JP3250932B2 - Non-reducing dielectric porcelain composition - Google Patents

Non-reducing dielectric porcelain composition

Info

Publication number
JP3250932B2
JP3250932B2 JP32730594A JP32730594A JP3250932B2 JP 3250932 B2 JP3250932 B2 JP 3250932B2 JP 32730594 A JP32730594 A JP 32730594A JP 32730594 A JP32730594 A JP 32730594A JP 3250932 B2 JP3250932 B2 JP 3250932B2
Authority
JP
Japan
Prior art keywords
molar ratio
represented
insulation resistance
batio
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32730594A
Other languages
Japanese (ja)
Other versions
JPH08183659A (en
Inventor
明宏 金内
真一 大沢
隆 前田
芳博 藤岡
信儀 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32730594A priority Critical patent/JP3250932B2/en
Publication of JPH08183659A publication Critical patent/JPH08183659A/en
Application granted granted Critical
Publication of JP3250932B2 publication Critical patent/JP3250932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は磁器コンデンサ、特にニ
ッケル(Ni)を主成分とする内部電極を有する積層型
磁器コンデンサの非還元性誘電体磁器組成物に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic capacitor, and more particularly to a non-reducing dielectric ceramic composition for a laminated ceramic capacitor having internal electrodes mainly composed of nickel (Ni).

【0002】[0002]

【従来の技術】従来、一般に積層型磁器コンデンサは、
その表面に内部電極が印刷形成されたシート状のBaT
iO3 を主成分とする誘電体を、複数枚積層するととも
に各シートの内部電極を交互に並列に一対の外部接続用
電極に接続し、これを焼結一体化することにより形成さ
れており、このような積層型磁器コンデンサは、近年の
エレクトロニクスの発展に伴い、小型化が急速に進行す
る電子部品の各種電子回路に多用されるようになってき
ている。
2. Description of the Related Art Conventionally, multilayer ceramic capacitors are generally
Sheet-shaped BaT with internal electrodes printed on its surface
It is formed by laminating a plurality of dielectrics mainly composed of iO 3 , connecting the internal electrodes of each sheet alternately and in parallel to a pair of external connection electrodes, and sintering and integrating them. Such multilayer ceramic capacitors have been widely used in various electronic circuits of electronic components whose miniaturization progresses rapidly with the development of electronics in recent years.

【0003】係る従来のBaTiO3 を主成分とする誘
電体材料は、1250℃〜1350℃の高温で焼結する
必要があり、この材料を積層型磁器コンデンサの誘電体
として使用した場合、内部電極は前記誘電体の焼結温度
にて溶融することなく、かつ酸化することがない高価な
貴金属であるパラジウム(融点1555℃)またはその
合金を使用する必要があり、特に静電容量が大きいもの
では内部電極の構成枚数が大となり、コスト高になると
いう問題があった。
[0003] Such a conventional dielectric material containing BaTiO 3 as a main component must be sintered at a high temperature of 1250 ° C to 1350 ° C. When this material is used as a dielectric of a laminated ceramic capacitor, an internal electrode is formed. It is necessary to use palladium (melting point: 1555 ° C.), which is an expensive noble metal that does not melt and does not oxidize at the sintering temperature of the dielectric, or an alloy thereof. There has been a problem that the number of components of the internal electrodes becomes large and the cost increases.

【0004】従って、従来の積層型磁器コンデンサは、
容積効率が高く、誘電的特性に優れ、かつ高信頼性にあ
るにもかかわらず、価格面がその発展に大きな障害とな
っていた。
Therefore, the conventional multilayer ceramic capacitor is
Despite high volumetric efficiency, excellent dielectric properties, and high reliability, price has been a major obstacle to its development.

【0005】そこで、内部電極として安価な卑金属、例
えばニッケル(Ni)等を使用することが試みられてい
るが、前記卑金属を内部電極として使用すると、チタン
酸バリウム(BaTiO3 )等からなる誘電体と卑金属
内部電極とを同時焼結する際、前記卑金属が酸化するこ
となく金属膜として焼結できる条件は、Ni/NiOの
平行酸素分圧が1300℃において約0.03Paであ
ることから、それ以下の酸素分圧でなければならず、こ
の場合、BaTiO3 またはその固溶体からなる誘電体
は、一般に前記酸素分圧下では還元されて絶縁性を失
い、その結果、積層型磁器コンデンサとしての実用的な
誘電特性が得られなくなるという欠点を有していた。
Therefore, it has been attempted to use an inexpensive base metal such as nickel (Ni) as the internal electrode. However, if the base metal is used as the internal electrode, a dielectric made of barium titanate (BaTiO 3 ) or the like is used. When the base metal and the base metal internal electrode are simultaneously sintered, the condition that the base metal can be sintered as a metal film without being oxidized is that the parallel oxygen partial pressure of Ni / NiO is about 0.03 Pa at 1300 ° C. The oxygen partial pressure must be as follows. In this case, the dielectric composed of BaTiO 3 or a solid solution thereof is generally reduced under the oxygen partial pressure and loses its insulating property. However, it has a drawback that it is not possible to obtain excellent dielectric properties.

【0006】そこで、ニッケル(Ni)等の内部電極を
有する積層型磁器コンデンサ用の非還元性誘電体磁器組
成物として、塩基性酸化物である(Ba、Ca、Sr)
Oを酸性酸化物であるTiO2 に対して化学量論比より
過剰にしたチタン酸バリウム固溶体(Ba、Ca、S
r)TiO3 から成る非還元性誘電体磁器組成物が、特
公昭57−42588号公報等に提案されている。
Therefore, a basic oxide (Ba, Ca, Sr) is used as a non-reducing dielectric ceramic composition for a multilayer ceramic capacitor having an internal electrode such as nickel (Ni).
Barium titanate solid solution (Ba, Ca, S) in which O is added in excess of stoichiometric ratio to TiO 2 as an acidic oxide
r) Non-reducing dielectric ceramic compositions comprising TiO 3 have been proposed in Japanese Patent Publication No. 57-42588.

【0007】[0007]

【発明が解決しようとする課題】一般に、ABO3 型結
晶は、酸素八面体(ペロブスカイト)構造の中心に位置
するBイオンに対して、Bイオンより大きい酸素に対し
て12配位をとるAイオンが化学量論比より過剰である
場合、結晶格子が酸素原子を強く引きつけ、還元され難
いことが知られており、前記非還元性誘電体磁器組成物
は、この化学量論比のずれに立脚し、誘電体の非還元性
を向上させたものであるが、誘電率の温度変化率が大き
く、誘電特性が低下するという課題を有していた。
Generally, an ABO 3 type crystal has an A ion which has a coordination of 12 atoms with oxygen, which is larger than B ion, with respect to a B ion located at the center of an oxygen octahedral (perovskite) structure. When the stoichiometric ratio is in excess of the stoichiometric ratio, it is known that the crystal lattice strongly attracts oxygen atoms and is difficult to be reduced, and the non-reducing dielectric ceramic composition is based on this stoichiometric deviation. However, although the non-reducing property of the dielectric is improved, there is a problem that the temperature change rate of the dielectric constant is large and the dielectric characteristics are deteriorated.

【0008】[0008]

【発明の目的】本発明は前記課題に鑑みなされたもの
で、その目的は、1150℃〜1250℃における酸素
分圧が3×10-8〜3×10-3Paの雰囲気で焼成して
も還元されず、また内部電極として使用するニッケル
(Ni)等の卑金属粉末粒子も酸化せずに金属膜として
焼結し、高い比誘電率と優れた絶縁性を有し、かつ誘電
率の温度変化率が広い温度範囲にわたって小さく、誘電
正接も小さい極めて経済性の高い非還元性誘電体磁器組
成物を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has as its object the purpose of firing even in an atmosphere at an oxygen partial pressure of 3 × 10 −8 to 3 × 10 −3 Pa at 1150 ° C. to 1250 ° C. Not reduced, and base metal powder particles such as nickel (Ni) used as an internal electrode are sintered as a metal film without being oxidized, and have a high relative dielectric constant, excellent insulating properties, and a change in dielectric constant with temperature. An object of the present invention is to provide a highly economical non-reducing dielectric ceramic composition having a low modulus over a wide temperature range and a small dielectric loss tangent.

【0009】[0009]

【課題を解決するための手段】本発明の非還元性誘電体
磁器組成物は、金属元素として少なくともBa、Ti、
Mg、Mn、Y、Li及びSiを含有する複合酸化物で
あって、前記金属元素の内、Ba、Mg、Mnのモル比
による組成式を100BaTiO3+xMgO+yMn
Oと表したとき、BaTiO3 100モルに対するモ
ル比を表すx、yが0.50≦x≦8.00、0.05
≦y≦0.50で示される主成分に対して、前記金属元
素の内、Y、Li、Siのモル比による組成式をaY2
3+bLi2O+cSiO2と表したとき、モル比を表
すa、b及びcが10≦a≦60、10≦b≦60、3
0≦c≦80、a+b+c=100で示される添加物を
仮焼後、前記主成分に対して1〜4重量%含有させてな
り、絶縁抵抗が1000MΩ・μF以上、エージングレ
ートが1.5%以下であることを特徴とする。また、本
発明の非還元性誘電体磁器組成物は、金属元素として少
なくともBa、Ti、Mg、Mn、Y、B及びSiを含
有する複合酸化物であって、前記金属元素の内、Ba、
Mg、Mnのモル比による組成式を100BaTiO3
+xMgO+yMnOと表したとき、BaTiO3
00モルに対するモル比を表すx、yが0.50≦x≦
8.00、0.05≦y≦0.50で示される主成分に
対して、前記金属元素の内、Y、B、Siのモル比によ
る組成式をaY23+bB23+cSiO2と表したと
き、モル比を表すa、b及びcが10≦a≦60、10
≦b≦60、30≦c≦80、a+b+c=100で示
される添加物を仮焼後、前記主成分に対して1〜4重量
%含有させたことを特徴とする。
The non-reducing dielectric ceramic composition of the present invention comprises at least Ba, Ti,
A composite oxide containing Mg, Mn, Y, Li, and Si, wherein a composition formula based on a molar ratio of Ba, Mg, and Mn among the metal elements is 100 BaTiO 3 + xMgO + yMn.
When represented by O, x and y representing a molar ratio to 100 mol of BaTiO 3 are 0.50 ≦ x ≦ 8.00, 0.05
With respect to the main component represented by ≦ y ≦ 0.50, the composition formula based on the molar ratio of Y, Li, and Si among the metal elements is represented by aY 2
O 3 + bLi 2 O + cSiO 2 and when expressed, a representative of the molar ratio, b and c are 10 ≦ a ≦ 60,10 ≦ b ≦ 60,3
After calcination, an additive represented by 0 ≦ c ≦ 80 and a + b + c = 100 is contained in an amount of 1 to 4% by weight with respect to the main component, the insulation resistance is 1000 MΩ · μF or more, and the aging rate is 1.5%. It is characterized by the following. Further, the non-reducing dielectric ceramic composition of the present invention is a composite oxide containing at least Ba, Ti, Mg, Mn, Y, B and Si as metal elements, and among the metal elements, Ba,
The composition formula based on the molar ratio of Mg and Mn is 100 BaTiO 3
+ XMgO + yMnO, BaTiO 3 1
X and y representing the molar ratio with respect to 00 mol are 0.50 ≦ x ≦
With respect to the main component represented by 8.00 and 0.05 ≦ y ≦ 0.50, the composition formula based on the molar ratio of Y, B, and Si among the metal elements is represented by aY 2 O 3 + bB 2 O 3 + cSiO 2. When a, b and c representing the molar ratio are 10 ≦ a ≦ 60,
The additive represented by ≦ b ≦ 60, 30 ≦ c ≦ 80, and a + b + c = 100 was calcined and then contained in an amount of 1 to 4% by weight based on the main component.

【0010】前記主成分のモル比による組成式を、10
0BaTiO3 +xMgO+yMnOと表わしたとき、
BaTiO3 100モルに対するMgOのモル比xを、
0.50≦x≦8.00としたのは、xが0.50より
小さい場合には絶縁抵抗が低く、xが8.0より大きい
場合には、比誘電率が小さい上に、絶縁抵抗も低くなる
からであり、xは1.0〜2.0がより望ましい。
The composition formula based on the molar ratio of the main component is represented by 10
When expressed as 0BaTiO 3 + xMgO + yMnO,
The molar ratio x of MgO to 100 moles of BaTiO 3 is
When 0.50 ≦ x ≦ 8.00, the insulation resistance is low when x is smaller than 0.50, and when x is larger than 8.0, the dielectric constant is small and the insulation resistance is small. X is more preferably 1.0 to 2.0.

【0011】また、BaTiO3 100モルに対するM
nOのモル比yを、0.05≦y≦0.50としたの
は、yが0.05より小さい場合には絶縁抵抗が低く、
yが0.50より大きい場合には、エージングレートが
大きくなるからであり、yは0.1〜0.2がより望ま
しい。
In addition, M per 100 moles of BaTiO 3
The reason why the molar ratio y of nO is 0.05 ≦ y ≦ 0.50 is that when y is smaller than 0.05, the insulation resistance is low,
This is because when y is larger than 0.50, the aging rate increases, and y is more preferably 0.1 to 0.2.

【0012】一方、前記添加物のモル比による組成式
を、aY2 3 +bLi2 O+cSiO2 (a+b+c
=100)と表したとき、Y2 3 のモル比aを、10
≦a≦60としたのは、aが10より小さい場合には絶
縁抵抗が低く、aが60より大きい場合には、比誘電率
が小さくなり、焼結性が低下し、絶縁抵抗も低いからで
あり、aは20〜40がより望ましい。
On the other hand, the composition formula based on the molar ratio of the additive is represented by aY 2 O 3 + bLi 2 O + cSiO 2 (a + b + c
= 100), the molar ratio a of Y 2 O 3 is 10
The reason for setting ≦ a ≦ 60 is that when a is smaller than 10, the insulation resistance is low, and when a is larger than 60, the relative dielectric constant is reduced, the sinterability is reduced, and the insulation resistance is also low. And a is more preferably 20 to 40.

【0013】また、Li2 OあるいはB2 3 のモル比
bを、10≦a≦60としたのは、bが10より小さい
場合には容量の温度特性が悪くなり、bが60より大き
い場合には、比誘電率が小さくなるからであり、bは2
0〜40がより望ましい。
The reason why the molar ratio b of Li 2 O or B 2 O 3 is set to 10 ≦ a ≦ 60 is that when b is smaller than 10, the temperature characteristic of the capacity is deteriorated and b is larger than 60. In this case, the relative dielectric constant becomes small, and b is 2
0 to 40 is more desirable.

【0014】また、SiO2 のモル比cを、30≦a≦
80としたのは、cが30より小さい場合には焼結性が
低下し、cが80より大きい場合には、比誘電率が小さ
くなるからであり、cは30〜50が望ましい。
Further, the molar ratio c of SiO 2 is set so that 30 ≦ a ≦
The reason for setting the value to 80 is that when c is smaller than 30, the sinterability is reduced, and when c is larger than 80, the relative dielectric constant is reduced.

【0015】更に、前記添加物の含有量を1〜4重量%
としたのは、含有量が1重量%より小さい場合には焼結
性が低下し、含有量が4重量%より大きい場合には、比
誘電率が小さくなるからであり、とりわけ前記含有量は
1.5〜2.5重量%がより望ましい。
Further, the content of the additive is 1 to 4% by weight.
The reason for this is that when the content is less than 1% by weight, the sinterability decreases, and when the content is more than 4% by weight, the relative dielectric constant decreases. 1.5 to 2.5% by weight is more desirable.

【0016】本発明において、BaTiO3 の平均結晶
粒径は1.5μm以下であることが望ましい。これは、
BaTiO3 の平均結晶粒径が1.5μmよりも大きく
なると絶縁抵抗が低くなり、容量の温度変化率の絶対値
が大きくなる傾向にあるからである。
In the present invention, the average crystal grain size of BaTiO 3 is desirably 1.5 μm or less. this is,
This is because when the average crystal grain size of BaTiO 3 is larger than 1.5 μm, the insulation resistance tends to decrease, and the absolute value of the temperature change rate of the capacitance tends to increase.

【0017】また、BaTiO3 の粒径と比表面積の積
が1.2以下であることが望ましく、1.2を越えると
絶縁抵抗が低くなる傾向にある。
It is desirable that the product of the particle diameter of BaTiO 3 and the specific surface area is 1.2 or less, and if it exceeds 1.2, the insulation resistance tends to decrease.

【0018】本発明の非還元性誘電体磁器組成物は、以
下の手順により得られる。先ず、BaCO3 粉末、Ti
2 粉末を混合後、所定温度にて固相反応させてBaT
iO3 粉末を合成し、粒径1.5μm以下に微粉砕す
る。
The non-reducing dielectric ceramic composition of the present invention is obtained by the following procedure. First, BaCO 3 powder, Ti
After mixing the O 2 powder, a solid phase reaction
An iO 3 powder is synthesized and pulverized to a particle size of 1.5 μm or less.

【0019】次に、Y2 3 粉末、SiO2 粉末と、L
2 CO3 粉末あるいはB2 3 粉末を所定の割合にな
るように秤量して混合後、所定温度にて仮焼して添加物
を得る。
Next, Y 2 O 3 powder, SiO 2 powder, L
The i 2 CO 3 powder or the B 2 O 3 powder is weighed to a predetermined ratio, mixed and then calcined at a predetermined temperature to obtain an additive.

【0020】次いで、前記合成微粉末BaTiO3 と、
MnCO3 粉末、MgO粉末に、前記添加物をそれぞれ
所定の割合になるように秤量し、分散剤、分散媒ととも
にボールミルにて混合し、原料スラリーを調整する。そ
して、このスラリーに有機バインダー、可塑剤を加え、
十分に撹拌した後、ドクターブレード法によりフィルム
状に成形する。得られたフィルムを積み重ねて熱圧着し
た後、所定形状に切断する。最後にこの成型体を、酸素
分圧を3×10-8〜3×10-3Paに制御し、キャリア
ガスを窒素ガスとした雰囲気中、1150〜1250℃
の温度にて焼成する。
Next, the above-mentioned synthetic fine powder BaTiO 3 ,
The additives are weighed to MnCO 3 powder and MgO powder so as to have a predetermined ratio, and mixed with a dispersant and a dispersion medium in a ball mill to prepare a raw material slurry. Then, add an organic binder and a plasticizer to this slurry,
After sufficient stirring, the mixture is formed into a film by a doctor blade method. After the obtained films are stacked and thermocompression bonded, they are cut into a predetermined shape. Finally, the molded body is controlled at an oxygen partial pressure of 3 × 10 −8 to 3 × 10 −3 Pa, and in an atmosphere in which a carrier gas is nitrogen gas, at 1150 to 1250 ° C.
At a temperature of

【0021】[0021]

【作用】本発明の非還元性誘電体磁器組成物によれば、
MnO及びMgOはアクセプタ準位を形成するものであ
り、これらを添加することにより3×10-8〜3×10
-3Paの低い酸素分圧下で焼成する際に生ずる酸素欠陥
により形成されるドナー準位電子を、MnOおよびMg
O添加により形成されるアクセプタ準位で再結合せし
め、誘電体磁器の半導体化を抑制し、高い絶縁性を保持
するものである。
According to the non-reducing dielectric ceramic composition of the present invention,
MnO and MgO form an acceptor level. By adding these, 3 × 10 −8 to 3 × 10
Donor level electrons formed by oxygen defects generated when firing under a low oxygen partial pressure of -3 Pa are MnO and Mg.
Recombination takes place at the acceptor level formed by the addition of O, which suppresses the formation of the dielectric ceramic into a semiconductor and maintains high insulating properties.

【0022】また、Y2 3 、SiO2 と、Li2 Oあ
るいはB2 3 は焼結助剤として働くとともに、粒界成
分として存在し、磁器の耐還元性、信頼性を向上させ
る。
In addition, Y 2 O 3 , SiO 2 , Li 2 O or B 2 O 3 act as a sintering aid and also exist as a grain boundary component to improve the reduction resistance and reliability of the porcelain.

【0023】一方、エージング特性は、MnO量に比例
することから、MnO量を限定することによりエージン
グレートの小さい誘電体磁器組成物が得られる。
On the other hand, since the aging characteristic is proportional to the amount of MnO, a dielectric ceramic composition having a small aging rate can be obtained by limiting the amount of MnO.

【0024】[0024]

【実施例】以下、本発明の非還元性誘電体磁器組成物
を、実施例に基づき詳細に説明する。先ず、出発原料と
して純度99%以上のBaCO3 粉末とTiO2 粉末を
混合した後、1150℃の温度で固相反応させてBaT
iO3 粉末を合成し、粒径1.5μm以下に微粉砕し
た。
EXAMPLES Hereinafter, the non-reducing dielectric ceramic composition of the present invention will be described in detail based on examples. First, BaCO 3 powder having a purity of 99% or more and TiO 2 powder are mixed as starting materials, and then solid-phase reaction is performed at a temperature of 1150 ° C. to form BaT.
iO 3 powder was synthesized and pulverized to a particle size of 1.5 μm or less.

【0025】次に、Y2 3 粉末とSiO2 粉末、更に
Li2 CO3 粉末あるいはB2 3粉末を表1及び表2
の割合になるように秤量して混合した後、1000℃の
温度にて仮焼し、添加物を作製した。
Next, a Y 2 O 3 powder and a SiO 2 powder, and further a Li 2 CO 3 powder or a B 2 O 3 powder are shown in Tables 1 and 2.
, And then calcined at a temperature of 1000 ° C. to produce an additive.

【0026】その後、主成分である前記合成微粉末Ba
TiO3 とMnCO3 粉末、MgCO3 粉末に、前記添
加物をそれぞれ表1及び表2の割合になるように秤量
し、公知の分散剤、分散媒とともにボールミルにて混合
し、原料スラリーを調製した。
Thereafter, the synthetic fine powder Ba as the main component is
TiO 3 and MnCO 3 powder, the MgCO 3 powder, the weighed additive to respective concentrations on the percentage of Tables 1 and 2, known dispersing agent, is mixed in a ball mill together with a dispersion medium to prepare a raw material slurry .

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】次に、前記原料スラリーに有機バインダ
ー、可塑剤を加え、十分に撹拌した後、ドクターブレー
ド法によりフィルム状に成形し、このフィルムを積み重
ねて熱圧着した後、切断して縦10mm、横10mm、
厚さ0.5mmの積層体を作製した。
Next, an organic binder and a plasticizer were added to the raw material slurry, and the mixture was sufficiently stirred, formed into a film shape by a doctor blade method, stacked and thermocompressed, cut, and cut to a length of 10 mm. 10 mm wide,
A laminate having a thickness of 0.5 mm was produced.

【0030】その後、前記積層体を酸素分圧が3×10
-8〜3×10-3Paとなるように制御し、キャリアガス
を窒素ガスとして1150〜1250℃の温度で2時間
焼成した。かくして得られた焼結体の上下両面に、In
−Ga合金を塗布して電気特性測定用電極を形成し、評
価試料を作製した。
Thereafter, the laminate is subjected to an oxygen partial pressure of 3 × 10
-8 to 3 × 10 −3 Pa, and calcined at a temperature of 1150 to 1250 ° C. for 2 hours using nitrogen as a carrier gas. In the upper and lower surfaces of the thus obtained sintered body, In
An electrode for measuring electrical characteristics was formed by applying a -Ga alloy to prepare an evaluation sample.

【0031】次に、前記評価試料を室温にて48時間放
置した後、周波数1.0kHz、入力信号レベル1.0
Vrmsにて静電容量および誘電正接を測定し、静電容
量から比誘電率を算出した。その後、50Vの直流を1
分間印加し、そのときの絶縁抵抗を測定した。
Next, after leaving the evaluation sample at room temperature for 48 hours, a frequency of 1.0 kHz and an input signal level of 1.0
The capacitance and the dielectric loss tangent were measured at Vrms, and the relative permittivity was calculated from the capacitance. Then, 50V DC is
Min, and the insulation resistance at that time was measured.

【0032】また、−55〜125℃の温度範囲におい
ても前記同様の条件にて静電容量および誘電正接を測定
し、+25℃での静電容量に対する各温度での静電容量
の変化率を算出した。
In the temperature range of -55 to 125 ° C., the capacitance and the dielectric loss tangent were measured under the same conditions as above, and the rate of change of the capacitance at each temperature with respect to the capacitance at + 25 ° C. Calculated.

【0033】更に、前記評価試料を150℃で1時間熱
処理した後、25℃で放置し、1時間後の静電容量に対
する10時間後の静電容量の変化率(エージングレー
ト)を算出した。但し、絶縁抵抗は静電容量C(μF)
と絶縁抵抗R(MΩ)との積CR(MΩ・μF)で表わ
した。
Further, after the above-mentioned evaluation sample was heat-treated at 150 ° C. for 1 hour, it was left at 25 ° C., and a change rate (aging rate) of the capacitance after 10 hours with respect to the capacitance after 1 hour was calculated. However, the insulation resistance is the capacitance C (μF)
It was expressed by the product CR (MΩ · μF) of the resistance and the insulation resistance R (MΩ).

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】表3及び表4からも明らかなように、添加
物の含有量が1重量%未満の試料番号14、15、4
6、47では、焼結性が低下し、絶縁抵抗が低く、逆に
4重量%を越える試料番号20、52では、比誘電率が
低い傾向にあると共に、絶縁抵抗が低くなる。
As is clear from Tables 3 and 4, Sample Nos. 14, 15, and 4 containing less than 1% by weight of the additive were used.
In Sample Nos. 6 and 47, the sinterability is reduced and the insulation resistance is low. Conversely, in Samples 20 and 52 exceeding 4% by weight, the relative dielectric constant tends to be low and the insulation resistance is low.

【0037】また、Y2 3 のモル比aが10より小さ
い試料番号21、26、53、58は、絶縁抵抗が低く
なり、aが60より大きい試料番号24、56では、比
誘電率が小さくなり、絶縁抵抗が低くなる。
Sample Nos. 21, 26, 53 and 58 in which the molar ratio a of Y 2 O 3 is smaller than 10 have lower insulation resistance, and Sample Nos. 24 and 56 in which a is larger than 60 have a relative dielectric constant of Smaller and the insulation resistance is lower.

【0038】更に、Li2 OあるいはB2 3 のモル比
bが10より小さい試料番号22、54では、比誘電率
の温度特性が悪く、bが60より大きい試料番号25、
57では、絶縁抵抗が低く、温度特性が悪い。
Further, in Sample Nos. 22 and 54 in which the molar ratio b of Li 2 O or B 2 O 3 is smaller than 10, the temperature characteristic of the relative dielectric constant is poor, and in Sample No. 25 in which b is larger than 60,
In No. 57, the insulation resistance is low and the temperature characteristics are poor.

【0039】また、SiO2 のモル比cが30より小さ
い試料番号23、24、25、55、56、57は、焼
結性が低下し、絶縁抵抗が低く、cが80より大きい試
料番号26、58は比誘電率が小さい。
Sample Nos. 23, 24, 25, 55, 56 and 57 in which the molar ratio c of SiO 2 is smaller than 30 have lower sinterability, lower insulation resistance, and Sample No. 26 in which c is larger than 80. , 58 have small relative dielectric constants.

【0040】一方、MgO量が0.5モル%を下回る試
料番号1、33では、絶縁抵抗が低く、逆に8モル%を
超える試料番号6、38では比誘電率が低い。また、M
nO量が0.05モル%を下回る試料番号8、40では
絶縁抵抗が低く、0.5モル%を超える試料番号13、
45ではエージングレートが大きい。
On the other hand, Sample Nos. 1 and 33 in which the amount of MgO is less than 0.5 mol% have low insulation resistance, and Sample Nos. 6 and 38 in which MgO content exceeds 8 mol% have low dielectric constants. Also, M
In Sample Nos. 8 and 40 in which the nO content was less than 0.05 mol%, the insulation resistance was low, and in Sample Nos.
At 45, the aging rate is large.

【0041】以上の比較例に対し、本発明の試料はいず
れも比誘電率が2500以上で、誘電正接(tanδ)
も2.5%以下、絶縁抵抗が1000MΩ・μF、比誘
電率の温度変化率が±15%以下、エージングレートが
1.5%以下と優れた特性を示している。
In contrast to the above comparative examples, the samples of the present invention all have a relative dielectric constant of 2500 or more and a dielectric loss tangent (tan δ).
Of 2.5% or less, an insulation resistance of 1000 MΩ · μF, a temperature change rate of a relative dielectric constant of ± 15% or less, and an aging rate of 1.5% or less.

【0042】尚、本発明の非還元性誘電体磁器組成物
は、前記詳述した実施例に限定されるものではない。
The non-reducing dielectric ceramic composition of the present invention is not limited to the above-described embodiment.

【0043】[0043]

【発明の効果】叙上の如く、本発明の非還元性誘電体磁
器組成物は、焼成温度が1150〜1250℃の範囲
で、酸素分圧がNi/NiOの平行酸素分圧以下の焼成
条件で焼成しても、比誘電率、誘電正接、絶縁抵抗、比
誘電率、静電容量のエージングレート等の温度特性にお
いて優れた特性を示すものであることから、ニッケル
(Ni)等の卑金属を主成分とする内部電極を用いた積
層型磁器コンデンサ用として好適な実用性に優れた非還
元性誘電体磁器組成物である。
As described above, the non-reducing dielectric ceramic composition of the present invention has a firing temperature in the range of 1150 to 1250 ° C. and an oxygen partial pressure of not more than the parallel oxygen partial pressure of Ni / NiO. Even when calcined, it shows excellent characteristics in temperature characteristics such as relative dielectric constant, dielectric loss tangent, insulation resistance, relative dielectric constant, and aging rate of capacitance. This is a non-reducing dielectric ceramic composition excellent in practicality and suitable for use in a laminated ceramic capacitor using an internal electrode as a main component.

フロントページの続き (72)発明者 藤川 信儀 鹿児島県国分市山下町1番4号 京セラ 株式会社総合研究所内 審査官 武重 竜男 (56)参考文献 特開 平4−264305(JP,A) 特開 昭63−151658(JP,A)Continuation of the front page (72) Inventor Nobuyoshi Fujikawa 1-4-4 Yamashita-cho, Kokubu-shi, Kagoshima Examiner at Kyocera Research Institute Tatsuo Takeshige (56) References JP-A-4-264305 (JP, A) JP-A Sho 63-151658 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属元素として少なくともBa、Ti、M
g、Mn、Y、Li及びSiを含有する複合酸化物であ
って、前記金属元素の内、Ba、Mg、Mnのモル比に
よる組成式を 100BaTiO3+xMgO+yMnO と表したとき、BaTiO3 100モルに対するモル
比を表すx、yが 0.50≦x≦8.00 0.05≦y≦0.50 で示される主成分に対して、 前記金属元素の内、Y、Li、Siのモル比による組成
式を aY23+bLi2O+cSiO2 と表したとき、モル比を表すa、b及びcが 10≦a≦60 10≦b≦60 30≦c≦80 a+b+c=100 で示される添加物を仮焼後、前記主成分に対して1〜4
重量%含有させてなり、絶縁抵抗が1000MΩ・μF
以上、エージングレートが1.5%以下であることを特
徴とする非還元性誘電体磁器組成物。
At least Ba, Ti, M as a metal element
g, Mn, Y, a composite oxide containing Li and Si, among the metal elements, when expressed Ba, Mg, the composition formula by molar ratio of Mn and 100BaTiO 3 + xMgO + yMnO, for BaTiO 3 100 moles With respect to a main component in which x and y representing a molar ratio are represented by 0.50 ≦ x ≦ 8.00 0.05 ≦ y ≦ 0.50, a molar ratio of Y, Li, and Si among the metal elements is determined. when the composition formula represented as aY 2 O 3 + bLi 2 O + cSiO 2, a representative of a molar ratio, b and c are 10 ≦ a ≦ 60 10 ≦ b ≦ 60 30 ≦ c ≦ 80 a + b + c = 100 additive represented by After calcination, 1-4
Weight%, insulation resistance is 1000MΩ ・ μF
As described above, the non-reducing dielectric ceramic composition has an aging rate of 1.5% or less.
【請求項2】金属元素として少なくともBa、Ti、M
g、Mn、Y、B及びSiを含有する複合酸化物であっ
て、前記金属元素の内、Ba、Mg、Mnのモル比によ
る組成式を 100BaTiO3+xMgO+yMnO と表したとき、BaTiO3 100モルに対するモル
比を表すx、yが 0.50≦x≦8.00 0.05≦y≦0.50 で示される主成分に対して、 前記金属元素の内、Y、B、Siのモル比による組成式
を aY23+bB23+cSiO2 と表したとき、モル比を表すa、b及びcが 10≦a≦60 10≦b≦60 30≦c≦80 a+b+c=100 で示される添加物を仮焼後、前記主成分に対して1〜4
重量%含有させたことを特徴とする非還元性誘電体磁器
組成物。
2. At least Ba, Ti, M as a metal element
g, Mn, Y, a composite oxide containing B and Si, among the metal elements, when expressed Ba, Mg, the composition formula by molar ratio of Mn and 100BaTiO 3 + xMgO + yMnO, for BaTiO 3 100 moles With respect to a main component in which x and y representing a molar ratio are represented by 0.50 ≦ x ≦ 8.00 0.05 ≦ y ≦ 0.50, a molar ratio of Y, B, and Si among the metal elements is determined. when the composition formula represented as aY 2 O 3 + bB 2 O 3 + cSiO 2, a representative of a molar ratio, b and c are shown in 10 ≦ a ≦ 60 10 ≦ b ≦ 60 30 ≦ c ≦ 80 a + b + c = 100 added After calcination of the product, 1 to 4
A non-reducible dielectric porcelain composition, characterized in that it is contained by weight.
JP32730594A 1994-12-28 1994-12-28 Non-reducing dielectric porcelain composition Expired - Fee Related JP3250932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32730594A JP3250932B2 (en) 1994-12-28 1994-12-28 Non-reducing dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32730594A JP3250932B2 (en) 1994-12-28 1994-12-28 Non-reducing dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH08183659A JPH08183659A (en) 1996-07-16
JP3250932B2 true JP3250932B2 (en) 2002-01-28

Family

ID=18197649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32730594A Expired - Fee Related JP3250932B2 (en) 1994-12-28 1994-12-28 Non-reducing dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3250932B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075054A (en) * 2000-08-29 2002-03-15 Kyocera Corp Dielectric porcelain composition
WO2004038743A1 (en) * 2002-10-28 2004-05-06 Matsushita Electric Industrial Co., Ltd. Process for producing laminated ceramic capacitor

Also Published As

Publication number Publication date
JPH08183659A (en) 1996-07-16

Similar Documents

Publication Publication Date Title
JP3346293B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
JPH0678189B2 (en) Non-reducing high dielectric constant dielectric ceramic composition
JP2001089231A (en) Dielectric porcelain composition and electronic parts
KR0161348B1 (en) Non-reduced dielectric ceramic compositions
EP0630032B1 (en) Non-reducible dielectric ceramic composition
JP3389408B2 (en) Multilayer capacitors
JP3450903B2 (en) Non-reducing dielectric porcelain composition
JP7037945B2 (en) Ceramic capacitors and their manufacturing methods
JPH0825795B2 (en) Non-reducing dielectric ceramic composition
JPH0785460B2 (en) Multilayer porcelain capacitor
JPH04260659A (en) Production of irreducible dielectric ceramic composition
JP7262640B2 (en) ceramic capacitor
JP3250932B2 (en) Non-reducing dielectric porcelain composition
JPH0680562B2 (en) Non-reducing dielectric ceramic composition
JP3634930B2 (en) Dielectric porcelain composition
JP3435039B2 (en) Dielectric ceramics and multilayer ceramic capacitors
JP3350326B2 (en) Multilayer capacitors
JPH11219844A (en) Dielectric ceramic and laminated ceramic capacitor
JP3250917B2 (en) Dielectric porcelain composition
JP2001278662A (en) Method for manufacturing dielectric ceramic
JPH10279353A (en) Dielectric ceramic
JP3793548B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP3250927B2 (en) Dielectric porcelain composition
JPH0825791B2 (en) Non-reducing dielectric ceramic composition
JPH0734326B2 (en) Non-reducing dielectric ceramic composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees