得るものである。The dielectric porcelain composition within the scope of the present invention surrounded by each point of ABCD in FIG. 1 has any of the temperature characteristics of relative permittivity, dielectric loss tangent tan δ, insulation resistance C · R, and relative permittivity. It is satisfactory.
また、本発明において、焼成温度が1250℃〜1350℃の範
囲で酸素分圧がNi/NiOの平衡酸素分圧以下の焼成条件で
は、誘電体磁器はニッケル金属電極と同時に焼結するこ
とができ、かつ焼結磁器の誘電特性を全て満足し、その
上ニッケル金属微粒子も酸化することなく金属膜として
焼結するものであることから、ニッケルを内部電極とす
る積層型磁器コンデンサの誘電体磁器として十分実用性
のあることが理解される。Further, in the present invention, the firing temperature is in the range of 1250 ℃ ~ 1350 ℃, the firing condition of oxygen partial pressure is equal to or less than the equilibrium oxygen partial pressure of Ni / NiO, the dielectric porcelain can be sintered simultaneously with the nickel metal electrode. In addition, since it satisfies all the dielectric characteristics of sintered porcelain and also sinters nickel metal fine particles as a metal film without being oxidized, it can be used as a dielectric porcelain of a laminated porcelain capacitor with nickel as an internal electrode. It is understood that it is sufficiently practical.
第1図は本発明の非還元性誘電体磁器組成物の組成範囲
を示す三元系図である。FIG. 1 is a ternary diagram showing the composition range of the non-reducing dielectric ceramic composition of the present invention.
Claims (1)
A,B,C,Dの各点で囲まれた範囲内の組成から成る非還元
性誘電体磁器組成物。ただし、上記組成式中、X,Y,Zは
モル分率を表わし、X+Y+Z=100を満足する。 X Y Z A 96.0 1.5 2.5 B 88.5 1.5 10.0 C 85.5 4.5 10.0 D 93.0 4.5 2.51. A ternary porcelain composition having a composition formula of (BaTiO 3 ) X. (CaZrO 3 ) Y. (MnO) Z, which is shown below in FIG.
A non-reducing dielectric ceramic composition having a composition within a range surrounded by points A, B, C, and D. However, in the above composition formula, X, Y and Z represent mole fractions and satisfy X + Y + Z = 100. XYZ A 96.0 1.5 2.5 B 88.5 1.5 10.0 C 85.5 4.5 10.0 D 93.0 4.5 2.5
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60142314A JPH0782775B2 (en) | 1985-06-27 | 1985-06-27 | Non-reducing dielectric ceramic composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60142314A JPH0782775B2 (en) | 1985-06-27 | 1985-06-27 | Non-reducing dielectric ceramic composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS622408A JPS622408A (en) | 1987-01-08 |
JPH0782775B2 true JPH0782775B2 (en) | 1995-09-06 |
Family
ID=15312472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60142314A Expired - Lifetime JPH0782775B2 (en) | 1985-06-27 | 1985-06-27 | Non-reducing dielectric ceramic composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0782775B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113307622B (en) * | 2021-07-07 | 2023-03-10 | 天津大学 | High-performance reduction-resistant barium titanate-based dielectric ceramic and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5646641A (en) * | 1979-09-25 | 1981-04-27 | Toshiba Corp | Method of installing horizontal axis type rotary electric machine |
JPS5739001A (en) * | 1980-08-20 | 1982-03-04 | Kawasaki Steel Corp | Reducing method for crop in blooming process |
JPS5771866A (en) * | 1980-10-16 | 1982-05-04 | Tdk Electronics Co Ltd | Non-reducing dielectric ceramic composition |
-
1985
- 1985-06-27 JP JP60142314A patent/JPH0782775B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS622408A (en) | 1987-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100326951B1 (en) | Dielectric ceramic composition and monolithic ceramic capacitor | |
US5668694A (en) | Multilayer ceramic chip capacitor | |
JP3039397B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor using the same | |
JP3326513B2 (en) | Multilayer ceramic chip capacitors | |
US20030210512A1 (en) | Non-reducing dielectric ceramic, monolithic ceramic capacitor using the same, and method for making non-reducing dielectric ceramic | |
JPH0678189B2 (en) | Non-reducing high dielectric constant dielectric ceramic composition | |
JPS61250905A (en) | Dielectric ceramic composition and manufacture thereof | |
JP3450903B2 (en) | Non-reducing dielectric porcelain composition | |
JP7037945B2 (en) | Ceramic capacitors and their manufacturing methods | |
JPH0785460B2 (en) | Multilayer porcelain capacitor | |
JPH0825795B2 (en) | Non-reducing dielectric ceramic composition | |
JPH0680562B2 (en) | Non-reducing dielectric ceramic composition | |
US5202814A (en) | Nonreducing dielectric ceramic composition | |
JP3634930B2 (en) | Dielectric porcelain composition | |
JP2660010B2 (en) | High dielectric constant porcelain composition and ceramic capacitor | |
EP0446814B1 (en) | Nonreducing dielectric ceramic composition | |
JPH0782775B2 (en) | Non-reducing dielectric ceramic composition | |
JPH0825791B2 (en) | Non-reducing dielectric ceramic composition | |
JP2789110B2 (en) | High dielectric constant porcelain composition | |
JP3064518B2 (en) | Dielectric porcelain composition | |
JPH11219844A (en) | Dielectric ceramic and laminated ceramic capacitor | |
JP3250932B2 (en) | Non-reducing dielectric porcelain composition | |
JPS61251563A (en) | High permittivity ceramic composition | |
JP2958826B2 (en) | Dielectric porcelain composition | |
JPH0987014A (en) | Production of high dielectric constant porcelain composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |