JPH04260659A - Production of irreducible dielectric ceramic composition - Google Patents

Production of irreducible dielectric ceramic composition

Info

Publication number
JPH04260659A
JPH04260659A JP3044399A JP4439991A JPH04260659A JP H04260659 A JPH04260659 A JP H04260659A JP 3044399 A JP3044399 A JP 3044399A JP 4439991 A JP4439991 A JP 4439991A JP H04260659 A JPH04260659 A JP H04260659A
Authority
JP
Japan
Prior art keywords
dielectric ceramic
ceramic composition
earth element
rare earth
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3044399A
Other languages
Japanese (ja)
Other versions
JP2871135B2 (en
Inventor
Nobuyuki Wada
和  田   信  之
Yoshiaki Kono
河  野   芳  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP3044399A priority Critical patent/JP2871135B2/en
Priority to DE4204425A priority patent/DE4204425C2/en
Priority to US07/836,089 priority patent/US5310709A/en
Publication of JPH04260659A publication Critical patent/JPH04260659A/en
Application granted granted Critical
Publication of JP2871135B2 publication Critical patent/JP2871135B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)

Abstract

PURPOSE:To provide a process for producing an irreducible dielectric ceramic composition capable of forming a small-sized highly reliable laminated ceramic capacitor. CONSTITUTION:An irreversible dielectric ceramic composition having a perovskite structure expressed by the general formula (A1-xRx)yMO3 is produced by using a water-soluble rare-earth element inorganic compound or a rare-earth element organometallic compound soluble in organic solvent. In the above formula, A is at least one kind of element selected from Ba, Sr, Ca and Mg; R is at least one kind of rare-earth element; M is at least one kind of element selected from Ti, Zr and Sn; and x and y are numbers satisfying the formulas 0.01<=x<=0.020 and 1.002<=y<=1.03.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は非還元性誘電体磁器組
成物の製造方法に関し、特にたとえば、積層セラミック
コンデンサなどの材料として用いられる非還元性誘電体
磁器組成物の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-reducible dielectric ceramic composition, and more particularly to a method for producing a non-reducible dielectric ceramic composition used as a material for laminated ceramic capacitors and the like.

【0002】0002

【従来の技術】積層セラミックコンデンサを製造する場
合、シート状の誘電体材料と、内部電極となるべき電極
材料とを積層し、熱圧着によって一体化した積層体が得
られる。この積層体を所定の雰囲気中で焼成し、誘電体
磁器が形成される。そして、この誘電体磁器の端面に、
内部電極と導通する外部電極を焼き付けて、積層セラミ
ックコンデンサが製造される。
2. Description of the Related Art When manufacturing a multilayer ceramic capacitor, a sheet-like dielectric material and an electrode material to be an internal electrode are laminated and integrated by thermocompression bonding to obtain a laminated body. This laminate is fired in a predetermined atmosphere to form dielectric ceramic. Then, on the end face of this dielectric porcelain,
A multilayer ceramic capacitor is manufactured by baking an external electrode that is electrically connected to an internal electrode.

【0003】このような積層セラミックコンデンサに用
いられる誘電体磁器組成物では、中性または還元性の低
酸素分圧下で焼成すると還元され、半導体化してしまう
という性質を有していた。そのため、このような誘電体
材料を積層セラミックコンデンサの材料として用いると
、内部電極材料としては、誘電体磁器材料の焼結する温
度で溶融せず、かつ誘電体磁器材料を半導体化させない
高酸素分圧下で焼成しても酸化されないパラジウム,白
金などの貴金属を用いる必要があった。このように、内
部電極材料として高価なものを使用しなければならない
ため、積層コンデンサの製造コストが大きくなっていた
。特に、近年、電子部品の小型化が急速に進行し、積層
セラミックコンデンサも小型化,大容量化の傾向が顕著
になってきた。そのため、積層セラミックコンデンサの
製造コストに占める電極材料費の割合が上昇している。
The dielectric ceramic composition used in such multilayer ceramic capacitors has the property that when fired under neutral or reducing low oxygen partial pressure, it is reduced and becomes a semiconductor. Therefore, when such a dielectric material is used as a material for a multilayer ceramic capacitor, the internal electrode material must be a high oxygen content material that does not melt at the sintering temperature of the dielectric ceramic material and does not convert the dielectric ceramic material into a semiconductor. It was necessary to use noble metals such as palladium and platinum, which do not oxidize even when fired under pressure. As described above, since an expensive material must be used as the internal electrode material, the manufacturing cost of the multilayer capacitor increases. In particular, in recent years, the miniaturization of electronic components has progressed rapidly, and the trend toward miniaturization and increased capacity of multilayer ceramic capacitors has become noticeable. Therefore, the proportion of electrode material costs in the manufacturing cost of multilayer ceramic capacitors is increasing.

【0004】そこで、このような問題を解決するために
、ニッケルなどの安価な卑金属を内部電極材料として使
用することが考えられる。しかしながら、このような卑
金属を内部電極材料として使用し、従来の条件下で焼成
すると、電極材料が酸化してしまい、電極としての機能
を果たさない。このような卑金属を電極材料として使用
するためには、酸素分圧の低い中性または還元性の雰囲
気中で焼成しても半導体化せず、コンデンサ用の誘電体
材料として十分な比抵抗と優れた誘電特性とを有する誘
電体磁器材料が必要とされている。これらの条件を満た
すものとして、たとえば特公平02−063664号公
報に示された、Ceなどの希土類元素を含むチタン酸バ
リウム固溶体などがある。このような材料は、還元性雰
囲気中で焼成しても還元されず、グレインサイズが小さ
く、高誘電率を示すなど、大変有用な組成物である。
[0004] In order to solve this problem, it is conceivable to use an inexpensive base metal such as nickel as the internal electrode material. However, when such base metals are used as internal electrode materials and fired under conventional conditions, the electrode materials become oxidized and do not function as electrodes. In order to use such a base metal as an electrode material, it must not turn into a semiconductor even when fired in a neutral or reducing atmosphere with a low oxygen partial pressure, and must have sufficient resistivity and excellent properties as a dielectric material for capacitors. What is needed is a dielectric porcelain material that has improved dielectric properties. Examples of materials that meet these conditions include barium titanate solid solutions containing rare earth elements such as Ce, as disclosed in Japanese Patent Publication No. 02-063664. Such a material is a very useful composition because it is not reduced even when fired in a reducing atmosphere, has a small grain size, and exhibits a high dielectric constant.

【0005】このような非還元性誘電体磁器組成物を得
る方法としては、炭酸化物や酸化物からなる素原料を混
合,仮焼し、合成する方法がある。
[0005] As a method for obtaining such a non-reducible dielectric ceramic composition, there is a method of mixing and calcining raw materials consisting of carbonates and oxides to synthesize them.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の方法では、素原料自体を1μm以下にするこ
とが難しく、そのため素原料を仮焼しても組成的に均一
なものを得ることが難しい。このような方法で、非還元
性誘電体磁器組成物として、Ceなどの希土類元素を含
むチタン酸バリウム固溶体を製造すると、仮焼後に希土
類元素が均一に拡散せず、濃度にばらつきが生じる。こ
の原料を用いて焼結体を作製すると、希土類元素濃度の
高いところでは、非還元性チタン酸バリウム固溶体が部
分的に半導体化するためか、積層コンデンサにした場合
の信頼性が低いことが明らかになった。
[Problems to be Solved by the Invention] However, with such conventional methods, it is difficult to reduce the raw material itself to 1 μm or less, and therefore it is difficult to obtain a uniform composition even if the raw material is calcined. difficult. When a barium titanate solid solution containing a rare earth element such as Ce is produced by such a method as a non-reducible dielectric ceramic composition, the rare earth element does not diffuse uniformly after calcination, resulting in variations in concentration. When a sintered body is made using this raw material, it is clear that reliability is low when made into a multilayer capacitor in areas with high concentrations of rare earth elements, probably because the non-reducible barium titanate solid solution partially becomes a semiconductor. Became.

【0007】それゆえに、この発明の主たる目的は、希
土類元素を含む非還元性誘電体磁器組成物を得る場合に
おいて、積層コンデンサを作製したときに、信頼性の高
い積層コンデンサを得ることができる、非還元性誘電体
磁器組成物の製造方法を提供することである。
Therefore, the main object of the present invention is to obtain a highly reliable multilayer capacitor when producing a multilayer capacitor in the case of obtaining a non-reducible dielectric ceramic composition containing a rare earth element. An object of the present invention is to provide a method for producing a non-reducible dielectric ceramic composition.

【0008】[0008]

【課題を解決するための手段】この発明は、Ba,Sr
,Ca,Mgの中から選ばれる少なくとも1種類をA、
希土類元素の中から選ばれる少なくとも1種類をR、T
i,Zr,Snの中から選ばれる少なくとも1種類をM
としたとき、次の一般式(A1−x Rx )y MO
3 で表され、xおよびyが、0.001≦x≦0.0
20、1.002≦y≦1.03の関係を満足するペロ
ブスカイト型非還元性誘電体磁器組成物の製造方法であ
って、水溶性希土類元素無機化合物または有機溶剤可溶
性希土類元素有機金属化合物を用いる、非還元性誘電体
磁器組成物の製造方法である。
[Means for Solving the Problems] This invention provides Ba, Sr.
, Ca, Mg at least one selected from A,
At least one selected from rare earth elements R, T
M at least one type selected from i, Zr, and Sn
Then, the following general formula (A1-x Rx )y MO
3, and x and y are 0.001≦x≦0.0
20. A method for producing a perovskite-type non-reducible dielectric ceramic composition satisfying the relationship 1.002≦y≦1.03, using a water-soluble rare earth element inorganic compound or an organic solvent-soluble rare earth element organometallic compound. , a method for producing a non-reducible dielectric ceramic composition.

【0009】[0009]

【作用】希土類元素として、水溶性希土類元素無機化合
物または有機溶剤可溶性希土類元素有機化合物を用いる
ことによって、ペロブスカイト型組成物に均一に希土類
元素が固溶,拡散する。
[Operation] By using a water-soluble rare earth element inorganic compound or an organic solvent-soluble rare earth element organic compound as the rare earth element, the rare earth element is uniformly dissolved and diffused in the perovskite type composition.

【0010】ここで、一般式(A1−x Rx )y 
MO3 で表される非還元性誘電体磁器組成物のxおよ
びyを限定した理由について説明する。つまり、xが0
.001より小さい場合、信頼性向上作用が認められず
、好ましくない。また、xが0.02を超えた場合、信
頼性が低下してしまい、好ましくない。yが1.002
より小さい場合、半導体化されやすくなり、信頼性が大
幅に低下して、好ましくない。また、yが1.03を超
えた場合、焼結性が低下して、好ましくない。
Here, the general formula (A1-x Rx )y
The reason for limiting x and y of the non-reducible dielectric ceramic composition represented by MO3 will be explained. In other words, x is 0
.. If it is smaller than 001, no reliability improvement effect is observed, which is not preferable. Moreover, when x exceeds 0.02, reliability decreases, which is not preferable. y is 1.002
If it is smaller, it is undesirable because it is more likely to be made into a semiconductor and the reliability will be significantly lowered. Moreover, when y exceeds 1.03, sinterability deteriorates, which is not preferable.

【0011】[0011]

【発明の効果】この発明によれば、希土類元素が均一に
固溶,拡散した組成物が得られるため、積層セラミック
コンデンサを作製したときに、信頼性の高い積層セラミ
ックコンデンサを得ることができる。そのため、従来の
誘電体磁器組成物を用いた積層セラミックコンデンサに
比べて、内部電極間のセラミック素子部の厚みを大幅に
小さくすることができる。したがって、積層セラミック
コンデンサを小型大容量化することが可能である。また
、この非還元性誘電体磁器組成物は非還元性であるため
、内部電極材料として卑金属を使用することができ、貴
金属を用いたものに比べて、製造コストを下げることが
できる。
According to the present invention, a composition in which rare earth elements are uniformly dissolved and diffused can be obtained, so that a highly reliable multilayer ceramic capacitor can be obtained when a multilayer ceramic capacitor is manufactured. Therefore, compared to a multilayer ceramic capacitor using a conventional dielectric ceramic composition, the thickness of the ceramic element portion between the internal electrodes can be significantly reduced. Therefore, it is possible to make the multilayer ceramic capacitor smaller and larger in capacity. Further, since this non-reducible dielectric ceramic composition is non-reducible, base metals can be used as the internal electrode material, and manufacturing costs can be lowered compared to those using noble metals.

【0012】この発明の上述の目的,その他の目的,特
徴および利点は、以下の実施例の詳細な説明から一層明
らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments.

【0013】[0013]

【実施例】まず、純度99.8%以上の素原料を、表1
に示す割合で総量1500g準備した。この素原料を3
000ccの純水および1モル%相当量のCeCl3 
とともに樹脂ポットに入れた。そして、直径5mmのジ
ルコニア質の粉砕用玉石5000gを用いて、16時間
粉砕,混合した。このようにして得られたスラリーを蒸
発,乾燥し、乾燥粉体を得た。この乾燥粉体を1100
℃で仮焼し、Ceを均一に分散させた仮焼粉体Iを得た
[Example] First, raw materials with a purity of 99.8% or more were prepared in Table 1.
A total amount of 1500 g was prepared in the proportions shown below. This raw material is 3
000 cc of pure water and 1 mol% equivalent of CeCl3
and put it in a resin pot. The mixture was then ground and mixed for 16 hours using 5,000 g of zirconia grinding stones with a diameter of 5 mm. The slurry thus obtained was evaporated and dried to obtain a dry powder. 1100 ml of this dry powder
It was calcined at ℃ to obtain calcined powder I in which Ce was uniformly dispersed.

【0014】[0014]

【表1】[Table 1]

【0015】次に、純度99.8%以上の素原料を、表
2に示す割合で総量1500g準備した。この素原料を
3000ccの純水とともに樹脂ポットに入れた。そし
て、直径5mmのジルコニア質の粉砕用玉石5000g
を用いて、16時間粉砕,混合した。このようにして得
られたスラリーを蒸発,乾燥し、乾燥粉体を得た。この
乾燥粉体を1150℃で仮焼し、仮焼粉体を得た。この
仮焼粉体1000gを2000ccの純水,有効成分換
算で3.0gの界面活性剤および0.5モル%相当量の
Sm(NO3 )3 ・6H2 Oとともに、樹脂ポッ
トに入れた。そして、直径5mmのジルコニア質の粉砕
用玉石5000gを用いて、16時間粉砕,混合した。 このようにして得られたスラリーを蒸発,乾燥し、乾燥
粉体を得た。この乾燥粉体を1150℃で仮焼すること
によって、Smを均一に分散させた仮焼粉体IIを得た
Next, a total of 1500 g of raw materials having a purity of 99.8% or higher were prepared in the proportions shown in Table 2. This raw material was placed in a resin pot along with 3000 cc of pure water. And 5000 g of zirconia crushing stones with a diameter of 5 mm.
The mixture was ground and mixed for 16 hours. The slurry thus obtained was evaporated and dried to obtain a dry powder. This dry powder was calcined at 1150°C to obtain a calcined powder. 1000 g of this calcined powder was placed in a resin pot along with 2000 cc of pure water, 3.0 g of surfactant in terms of active ingredients, and Sm(NO3)3.6H2 O in an amount equivalent to 0.5 mol%. The mixture was then ground and mixed for 16 hours using 5,000 g of zirconia grinding stones with a diameter of 5 mm. The slurry thus obtained was evaporated and dried to obtain a dry powder. By calcining this dry powder at 1150°C, calcined powder II in which Sm was uniformly dispersed was obtained.

【0016】[0016]

【表2】[Table 2]

【0017】また、純度99.8%以上の素原料を、表
3に示す割合で総量1500g準備した。この素原料を
3000ccの純水とともに樹脂ポットに入れた。そし
て、直径5mmのジルコニア質の粉砕用玉石5000g
を用いて、16時間粉砕,混合した。このようにして得
られたスラリーを蒸発,乾燥し、乾燥粉体を得た。この
乾燥粉体を1150℃で仮焼し、仮焼粉体IIIを得た
A total of 1500 g of raw materials with a purity of 99.8% or higher were prepared in the proportions shown in Table 3. This raw material was placed in a resin pot along with 3000 cc of pure water. And 5000 g of zirconia crushing stones with a diameter of 5 mm.
The mixture was ground and mixed for 16 hours. The slurry thus obtained was evaporated and dried to obtain a dry powder. This dry powder was calcined at 1150°C to obtain calcined powder III.

【0018】[0018]

【表3】[Table 3]

【0019】純度99.8%以上の素原料を、表1に示
す割合で総量1500g準備した。この素原料を300
0ccの純水および1モル%相当量のCeO2 粉末と
ともに樹脂ポットに入れた。そして、仮焼粉体Iと同様
の工程によって、従来の固相法としてCeを加えた仮焼
粉体IVを得た。
A total of 1500 g of raw materials having a purity of 99.8% or more were prepared in the proportions shown in Table 1. This raw material is 300
It was placed in a resin pot together with 0 cc of pure water and CeO2 powder equivalent to 1 mol%. Then, a calcined powder IV to which Ce was added using the conventional solid phase method was obtained through the same process as that of the calcined powder I.

【0020】200gの仮焼粉体Iを適当量の有機溶剤
および有機バインダとともに樹脂ポットに入れ、直径5
mmのジルコニア質の粉砕用玉石2000gを用いて、
10時間混合し、スラリーを得た。同様にして、仮焼粉
体IIおよび仮焼粉体IVを用いて、スラリーを得た。 また、200gの仮焼粉体IIIに対し1.5モル%相
当量のNd(CH3 COCHCOCH3 )3 を加
え、これを適当量の有機溶剤および有機バインダととも
に樹脂ポットに入れた。そして、直径5mmのジルコニ
ア質の粉砕用玉石2000gを用いて、10時間混合し
、スラリーを得た。
[0020] 200 g of calcined powder I was placed in a resin pot with an appropriate amount of organic solvent and organic binder.
Using 2000 g of millimeter zirconia crushing stones,
The mixture was mixed for 10 hours to obtain a slurry. Similarly, slurries were obtained using calcined powder II and calcined powder IV. Further, an amount of Nd(CH3 COCHCOCH3)3 corresponding to 1.5 mol % was added to 200 g of calcined powder III, and this was placed in a resin pot together with an appropriate amount of an organic solvent and an organic binder. Then, using 2000 g of zirconia grinding stones with a diameter of 5 mm, the mixture was mixed for 10 hours to obtain a slurry.

【0021】得られた各スラリーを用いて、ドクターブ
レードを用いたキャスティング法によって、厚さ15μ
mのセラミックグリーンシートを作製した。このセラミ
ックグリーンシート上に、Ni粉末を用いた内部電極用
ペーストを通常の積層セラミックコンデンサを製造する
方法でスクリーン印刷した。内部電極用ペーストを印刷
したセラミックグリーンシートを、積層数が10層とな
るように積層し、熱プレスによって一体化し、積層体を
得た。その後、この積層体を所定の寸法に切断して、生
チップを作製した。
[0021] Using each of the obtained slurries, a casting method using a doctor blade was performed to form a film with a thickness of 15 μm.
A ceramic green sheet of m was produced. On this ceramic green sheet, a paste for internal electrodes using Ni powder was screen printed using a conventional method for manufacturing multilayer ceramic capacitors. Ceramic green sheets printed with paste for internal electrodes were stacked so that the number of layers was 10, and they were integrated by hot pressing to obtain a laminate. Thereafter, this laminate was cut into predetermined dimensions to produce green chips.

【0022】得られた生チップを温度300℃,酸素分
圧100ppmの雰囲気下で2時間保持し、脱バインダ
処理をした。脱バインダ処理を施した生チップを、酸素
分圧3×10−8〜3×10−10 atmに調節した
還元性雰囲気中において、1250〜1300℃で2時
間焼成し、焼結体を得た。この焼結体に外部電極を付け
て試料とした。なお、仮焼粉体Iを用いて作製した試料
は、試料Iとした。同様に、仮焼粉体II,III,I
Vを用いた試料は、それぞれ試料II,III,IVと
した。
[0022] The obtained raw chips were held in an atmosphere of a temperature of 300°C and an oxygen partial pressure of 100 ppm for 2 hours to remove the binder. The raw chips subjected to the binder removal treatment were fired at 1250 to 1300°C for 2 hours in a reducing atmosphere adjusted to an oxygen partial pressure of 3 x 10-8 to 3 x 10-10 atm to obtain a sintered body. . This sintered body was attached with an external electrode and used as a sample. Note that the sample produced using calcined powder I was referred to as sample I. Similarly, calcined powder II, III, I
The samples using V were designated as samples II, III, and IV, respectively.

【0023】得られた試料I,II,III,IVにつ
いて、静電容量,誘電率(ε),誘電損失(tanδ)
,絶縁抵抗および平均故障時間(MTTF)を測定し、
表4に示した。なお、静電容量および誘電損失は、1k
Hz,1Vrms の交流電圧を印加することによって
測定した。また、誘電率は、電極面積および電極間距離
を測定し、静電容量から算出した。さらに、平均故障時
間は、150℃の雰囲気中で、64V/10μmの直流
電界を印加した条件のもとで測定した値である。また、
絶縁抵抗については、その対数値(logIR)を示し
た。
[0023] Regarding the obtained samples I, II, III, and IV, the capacitance, dielectric constant (ε), dielectric loss (tan δ)
, measure insulation resistance and mean time to failure (MTTF),
It is shown in Table 4. Note that the capacitance and dielectric loss are 1k
The measurement was performed by applying an alternating current voltage of Hz, 1 Vrms. Further, the dielectric constant was calculated from the capacitance by measuring the electrode area and the distance between the electrodes. Furthermore, the mean failure time is a value measured under the condition of applying a DC electric field of 64 V/10 μm in an atmosphere of 150° C. Also,
Regarding insulation resistance, its logarithm value (logIR) is shown.

【0024】[0024]

【表4】[Table 4]

【0025】表4からわかるように、従来の固相焼結法
によって得られた仮焼粉体のみからなる試料IVでは、
平均故障時間が1.2時間と短く、信頼性に劣る。一方
、本発明に示すように、希土類元素として水溶性無機化
合物あるいは有機可溶性有機金属化合物を用いることに
よって製造した磁器組成物からなる試料I,II,II
Iでは、試料IVに比べて10倍以上の平均故障時間を
有することが確認できる。
[0025] As can be seen from Table 4, in sample IV consisting only of calcined powder obtained by the conventional solid phase sintering method,
The mean failure time is short at 1.2 hours, and the reliability is poor. On the other hand, as shown in the present invention, samples I, II, and II are made of ceramic compositions manufactured by using a water-soluble inorganic compound or an organic-soluble organometallic compound as a rare earth element.
It can be confirmed that sample I has an average failure time that is 10 times or more as compared to sample IV.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  Ba,Sr,Ca,Mgの中から選ば
れる少なくとも1種類をA、希土類元素の中から選ばれ
る少なくとも1種類をR、Ti,Zr,Snから選ばれ
る少なくとも1種類をMとしたとき、次の一般式(A1
−x Rx )y MO3  で表され、xおよびyが、 0.001≦x≦0.020 1.002≦y≦1.03 の関係を満足するペロブスカイト型非還元性誘電体磁器
組成物の製造方法であって、水溶性希土類元素無機化合
物または有機溶剤可溶性希土類元素有機金属化合物を用
いる、非還元性誘電体磁器組成物の製造方法。
[Claim 1] At least one selected from Ba, Sr, Ca, and Mg is A, at least one selected from rare earth elements is R, and at least one selected from Ti, Zr, and Sn is M. Then, the following general formula (A1
-xRx)yMO3, where x and y satisfy the following relationships: 0.001≦x≦0.020 1.002≦y≦1.03 Production of a perovskite-type non-reducible dielectric ceramic composition A method for producing a non-reducible dielectric ceramic composition using a water-soluble rare earth element inorganic compound or an organic solvent-soluble rare earth element organometallic compound.
JP3044399A 1991-02-16 1991-02-16 Method for producing non-reducing dielectric ceramic composition Expired - Lifetime JP2871135B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3044399A JP2871135B2 (en) 1991-02-16 1991-02-16 Method for producing non-reducing dielectric ceramic composition
DE4204425A DE4204425C2 (en) 1991-02-16 1992-02-14 Production of a non-reducible ceramic composition
US07/836,089 US5310709A (en) 1991-02-16 1992-02-14 Production of nonreducible dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3044399A JP2871135B2 (en) 1991-02-16 1991-02-16 Method for producing non-reducing dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPH04260659A true JPH04260659A (en) 1992-09-16
JP2871135B2 JP2871135B2 (en) 1999-03-17

Family

ID=12690436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3044399A Expired - Lifetime JP2871135B2 (en) 1991-02-16 1991-02-16 Method for producing non-reducing dielectric ceramic composition

Country Status (3)

Country Link
US (1) US5310709A (en)
JP (1) JP2871135B2 (en)
DE (1) DE4204425C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169004A (en) * 2004-12-13 2006-06-29 Tdk Corp Electronic component, dielectric ceramic composition and method of manufacturing the same
JP2014019589A (en) * 2012-07-13 2014-02-03 Ohara Inc Material having small variation of optical path length
US10468186B2 (en) 2015-12-17 2019-11-05 Murata Manufacturing Co., Ltd. Perovskite ceramic composition, combined composition containing perovskite ceramic composition, method for manufacturing perovskite ceramic composition, and method for manufacturing multilayer ceramic capacitor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126743A (en) * 1993-03-12 2000-10-03 Sumitomo Chemical Company, Limited Process for producing dielectrics and fine single crystal powders and thin film capacitor
US5635741A (en) * 1994-09-30 1997-06-03 Texas Instruments Incorporated Barium strontium titanate (BST) thin films by erbium donor doping
DE69701294T2 (en) * 1996-03-08 2000-07-06 Murata Manufacturing Co Ceramic dielectric and monolithic ceramic electronic component using this
US5897912A (en) * 1997-09-03 1999-04-27 Ferro Corporation Method of making conductive electrodes for use in multilayer ceramic capacitors or inductors using organometallic ink
JP3503568B2 (en) * 2000-04-07 2004-03-08 株式会社村田製作所 Non-reducing dielectric ceramic and multilayer ceramic capacitor using the same
DE10056617C2 (en) * 2000-11-15 2002-12-12 Forschungszentrum Juelich Gmbh Material for temperature-stressed substrates
TWI223817B (en) * 2002-11-08 2004-11-11 Ind Tech Res Inst Dielectric material compositions with high dielectric constant and low dielectric loss

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547070B2 (en) * 1973-07-30 1979-04-03
US4535064A (en) * 1983-05-25 1985-08-13 Murata Manufacturing Co., Ltd. Ceramic compositions for a reduction-reoxidation type semiconducting capacitor
JPH0639330B2 (en) * 1984-01-24 1994-05-25 ソニー株式会社 Method for producing barium / strontium titanate fine particles
US4537865A (en) * 1984-07-11 1985-08-27 Murata Manufacturing Co., Ltd. Process for preparing a particulate ceramic material
JPH0692268B2 (en) * 1988-06-03 1994-11-16 日本油脂株式会社 Reduction-reoxidation type semiconductor ceramic capacitor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169004A (en) * 2004-12-13 2006-06-29 Tdk Corp Electronic component, dielectric ceramic composition and method of manufacturing the same
JP2014019589A (en) * 2012-07-13 2014-02-03 Ohara Inc Material having small variation of optical path length
US10468186B2 (en) 2015-12-17 2019-11-05 Murata Manufacturing Co., Ltd. Perovskite ceramic composition, combined composition containing perovskite ceramic composition, method for manufacturing perovskite ceramic composition, and method for manufacturing multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP2871135B2 (en) 1999-03-17
US5310709A (en) 1994-05-10
DE4204425C2 (en) 2001-09-27
DE4204425A1 (en) 1992-08-20

Similar Documents

Publication Publication Date Title
JP2004224653A (en) Dielectric ceramic and its manufacturing method as well as multilayer ceramic capacitor
JP2001006966A (en) Ceramic capacitor and its manufacture
JPH11273985A (en) Dielectric ceramic and its manufacture, and laminated ceramic electronic part and its manufacture
US10366833B2 (en) Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
KR102292797B1 (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
CN107799303A (en) The manufacture method of multilayer ceramic capacitor and multilayer ceramic capacitor
JPH02225363A (en) Dielectric material porcelain composition, laminate ceramic condenser using same and production thereof
JP7338963B2 (en) Multilayer ceramic capacitors and ceramic raw material powders
WO1990010941A1 (en) Laminated and grain boundary insulated type semiconductor ceramic capacitor and method of producing the same
JP3882054B2 (en) Multilayer ceramic capacitor
JP3389408B2 (en) Multilayer capacitors
JP3603607B2 (en) Dielectric ceramic, multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
JP2871135B2 (en) Method for producing non-reducing dielectric ceramic composition
JP3450903B2 (en) Non-reducing dielectric porcelain composition
JPH0825795B2 (en) Non-reducing dielectric ceramic composition
JP7262640B2 (en) ceramic capacitor
JP3634930B2 (en) Dielectric porcelain composition
JP2000185969A (en) Dielectric ceramic composition
JP2003176172A (en) Dielectric ceramic composition and electronic parts
CN112441832A (en) Dielectric composition and electronic component
KR910001347B1 (en) Ultra-low fire ceramic compositions and method for producing thereof
JP2003063867A (en) Ceramic capacitor and its dielectric composition and method for producing the same
JP3250932B2 (en) Non-reducing dielectric porcelain composition
JP2001278662A (en) Method for manufacturing dielectric ceramic
JP3134430B2 (en) Non-reducing dielectric ceramic composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13