JP2003176172A - Dielectric ceramic composition and electronic parts - Google Patents

Dielectric ceramic composition and electronic parts

Info

Publication number
JP2003176172A
JP2003176172A JP2001372180A JP2001372180A JP2003176172A JP 2003176172 A JP2003176172 A JP 2003176172A JP 2001372180 A JP2001372180 A JP 2001372180A JP 2001372180 A JP2001372180 A JP 2001372180A JP 2003176172 A JP2003176172 A JP 2003176172A
Authority
JP
Japan
Prior art keywords
additive
dielectric
mol
composition
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001372180A
Other languages
Japanese (ja)
Inventor
Tetsuhiro Takahashi
哲弘 高橋
Taisei Shoji
大成 東海林
Kiyoji Handa
喜代二 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2001372180A priority Critical patent/JP2003176172A/en
Publication of JP2003176172A publication Critical patent/JP2003176172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric ceramic composition which can be burned in a reducing atmosphere, has high volumetric resistance in a high field intensity maintaining a high dielectric constant, has excellent Bias properties, and is useful for a multilayer ceramic capacitor having high reliability. <P>SOLUTION: An additive expressed by (Ba<SB>1-y</SB>Ca<SB>y</SB>)<SB>a</SB>ZrO<SB>2+a</SB>(wherein, 0.5≤y≤1.0, and 0.9≤a≤1.1) is added in 1.5 to 3.5 mol to 100 mol of the main composition expressed by the compositional formula of (Ba<SB>1-x</SB>Y<SB>x</SB>)TiO<SB>3</SB>(wherein, 0.003≤x≤0.020). Further, another additive consisting of MnO and MgO, and a third additive containing at least one or more kinds selected from MO<SB>3</SB>(wherein, M is an element selected from Mo and W), and A<SB>2</SB>O<SB>5</SB>(wherein, A is an element selected from Ta, Nb and V), and oxide glass expressed by (Ba<SB>1-z</SB>Ca<SB>z</SB>)<SB>b</SB>SiO<SB>2+b</SB>(wherein, 0≤z≤1.0, and 0.8≤b≤1.2) are contained therein. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、還元焼成用誘電体
磁器組成物と、その誘電体を用いた積層セラミックコン
デンサなどの電子部品に関するものである。
TECHNICAL FIELD The present invention relates to a dielectric ceramic composition for reduction firing and an electronic component such as a laminated ceramic capacitor using the dielectric.

【0002】[0002]

【従来の技術】積層磁器コンデンサは以下に示すような
方法により作製されるのが一般的である。まず、誘電体
粉末に有機バインダーや可塑剤、有機溶剤を混合してス
ラリーを作製し、ドクターブレード法等によりセラミッ
クグリーンシートを作製する。得られたグリーンシート
上に内部電極となる電極材料を塗布し、複数枚積層して
熱圧着し、一体化させたものを大気中において1000
〜1300℃で焼成して焼成体を作製する。得られた焼
成体の端面に内部電極と電気的に導通する外部電極を焼
き付けることにより積層磁器コンデンサは製造される。
2. Description of the Related Art A laminated ceramic capacitor is generally manufactured by the following method. First, a dielectric powder is mixed with an organic binder, a plasticizer, and an organic solvent to prepare a slurry, and a ceramic green sheet is prepared by a doctor blade method or the like. The obtained green sheet was coated with an electrode material to serve as an internal electrode, laminated on a plurality of sheets, thermocompression-bonded, and integrated to obtain 1000 in the atmosphere.
A fired body is produced by firing at 1300 ° C. A laminated ceramic capacitor is manufactured by baking an external electrode electrically conducting to the internal electrode on the end surface of the obtained fired body.

【0003】従来より低温焼成、高誘電率であるという
特徴を示す鉛系誘電体を用いた積層セラミックコンデン
サの内部電極は白金、パラジウム、銀−パラジウムとい
った貴金属が用いられてきた。これは、大気中焼成でも
誘電体材料と反応せず、酸化することによる抵抗の増大
も起らないためであった。しかし、近年の貴金属の高
騰、特にパラジウムが2000円/g以上と高価になっ
ているため、製造コストを高くする原因となっている。
Conventionally, noble metals such as platinum, palladium, and silver-palladium have been used as the internal electrodes of a laminated ceramic capacitor using a lead-based dielectric material which is characterized by low temperature firing and high dielectric constant. This is because it does not react with the dielectric material even when fired in the air, and the resistance does not increase due to oxidation. However, the price of precious metals has risen in recent years, and in particular, palladium is expensive at 2000 yen / g or more, which is a cause of increasing the manufacturing cost.

【0004】また、地球的環境問題に対する世界的関心
から、各国において環境法規が整備されており、誘電体
材料に含まれる鉛も電子機器を構成する電子部品に含ま
れている有害物質の一つとして提示されている。現在の
ところ電子セラミック部品に含まれる鉛は適応外となっ
ているものの、鉛を使用しないチタン酸バリウム系の誘
電体を使用する方向になってきている。このように、コ
ストの削減のために、内部電極として卑金属であるNi
を用い、環境の面に配慮した鉛フリーのチタン酸バリウ
ム系の誘電体材料を用いることが、一般的になってきて
いる。
Further, in view of global concern about global environmental problems, environmental regulations have been established in each country, and lead contained in a dielectric material is one of harmful substances contained in electronic parts constituting electronic devices. Is presented as. At present, lead contained in electronic ceramic parts is not applicable, but there is a trend toward using a barium titanate-based dielectric material that does not use lead. Thus, in order to reduce costs, Ni, which is a base metal, is used as the internal electrode.
It has become common to use lead-free barium titanate-based dielectric materials that are environmentally friendly.

【0005】このように、内部電極として貴金属のPd
(Ag- Pd)ではなく卑金属であるNiを用いる場
合、問題となるのは焼成時の雰囲気である。大気中及び
酸化雰囲気下での焼成ではNiが酸化され、内部電極と
しての役割を果たさなくなる。そのため、還元雰囲気下
での焼成が必要となり、誘電体材料も還元雰囲気で焼成
可能な材料となる。鉛系誘電体材料ではNiがNiOに
変わる酸素分圧でも、PbOがPbになってしまうとい
うことから、この条件下では使用できない。 このため、
鉛フリーのチタン酸バリウム系の誘電体材料を使用しな
くてはならない。
As described above, the noble metal Pd is used as the internal electrode.
When Ni, which is a base metal, is used instead of (Ag-Pd), the problem is the atmosphere during firing. Ni is oxidized by firing in the air and in an oxidizing atmosphere and does not serve as an internal electrode. Therefore, firing in a reducing atmosphere is required, and the dielectric material also becomes a material that can be fired in a reducing atmosphere. The lead-based dielectric material cannot be used under this condition because PbO becomes Pb even if the oxygen partial pressure at which Ni changes to NiO. For this reason,
A lead-free barium titanate-based dielectric material must be used.

【0006】しかし、この誘電体も還元雰囲気での焼成
では、主成分であるTiの価数が4価から3価に還元さ
れ半導体化すると共に、酸素空位が増加することによる
平均寿命(絶縁劣化時間)の低下が観察される。この対
策として、アクセプターとして働くMnO,Co2 3
等を添加することによるTiの還元を抑制し、再酸化処
理により酸素空位を低減することにより、半導体化する
ことを防止し、ドナーとして働く希土類元素(Y
2 3 ,Ho2 3 ,Dy2 3 )等を添加し陽イオン
空位を形成することにより、平均寿命(絶縁劣化時間)
の低下を防止している。
However, when this dielectric is also fired in a reducing atmosphere, the valence of Ti, which is the main component, is reduced from tetravalent to trivalent to become a semiconductor, and the oxygen vacancy increases, so that the average life (insulation deterioration) Time) is observed. As a countermeasure against this, MnO, Co 2 O 3 that functions as an acceptor
Suppressing the reduction of Ti due to the addition of, etc., and reducing the oxygen vacancies by the reoxidation treatment to prevent the semiconductor from becoming a semiconductor, and the rare earth element (Y
2 O 3 , Ho 2 O 3 , Dy 2 O 3 ) etc. are added to form cation vacancies, so that the average life (insulation deterioration time)
To prevent the decline of.

【0007】[0007]

【発明が解決しようとする課題】ところで、近年の電子
機器の高性能化に伴い、中高圧下で使用でき、かつ大容
量であるセラミックコンデンサの需要が増加している。
実際には、携帯電話やビデオカメラのバッテリーチャ
ージャーを代表する小型スイッチング電源、DC/DC
コンバーター等の電源ユニット、蛍光灯などの照明回路
等のインバーター、デジタルスチルカメラ、コンパクト
カメラ等のストロボ回路、MODEM、ISDN等の情
報通信機器を中心に著しい伸びが見られている。そし
て、最近の中高耐圧品の100V仕様に対応するには、
高電界強度(5V/μm)でのCR積は少なくとも30
00Ω・F以上でなければならない。また、小型化に伴
って発熱が大きくなるので、温度特性もX7RまたはB
特性が求められている。
By the way, with the recent high performance of electronic equipment, there is an increasing demand for ceramic capacitors that can be used under medium and high pressure and have a large capacity.
Actually, DC / DC, a small switching power supply that represents a battery charger for mobile phones and video cameras.
Significant growth is seen mainly in power supply units such as converters, inverters such as lighting circuits such as fluorescent lights, strobe circuits such as digital still cameras and compact cameras, and information communication devices such as MODEM and ISDN. And to meet the recent 100V specifications for medium and high voltage products,
CR product at high field strength (5V / μm) is at least 30
Must be greater than 00Ω · F. Also, since the heat generation increases with the miniaturization, the temperature characteristic is X7R or B.
Characteristics are required.

【0008】しかしながら、このような要求に対応する
ために前記の従来の材料、例えば特開平6−34273
5、特開平10−255549、特開昭61−1014
59号、特公昭61−14611号等に開示されている
材料を用いた場合、高電界強度下で、高誘電率(>20
00)特性は得られるものの、信頼性の低下(絶縁劣
化)、諸特性の低下、特にDCBias電圧による容量
の低下が問題となっていた。 さらにこのような材料をも
ってしても、高電界強度(5V/μm)でのCR積は2
000Ω・F以下である。
However, in order to meet such demands, the above-mentioned conventional materials, for example, JP-A-6-34273 are used.
5, JP-A-10-255549, JP-A-61-1014
59, Japanese Patent Publication No. 61-14611, etc., a high dielectric constant (> 20) is obtained under high electric field strength.
Although the (00) characteristics are obtained, there have been problems such as deterioration of reliability (insulation deterioration), deterioration of various characteristics, and in particular, decrease of capacity due to DCBias voltage. Furthermore, even with such a material, the CR product at high electric field strength (5 V / μm) is 2
000Ω · F or less.

【0009】本発明は、以上のような従来技術の問題点
を解決するために提案されたものであり、その目的は、
Ni内部電極積層セラミックコンデンサ用として好適な
還元雰囲気焼成可能で高い誘電率を有し、高電解強度特
性の良好な誘電体磁器組成物を提供することにある。ま
た、静電容量の温度特性がEIA規格で規定するX7R
特性、JIS規格で規定するB特性を満足する信頼性の
高い積層セラミックコンデンサなどの電子部品を提供す
ることである。具体的には、誘電率は2500以上を示
し、高い電界強度(5V/μm)で使用した時、静電容
量と絶縁抵抗との積(CR積)が20℃で3000Ω・
F以上であり、150℃で15V/μmになるように電
圧を印加した加速寿命試験において絶縁抵抗が105 Ω
に達するまでの時間が1000時間以上と長く、また、
耐圧が80V/μm以上、5V/μmの印可時における
静電容量の低下率が45%以下の特性を有する積層セラ
ミックコンデンサなどの電子部品を提供することであ
る。
The present invention has been proposed in order to solve the above problems of the prior art, and its purpose is to:
An object of the present invention is to provide a dielectric ceramic composition suitable for Ni internal electrode multilayer ceramic capacitors, which can be fired in a reducing atmosphere, has a high dielectric constant, and has excellent high electrolytic strength characteristics. In addition, the temperature characteristic of capacitance is X7R specified by the EIA standard.
An object of the present invention is to provide a highly reliable electronic component such as a multilayer ceramic capacitor which satisfies the characteristics and the B characteristics defined by the JIS standard. Specifically, the dielectric constant shows 2,500 or more, and when used with high electric field strength (5 V / μm), the product (CR product) of capacitance and insulation resistance is 3000 Ω at 20 ° C.
Insulation resistance is 10 5 Ω in accelerated life test in which voltage is applied at 150 ° C and 15 V / μm.
It takes more than 1000 hours to reach
An object of the present invention is to provide an electronic component such as a monolithic ceramic capacitor having a characteristic that the rate of decrease in capacitance when applied with a withstand voltage of 80 V / μm or more and 5 V / μm is 45% or less.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記の課
題を達成すべく鋭意検討を重ねた結果、請求項1に記載
の通り、誘電体材料として、組成式が(Ba1-x x
TiO3 (但し、0.003≦x≦0.020)からな
る主組成物100molに対して、(Ba1-yCay
a ZrO2+a (但し、0.5≦y≦1.0、0.9≦a
≦1.1)で表される第一添加物を1.5〜3.5mo
l添加し、MnO、MgOからなる第二添加物とMO3
(但し、MはMo,Wから選択された元素)またはA2
5 (但し、AはTa,Nb,Vから選択された元素)
から選択された少なくとも1 種または2種以上を含む第
三添加物及び(Ba1-z Caz b SiO2+b (但し、
0≦z≦1.0、0.8≦b≦1.2)で表される酸化
物ガラスを有することを特徴とする誘電体磁器組成物を
用いることにより、上記課題を達成し得ることを見出し
た。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to achieve the above object, and as a result, as shown in claim 1, as a dielectric material, a composition formula (Ba 1-x Y x )
With respect to 100 mol of the main composition of TiO 3 (however, 0.003 ≦ x ≦ 0.020), (Ba 1-y Ca y )
a ZrO 2 + a (however, 0.5 ≦ y ≦ 1.0, 0.9 ≦ a
≦ 1.1) the first additive represented by 1.5-3.5mo
1 addition, a second additive consisting of MnO and MgO and MO 3
(However, M is an element selected from Mo and W) or A 2
O 5 (however, A is an element selected from Ta, Nb, and V)
A third additive containing at least one or two or more selected from (Ba 1-z Ca z ) b SiO 2 + b (however,
By using a dielectric ceramic composition characterized by having an oxide glass represented by 0 ≦ z ≦ 1.0 and 0.8 ≦ b ≦ 1.2), it is possible to achieve the above object. I found it.

【0011】主成分である(Ba1-x x )TiO3
上記の各添加物を添加する場合、まず、添加物を110
0℃以上の高温で仮焼きし、粉砕することにより均一化
し、これを主組成物の(Ba1-x x )TiO3 に添加
することが好ましい。この方法により焼結した後に粒界
に選択的にこれらの添加物を均一に析出させることが可
能となり、絶縁抵抗及び信頼性の向上が見られる。ま
た、添加物の比重差が小さいために、より均一なグリー
ンシートを作製することも可能である。
When each of the above additives is added to (Ba 1-x Y x ) TiO 3 which is the main component, first,
It is preferable to calcine at a high temperature of 0 ° C. or higher and homogenize by pulverization, and add this to (Ba 1-x Y x ) TiO 3 of the main composition. By this method, it becomes possible to selectively and uniformly deposit these additives on the grain boundaries after sintering, and the insulation resistance and reliability are improved. Further, since the difference in specific gravity of the additives is small, it is possible to produce a more uniform green sheet.

【0012】請求項1記載の通り、組成式が(Ba1-x
x )TiO3 (但し、0.003≦x≦0.020)
からなる主組成物100molに対して、(Ba1-y
ya ZrO2+a (但し、0.5≦y≦1.0、0.
9≦a≦1.1)で表される第一添加物を1.5〜3.
5mol添加し、MnO、MgOからなる第二添加物と
MO3 (但し、MはMo,Wから選択された元素)また
はA2 5 (但し、AはTa,Nb,Vから選択された
元素)から選択された少なくとも1 種または2種以上を
含む第三添加物及び、(Ba1-z Caz b SiO2+b
(但し、0≦z≦1.0、0.8≦b≦1.2)で表さ
れる酸化物ガラス等の置換量及び元素を選択したのは、
以下の理由による。
As described in claim 1, the composition formula is (Ba 1-x
Y x ) TiO 3 (however, 0.003 ≦ x ≦ 0.020)
To 100 mol of the main composition consisting of (Ba 1-y C
a y ) a ZrO 2 + a (provided that 0.5 ≦ y ≦ 1.0, 0.
9 ≦ a ≦ 1.1), the first additive represented by 1.5 to 3.
5 mol of the second additive consisting of MnO and MgO and MO 3 (where M is an element selected from Mo and W) or A 2 O 5 (where A is an element selected from Ta, Nb and V) And a third additive containing at least one or two or more of (Ba 1-z Ca z ) b SiO 2 + b
(Where, 0 ≦ z ≦ 1.0, 0.8 ≦ b ≦ 1.2), the substitution amount and the element of the oxide glass and the like are selected.
The reason is as follows.

【0013】主組成物である(Ba1-x x )TiO3
のイットリアの置換量xが0.003≦x≦0.02
0、さらに0.006≦x≦0.012であることが望
ましい。この範囲未満では、Bias特性及び信頼性の
向上の効果が低減する。この範囲を超えると、誘電率が
低下すると共に、その他の特性も低下してしまう。
The main composition is (Ba 1-x Y x ) TiO 3
Yttria substitution amount x is 0.003 ≦ x ≦ 0.02
0, more preferably 0.006 ≦ x ≦ 0.012. Below this range, the effect of improving Bias characteristics and reliability is reduced. When it exceeds this range, the dielectric constant is lowered and other characteristics are also lowered.

【0014】(Ba1-y Cay a ZrO2+a で表され
る第一添加物のyが0.5〜1.0、さらに0.7〜
1.0の間に、aが0.9〜1.1、さらに0.95〜
1.05の間にあることが望ましい。yがこの範囲未満
では絶縁抵抗、信頼性の向上の効果が低減する。また、
aがこの範囲未満では、主組成物と過剰に反応を起こ
し、粒成長を引き起こす場合がある。そのため、誘電体
特性(特に温度特性)を低下させてしまう。一方、この
範囲を超えると、誘電率を向上させる効果が低減してし
まう。
[0014] (Ba 1-y Ca y) a y of the first additive represented by ZrO 2 + a is 0.5 to 1.0, further 0.7
Between 1.0, a is 0.9 to 1.1, and further 0.95
It is desirable to be between 1.05. If y is less than this range, the effects of improving insulation resistance and reliability are reduced. Also,
When a is less than this range, it may react excessively with the main composition and cause grain growth. Therefore, the dielectric property (particularly the temperature property) is deteriorated. On the other hand, if it exceeds this range, the effect of improving the dielectric constant is reduced.

【0015】そして、(Ba1-y Cay a ZrO2+a
(但し、0.5≦y≦1.0、0.9≦a≦1.1)で
表される第一添加物の添加量が1.5〜3.5molで
あることが望ましい。添加量がこの範囲未満では、誘電
率、絶縁抵抗、信頼性の向上に効果が無く、この範囲を
超えると、Bias特性、温度特性を低下させてしま
う。
Then, (Ba 1-y Ca y ) a ZrO 2 + a
(However, the addition amount of the first additive represented by 0.5 ≦ y ≦ 1.0, 0.9 ≦ a ≦ 1.1) is preferably 1.5 to 3.5 mol. If the added amount is less than this range, there is no effect in improving the dielectric constant, insulation resistance, and reliability. If the added amount exceeds this range, Bias characteristics and temperature characteristics are deteriorated.

【0016】MO3 (但し、MはMo,Wから選択され
た元素)またはA2 5 (但し、AはTa,Nb,Vか
ら選択された元素)から選択された少なくとも1 種また
は2種以上を含む第三添加物を添加することが望まし
い。 M成分のMo,Wまたは、A成分のTa,Nb,V
はほぼ同じような特性を示し、これらから選択された1
成分を使用しても、組み合わせて使用しても同様な結果
が得られている。
At least one or two selected from MO 3 (where M is an element selected from Mo and W) or A 2 O 5 (where A is an element selected from Ta, Nb and V). It is desirable to add the third additive including the above. M component Mo, W or A component Ta, Nb, V
Show almost the same characteristics, and 1 selected from these
Similar results have been obtained with the components and in combination.

【0017】(Ba1-z Caz b SiO2+b で表され
る酸化物ガラスのzが0〜1.0の間に、bが0.8〜
1.2の間にあることが望ましい。焼結性の向上という
点では、zは0でも効果はほとんど変わらないが、絶縁
抵抗を改善させることでは、置換量zは0.5以上が好
ましい。 また、bがこの範囲未満では、主組成物と過剰
に反応を起こし、粒成長を引き起こす場合がある。その
ため、誘電体特性(特に温度特性)を低下させてしま
う。一方、この範囲を超えると、焼結性が低下するた
め、誘電率が低下すると共に、その他の特性も悪化させ
てしまう。
[0017] During (Ba 1-z Ca z) b z of oxide glass represented by SiO 2 + b is 0 to 1.0, b is 0.8
Preferably between 1.2. In terms of improving the sinterability, the effect is almost unchanged even when z is 0, but in order to improve the insulation resistance, the substitution amount z is preferably 0.5 or more. Further, if b is less than this range, it may react excessively with the main composition to cause grain growth. Therefore, the dielectric property (particularly the temperature property) is deteriorated. On the other hand, if it exceeds this range, the sinterability is lowered, so that the dielectric constant is lowered and other characteristics are deteriorated.

【0018】請求項2に記載のMnO、MgOからなる
第二添加物とMO3 (但し、MはMo,Wから選択され
た元素)またはA2 5 (但し、AはTa,V,Nbか
ら選択された元素)から選択された少なくとも1 種また
は2種以上を含む第三添加物、(Ba1-z Caz b
iO2+b (但し、0≦z≦1.0、0.8≦b≦1.
2)で表される酸化物ガラスは、それぞれ主組成物であ
る(Ba1-x x )TiO3 100molに対して各添
加物が第二添加物:1.5〜3.0mol、第三添加
物:0.05〜0.20mol、酸化物ガラス:1.5
〜5.0mol、0<第二添加物のMnO≦0.5とし
たのは、以下の理由による。
A second additive comprising MnO and MgO according to claim 2 and MO 3 (where M is an element selected from Mo and W) or A 2 O 5 (where A is Ta, V and Nb). An element selected from (3), a third additive containing at least one or more selected from (Ba 1-z Ca z ) b S
iO 2 + b (where 0 ≦ z ≦ 1.0, 0.8 ≦ b ≦ 1.
In the oxide glass represented by 2), 100% of (Ba 1-x Y x ) TiO 3 which is the main composition has 100% of each additive as the second additive: 1.5 to 3.0 mol and the third additive. Additive: 0.05 to 0.20 mol, oxide glass: 1.5
˜5.0 mol, 0 <MnO ≦ 0.5 of the second additive is set for the following reason.

【0019】第二添加物であるMnO、MgOが1.5
mol≦MnO+MgO≦3.0mol、さらに1.5
mol≦MnO+MgO≦2.5mol、かつ0mol
<MnO≦0.5molであることが望ましい。MnO
とMgOの合計の添加量がこの範囲未満では、EIA規
格で規定されているX7R特性またはJIS規格で規定
されているB特性の低温側の変化率が大きくなり、この
範囲を超えると、急激に信頼性及び誘電率が低下してし
まう。MnOが0のとき、誘電損失が大きく、絶縁抵
抗、Bias特性の向上に効果が無い。MnOが0.5
を超えると、絶縁抵抗が低下すると共に信頼性が低下し
てしまう。
The second additive MnO and MgO is 1.5
mol ≦ MnO + MgO ≦ 3.0 mol, further 1.5
mol ≦ MnO + MgO ≦ 2.5 mol, and 0 mol
It is desirable that <MnO ≦ 0.5 mol. MnO
If the total addition amount of MgO and MgO is less than this range, the rate of change on the low temperature side of the X7R characteristic specified by the EIA standard or the B characteristic specified by the JIS standard becomes large, and if it exceeds this range, it rapidly increases. The reliability and the dielectric constant are lowered. When MnO is 0, the dielectric loss is large and there is no effect in improving the insulation resistance and the Bias characteristics. MnO is 0.5
When it exceeds, the insulation resistance is lowered and the reliability is lowered.

【0020】また、MO3 (但し、MはMo,Wから選
択された元素)またはA2 5 (但し、AはTa,V,
Nbから選択された元素)から選択された少なくとも1
種または2種以上を含む第三添加物を0.05〜0.2
0mol、さらに0.05〜0.15mol添加するこ
とが望ましい。この範囲未満では誘電率、信頼性の向上
の効果が低減し、この範囲を超えると誘電損失が大きく
なり、温度特性が劣化してしまう。
Further, MO 3 (where M is an element selected from Mo and W) or A 2 O 5 (where A is Ta, V,
At least 1 selected from elements selected from Nb)
0.05 to 0.2 of a third additive containing two or more species
It is desirable to add 0 mol, more preferably 0.05 to 0.15 mol. If it is less than this range, the effect of improving the dielectric constant and reliability is reduced, and if it exceeds this range, the dielectric loss becomes large and the temperature characteristics deteriorate.

【0021】(Ba1-z Caz b SiO2+b (但し、
0≦z≦1.0、0.8≦b≦1.2)で表される酸化
物ガラスの添加量が0.5〜5.0mol、さらに1.
0〜2.5molの間にあることが望ましい。この範囲
未満では、焼結助剤としての役割が低減し、この範囲を
超えてしまうと、誘電率が低下すると共に、耐圧も悪化
させてしまう。
[0021] (Ba 1-z Ca z) b SiO 2 + b ( where,
0 ≦ z ≦ 1.0, 0.8 ≦ b ≦ 1.2), and the addition amount of the oxide glass is 0.5 to 5.0 mol, and further 1.
It is preferably between 0 and 2.5 mol. If it is less than this range, the role as a sintering aid is reduced, and if it exceeds this range, the dielectric constant is lowered and the breakdown voltage is deteriorated.

【0022】また、請求項3に記載の主組成物の平均粒
径を0.2〜0.5μmにすることが望ましい。この範
囲未満では誘電率2500以上が得られず、この範囲を
超えてしまうと、DC Bias特性及び信頼性が悪化
してしまう。
Further, it is desirable that the main composition according to claim 3 has an average particle diameter of 0.2 to 0.5 μm. If it is less than this range, a dielectric constant of 2500 or more cannot be obtained, and if it exceeds this range, DC Bias characteristics and reliability are deteriorated.

【0023】(Ba1-x x )TiO3 の平均粒径が
0.2〜0.5μmである原料に平均粒径0.1μm以
下の添加剤を混合することが望ましい。これにより、焼
成時に均一な焼結が行われるため、クラックを生じ難く
なる。そのため、層厚が10〜50μmの広範囲におい
て、安定した電気特性が得られる。
It is desirable to mix a raw material having an average particle size of (Ba 1-x Y x ) TiO 3 of 0.2 to 0.5 μm with an additive having an average particle size of 0.1 μm or less. As a result, since uniform sintering is performed during firing, cracks are less likely to occur. Therefore, stable electric characteristics can be obtained in a wide range of the layer thickness of 10 to 50 μm.

【0024】また、請求項4に記載のように、誘電体磁
器組成物を前記のような組成範囲にすることにより、還
元雰囲気下で1100〜1200℃の焼成温度で焼成可
能であり、高誘電率を有し、高電界強度特性の良好な誘
電体材料を得ることができる。
Further, as described in claim 4, by setting the dielectric ceramic composition in the composition range as described above, it is possible to fire at a firing temperature of 1100 to 1200 ° C. in a reducing atmosphere, and to obtain a high dielectric constant. It is possible to obtain a dielectric material having a high electric field strength characteristic.

【0025】さらに、請求項5に記載のように、前記の
誘電体組成物を用いたNi内部電極を用いた積層セラミ
ックコンデンサは、X7RまたはB特性の温度特性を有
し、誘電率が2500以上で、高い電界強度下(5V/
μm)での容量抵抗積が20℃で3000Ω・F以上で
耐圧も80V/μm以上と極めて高く、5V/μmの印
可における静電容量の低下率が45%以下で、150℃
で15V/μmになるように電圧を印加した加速寿命試
験での絶縁抵抗の劣化に至るまでの時間が1000時間
以上である電子部品である。
Further, as described in claim 5, the multilayer ceramic capacitor using the Ni internal electrode using the dielectric composition has a temperature characteristic of X7R or B characteristic and a dielectric constant of 2500 or more. At high field strength (5V /
μm), the capacitance resistance product at 20 ° C. is 3000 Ω · F or more, and the withstand voltage is extremely high at 80 V / μm or more, and the rate of decrease in capacitance at 5 V / μm is 45% or less, 150 ° C.
It is an electronic component in which the time until deterioration of the insulation resistance is 1000 hours or more in an accelerated life test in which a voltage is applied so as to be 15 V / μm.

【0026】[0026]

【実施例】以下、本発明の具体的実施例を挙げ、本発明
をさらに詳細に説明する。 [1.製造工程] [1−1.誘電体スラリーの調製]誘電体ベース材料と
して、平均粒径が0.3μmの(Ba1-x x )TiO
3を用いた。なお、この(Ba1-x x )TiO3 はシ
ュウ酸塩共沈法で得られたものを使用した。また、第一
添加物である添加物である (Ba1-y Cay aZr
2+a も共沈法で作製したものを使用した。第二添加物
(MnO、MgO)及び第三添加物(MO3 、A
2 5 )の酸化物は、それぞれ、表1に示した組成に従
って所定の量を秤量した。これらをアルミるつぼに入
れ、1150℃で4時間の仮焼を行った。次に、得られ
た仮焼粉を、ジェットミル、アトライタミルなどの微粉
砕機を用いて粉砕することにより、平均粒径が0.1μ
mの酸化物粉末を得た。なお、この酸化物粉末は、作製
条件により一部または全部がガラス化する場合がある
が、その組成が均一であれば得られる特性には大きな差
はない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to specific examples of the present invention. [1. Manufacturing Process] [1-1. Preparation of Dielectric Slurry] As a dielectric base material, (Ba 1-x Y x ) TiO 3 having an average particle size of 0.3 μm
3 was used. The (Ba 1-x Y x ) TiO 3 obtained by the oxalate coprecipitation method was used. In addition, it is an additive that is the first additive (Ba 1-y Ca y ) a Zr
As O 2 + a , one produced by the coprecipitation method was used. Second additive (MnO, MgO) and third additive (MO 3 , A
A predetermined amount of each of the 2 O 5 ) oxides was weighed according to the composition shown in Table 1. These were placed in an aluminum crucible and calcined at 1150 ° C. for 4 hours. Next, the obtained calcined powder is pulverized with a fine pulverizer such as a jet mill or an attritor mill to give an average particle diameter of 0.1 μm.
m oxide powder was obtained. Although some or all of the oxide powder may vitrify depending on the production conditions, if the composition is uniform, there is no great difference in the obtained properties.

【0027】(Ba1-z Caz b SiO2+b で表され
る酸化物ガラスは、BaCO3 、SrO3 ,SiO2
ボールミルにより24時間湿式混合し、乾燥後、115
0℃の空気中で焼成し、ジェットミル、アトライタミル
などの微粉砕機を用いて粉砕することにより、製造し
た。
[0027] (Ba 1-z Ca z) b oxides glass represented by SiO 2 + b is, BaCO 3, SrO 3, SiO 2 is wet-mixed for 24 hours by a ball mill, dried, 115
It was produced by firing in air at 0 ° C. and pulverizing with a fine pulverizer such as a jet mill and an attritor mill.

【0028】以上のようにして得られた誘電体ベース材
料と酸化物粉末及び酸化物ガラスから、元素の配合比率
の異なる複数の誘電体原料を作製した。すなわち、各誘
電体原料1000gに対して、水とエチルアルコール及
び分散剤を80:19:1で混合した溶剤を700g入
れ、ホモジナイザーを用いて分散させた。この混合物
を、通常の良く知られている分散方法であるボールミル
やアトリッションミルを用いて20時間分散させた後、
さらに水性エマルジョンとアクリル樹脂と可塑剤を含む
溶液を入れて、複数種類の誘電体スラリーを作製した。
なお、これらのスラリーの粘性はいずれも約300cp
sに調整した。
From the thus obtained dielectric base material, oxide powder and oxide glass, a plurality of dielectric raw materials having different compounding ratios of elements were prepared. That is, to 1000 g of each dielectric material, 700 g of a solvent in which water, ethyl alcohol and a dispersant were mixed at 80: 19: 1 was added and dispersed using a homogenizer. This mixture was dispersed for 20 hours using a ball mill or an attrition mill, which are generally well-known dispersion methods,
Further, a solution containing an aqueous emulsion, an acrylic resin and a plasticizer was added to prepare a plurality of types of dielectric slurries.
The viscosity of these slurries was about 300 cp.
It was adjusted to s.

【0029】[1−2.グリーンチップの作製]上記の
ようにして得られた誘電体スラリーを用いて、ダイコー
ターにより、PETフィルム上に30μmの厚さを持つ
グリーンシートを成形し、このグリーンシート上に、内
部電極用ペーストを1.5μmの厚みで印刷した。な
お、内部電極用ペーストとしては、平均粒径0.4μm
のNi粒子100重量部と、有機ビヒクル(エチルセル
ロース樹脂8重量部をブチルカルビトール92重量部に
溶解したもの)40重量部、及びブチルカルビトール1
0重量部とを、3本ロールにより混練し、ペースト化し
たものを使用した。
[1-2. Production of Green Chip] Using the dielectric slurry obtained as described above, a die coater is used to form a green sheet having a thickness of 30 μm on a PET film, and the internal electrode paste is formed on the green sheet. Was printed with a thickness of 1.5 μm. The internal electrode paste has an average particle size of 0.4 μm.
100 parts by weight of Ni particles, 40 parts by weight of an organic vehicle (8 parts by weight of ethyl cellulose resin dissolved in 92 parts by weight of butyl carbitol), and 1 part of butyl carbitol
0 part by weight was kneaded with a three-roll mill to form a paste, which was used.

【0030】次いで、PETフィルムからシートを剥離
して積層し、80℃で1トン/cm2の静水圧を用いて
加圧接着してグリーンチップを得た。有効積層数は10
0層とした。次に、このグリーンチップを所定サイズに
切断し、金属板セッターに搭載し、脱バインダー処理、
焼成及びアニールを、下記の条件で連続的に行ない、コ
ンデンサ素子を作製した。なお、脱バインダー処理、焼
成及びアニールの条件は、以下の通りである。また、そ
れぞれの雰囲気ガスの加湿にはウェッターを用いた。
Then, the sheets were peeled from the PET film and laminated, and pressure-bonded at 80 ° C. using a hydrostatic pressure of 1 ton / cm 2 to obtain a green chip. Effective stacking number is 10
The number of layers was 0. Next, this green chip is cut into a predetermined size, mounted on a metal plate setter, debinding process,
Firing and annealing were continuously performed under the following conditions to produce a capacitor element. The conditions of the binder removal treatment, firing and annealing are as follows. A wetter was used to humidify each atmosphere gas.

【0031】(脱バインダー処理) 昇温速度:20℃/時間 保持温度:320℃ 温度保持時間:12時間 雰囲気ガス:空気中 (焼成) 昇温速度:250℃/時間 保持温度:1100℃〜1200℃ 温度保持時間:4時間 冷却速度:250℃/時間 雰囲気ガス:加湿したN2 とH2 との混合ガス 酸素分圧:1×10-10 atm (アニール) 保持温度:950℃ 温度保持時間:8時間 昇温、降温速度:200℃/時間 雰囲気ガス:加湿したN2 ガス 酸素分圧:2×10-5atm(Debinding process) Temperature rising rate: 20 ° C./hour Holding temperature: 320 ° C. Temperature holding time: 12 hours Atmosphere gas: In air (calcination) Temperature rising rate: 250 ° C./hour Holding temperature: 1100 ° C. to 1200 ℃ temperature holding time: 4 hours cooling rate: 250 ℃ / hour atmosphere gas: humidified mixed gas of N 2 and H 2 oxygen partial pressure: 1 × 10 -10 atm (annealing) holding temperature: 950 ℃ temperature holding time: Temperature rising / falling rate for 8 hours: 200 ° C./hour Atmosphere gas: Humidified N 2 gas Oxygen partial pressure: 2 × 10 −5 atm

【0032】[1−3.バレル処理・外部電極の形成]
得られたコンデンサ素子の端面をバレル処理により研磨
した後、平均粒径0.5μmのCu粒子100重量部
と、有機ビヒクル(エチルセルロース樹脂8重量部をブ
チルカルビトール92重量部に溶解したもの)35重量
部、及びブチルカルビトール7重量部とを混練し、ペー
スト化した外部電極用ペーストを前記端面に転写し、N
2 雰囲気中で750℃にて10分間焼成して外部電極を
形成し、図1に示すような構成を有する積層セラミック
コンデンサ(以下、MLC)を得た。なお、図におい
て、1は誘電体層、2は内部電極、3は外部電極であ
る。上記のようにして製造したサンプルのサイズは、
4.5×3.2×2.5mmであり、有効誘電体層の厚
さは20μm×100層、内部電極層の厚さは約1.0
μmであった。各サンプルについて下記に示す特性の評
価を行った。
[1-3. Barrel processing / formation of external electrodes]
After polishing the end surface of the obtained capacitor element by barrel treatment, 100 parts by weight of Cu particles having an average particle size of 0.5 μm and an organic vehicle (8 parts by weight of ethyl cellulose resin dissolved in 92 parts by weight of butyl carbitol) 35 1 part by weight and 7 parts by weight of butyl carbitol were kneaded, and the paste for external electrodes was transferred to the end face,
External electrodes were formed by firing at 750 ° C. for 10 minutes in 2 atmospheres to obtain a multilayer ceramic capacitor (hereinafter, MLC) having a structure as shown in FIG. In the figure, 1 is a dielectric layer, 2 is an internal electrode, and 3 is an external electrode. The size of the sample manufactured as described above is
4.5 × 3.2 × 2.5 mm, effective dielectric layer thickness is 20 μm × 100 layers, and internal electrode layer thickness is about 1.0.
was μm. The following characteristics of each sample were evaluated.

【0033】(容量の温度特性)容量の温度特性は、E
IA規格のX7R及びJIS規格のB特性を満足するか
否かを調べた。具体的には、LCRメータにより、X7
Rは−55〜125℃について測定電圧1Vで容量を測
定し、容量変化率が±15%以内(基準温度25℃)を
満足するか否かを調べた。また、B特性は−25〜85
℃について測定電圧1Vで容量を測定し、容量変化率が
±10%以内(基準温度20℃)を満たすかどうか調べ
た。両者を満足する場合を○、満足しない場合を×とし
た。
(Temperature characteristic of capacity) The temperature characteristic of capacity is E
It was investigated whether or not the IA standard X7R and the JIS standard B characteristics were satisfied. Specifically, with the LCR meter, X7
For R, the capacity was measured at a measurement voltage of 1 V at −55 to 125 ° C., and it was examined whether or not the capacity change rate was within ± 15% (reference temperature 25 ° C.). Moreover, the B characteristic is −25 to 85.
The capacitance was measured at a measurement voltage of 1 V for ° C, and it was examined whether or not the rate of capacitance change was within ± 10% (reference temperature 20 ° C). When both were satisfied, it was evaluated as ◯, and when not satisfied, as ×.

【0034】(比誘電率εs及び誘電損失)20℃にお
ける静電容量を測定し、電極面積と誘電体の厚みから比
誘電率を測定した。なお、誘電率と誘電損失は1vrm
s、1.0kHzでの値を用いた。
(Relative Dielectric Constant εs and Dielectric Loss) The capacitance at 20 ° C. was measured, and the relative dielectric constant was measured from the electrode area and the thickness of the dielectric. The dielectric constant and the dielectric loss are 1 vrm.
The value at s, 1.0 kHz was used.

【0035】(耐圧)MLC素子に電圧を印可して電流
が10mA以上流れた電圧を耐圧とした。測定数は各組
成ごとに50個であり、中心値を代表値とした。
(Withstand Voltage) A voltage was applied to the MLC element and a voltage at which a current of 10 mA or more flowed was defined as a withstand voltage. The number of measurements was 50 for each composition, and the central value was used as a representative value.

【0036】(容量抵抗積)素子を20℃の恒温槽に放
置し、10分後に容量と誘電体厚み1μm当り5V印可
した時の絶縁抵抗の1分値を測定し、その値と容量の積
をCR積とした。
(Capacitance-Resistance Product) The element was left in a thermostat at 20 ° C., and after 10 minutes, the capacitance and the 1-minute value of the insulation resistance when 5 V was applied per 1 μm of the dielectric thickness were measured. Was taken as the CR product.

【0037】(DC Bias特性)まず、1kHz、
1VrmsのAC電圧を印可した時の静電容量を測定し
た後、DC100V(5V/ μm)と1kHz、1Vr
msのAC電圧を同時に印可した時の静電容量を測定し
た。得られた測定値により、静電容量の低下率を算出し
た。
(DC Bias characteristic) First, 1 kHz,
After measuring the capacitance when an AC voltage of 1 Vrms was applied, DC 100 V (5 V / μm), 1 kHz, 1 Vr
The capacitance was measured when an AC voltage of ms was applied at the same time. The rate of decrease in capacitance was calculated from the obtained measured value.

【0038】(加速寿命試験)加速寿命試験として、温
度150℃にて直流電圧を300V(15V/μm)印
可して、その絶縁抵抗の経時変化を測定した。 なお、加
速寿命試験では、各試料の絶縁抵抗値が105 以下にな
ったときの時間をIR寿命時間とし、複数の試料につい
ての平均寿命時間を求めた。
(Accelerated Life Test) As an accelerated life test, a DC voltage of 300 V (15 V / μm) was applied at a temperature of 150 ° C., and the change in insulation resistance with time was measured. In the accelerated life test, the time when the insulation resistance value of each sample became 10 5 or less was taken as the IR life time, and the average life time of a plurality of samples was obtained.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[ 1.試験結果]表1及び表2に示したサ
ンプルNo.1〜No.8の結果から、イットリアの置
換量が適応範囲外の0.003未満の場合(No.1,
2)、IR寿命時間が極端に短くなっている。 また、
適応範囲を超えた場合(No.7,8)、焼結性が低下
するため焼結が不十分となってしまう。このため、誘電
率、絶縁抵抗、耐圧及びIR寿命時間が低下することが
確認できた。 更に焼成温度を高くすることにより焼結
性を向上させることは可能であるが、高温になるに従っ
て内部電極が切れやすくなり、容量の低下または、構造
欠陥を引き起こす可能性が高くなってしまう。
[1] Test Results] Sample No. shown in Table 1 and Table 2 1-No. From the result of No. 8, when the replacement amount of yttria is less than 0.003 which is out of the applicable range (No. 1,
2) The IR life time is extremely short. Also,
When it exceeds the applicable range (Nos. 7 and 8), the sinterability is lowered and the sintering becomes insufficient. Therefore, it was confirmed that the dielectric constant, the insulation resistance, the breakdown voltage and the IR life time were reduced. Although it is possible to improve the sinterability by further raising the firing temperature, the internal electrodes are more likely to be cut off as the temperature rises, and the possibility of lowering the capacity or causing structural defects increases.

【0042】そして、サンプルNo. 9〜No. 23の
結果から、カルシウムの置換量が適応範囲未満のNo.
9では、絶縁抵抗の向上に効果がないことが確認でき
る。また、(Ba,Ca)/Zrが適応範囲外のNo.
13、No.17では、十分な誘電率または温度特性を
得る事はできない。また、添加量が適応範囲外のNo.
18,No.23では、同様に十分な誘電率または温度
特性を得る事はできない。
From the results of Samples No. 9 to No. 23, Nos.
In No. 9, it can be confirmed that there is no effect in improving the insulation resistance. In addition, in the case of No.
13, No. In No. 17, a sufficient dielectric constant or temperature characteristic cannot be obtained. In addition, the addition amount of No.
18, No. In No. 23, similarly, sufficient dielectric constant or temperature characteristic cannot be obtained.

【0043】サンプルNo.24〜No.33の結果か
ら、MgO,MnOの配合比及び添加量が、今回評価を
行った特性すべてに影響していることが確認できた。M
nOは、特に誘電損失、Bias特性への影響が大き
く、MgOは温度特性、信頼性への影響が大きいことが
確認できた。
Sample No. 24-No. From the result of No. 33, it was confirmed that the compounding ratio and the addition amount of MgO and MnO affected all the characteristics evaluated this time. M
It was confirmed that nO has a great influence on the dielectric loss and Bias characteristics, and MgO has a great influence on the temperature characteristics and reliability.

【0044】サンプルNo.34〜No.50では、ド
ナー成分であるMO3 (Mo,W)とA2 5 (Ta,
V,Nb)を、適応範囲内ではどの元素を選択または組
み合わせても十分に信頼性を確保できることが確認でき
た。
Sample No. 34-No. At 50, MO 3 (Mo, W) and A 2 O 5 (Ta,
It was confirmed that V, Nb) can ensure sufficient reliability even if any element is selected or combined within the applicable range.

【0045】サンプルNo.51〜No.65の結果か
ら、酸化物ガラスのCaを置換させることで、絶縁抵抗
特性が向上していることがわかる。そして、(Ba,C
a)/Siを適応範囲内とすることによって、信頼性、
焼結性とも向上している。さらに、酸化物ガラスの添加
量を適応範囲内とすることによって、焼結性が向上し、
誘電率、耐圧が向上している。
Sample No. 51-No. From the result of No. 65, it is understood that the insulation resistance characteristic is improved by substituting Ca of the oxide glass. And (Ba, C
By setting a) / Si within the applicable range, reliability,
Sinterability is also improved. Furthermore, by setting the addition amount of oxide glass within the applicable range, sinterability is improved,
Dielectric constant and breakdown voltage are improved.

【0046】サンプルNo.66〜No.69の結果か
ら、主成分の粒径を適応範囲内とすることによって、誘
電率と信頼性が向上していることがわかる。
Sample No. 66-No. From the results of No. 69, it can be seen that the permittivity and reliability are improved by setting the particle diameter of the main component within the applicable range.

【0047】表1、表2から明らかなように、本発明に
係る誘電体組成を持つサンプルの各特性は、いずれも本
発明の範囲外の誘電体組成を持つサンプルに比べて格段
に優れている。すなわち、本発明に係る誘電体組成を用
いた場合には、誘電率が高く、耐圧に優れたMLCを製
造することができる。また、得られたMLCは高い電界
強度下でも極めて高い絶縁抵抗を示し、さらにDCバイ
アス印可時の静電容量の低下率も小さく、信頼性も高
い。
As is clear from Tables 1 and 2, the respective characteristics of the samples having the dielectric composition according to the present invention are significantly superior to those of the samples having the dielectric composition outside the range of the present invention. There is. That is, when the dielectric composition according to the present invention is used, an MLC having a high dielectric constant and an excellent breakdown voltage can be manufactured. Further, the obtained MLC exhibits an extremely high insulation resistance even under a high electric field strength, and further, the rate of decrease of the electrostatic capacity when a DC bias is applied is small and the reliability is high.

【0048】[2.他の実施例]なお、本発明は、前記
実施例に限定されるものではなく、本発明の範囲内で他
にも多種多様な変形例を実施可能である。例えば、誘電
体磁器組成物の具体的な組成は、本発明の範囲内で適宜
選択可能である。同様に、電極用金属の組成やバインダ
ーの組成等も、適宜選択可能である。さらに、具体的な
製造工程や各工程の条件も適宜選択可能である。例え
ば、脱バインダー処理や焼成、アニールにおける温度条
件や昇温・降温速度条件、雰囲気ガス条件等は、適宜選
択可能である。
[2. Other Embodiments] It should be noted that the present invention is not limited to the above embodiments, and various other modified examples can be implemented within the scope of the present invention. For example, the specific composition of the dielectric ceramic composition can be appropriately selected within the scope of the present invention. Similarly, the composition of the metal for the electrode, the composition of the binder, and the like can be appropriately selected. Furthermore, specific manufacturing steps and conditions of each step can be appropriately selected. For example, the temperature conditions, temperature rising / falling rate conditions, atmosphere gas conditions, etc. in the binder removal treatment, firing, and annealing can be appropriately selected.

【0049】[0049]

【発明の効果】以上説明したように、本発明によれば、
高い誘電率を維持した状態で高い電界強度下(5V/μ
m)での容量抵抗積が高く、Bias特性に優れ、信頼
性の高い積層セラミックコンデンサ用として好適な誘電
体磁器組成物を提供することができる。また、そのよう
な組成物を用いて、EIA規格のX7R特性、JIS規
格のB特性を満たすことが可能な、高性能で信頼性の高
い積層セラミックコンデンサなどの電子部品を提供する
ことができる。
As described above, according to the present invention,
Under high electric field strength (5V / μ while maintaining high dielectric constant)
It is possible to provide a dielectric porcelain composition suitable for a multilayer ceramic capacitor having a high capacitance resistance product in m), excellent Bias characteristics, and high reliability. Further, by using such a composition, it is possible to provide an electronic component such as a high-performance and highly reliable multilayer ceramic capacitor capable of satisfying the X7R characteristic of EIA standard and the B characteristic of JIS standard.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る積層セラミックコンデンサの構成
を示す斜視図
FIG. 1 is a perspective view showing the structure of a monolithic ceramic capacitor according to the present invention.

【符号の説明】[Explanation of symbols]

1・誘電体層 2・内部電極 3・外部電極 1. Dielectric layer 2. Internal electrode 3. External electrode

フロントページの続き Fターム(参考) 4G031 AA03 AA04 AA06 AA08 AA11 AA12 AA13 AA14 AA15 AA19 AA28 BA09 CA04 5E001 AB03 AC06 AE01 AE02 AE03 AF03 AH01 AH09 AJ02 5G303 AA01 AB05 AB15 BA12 CB03 CB06 CB17 CB18 CB30 CB35 CB40 Continued front page    F-term (reference) 4G031 AA03 AA04 AA06 AA08 AA11                       AA12 AA13 AA14 AA15 AA19                       AA28 BA09 CA04                 5E001 AB03 AC06 AE01 AE02 AE03                       AF03 AH01 AH09 AJ02                 5G303 AA01 AB05 AB15 BA12 CB03                       CB06 CB17 CB18 CB30 CB35                       CB40

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 組成式が(Ba1-x x )TiO3 (但
し、0.003≦x≦0.020)からなる主組成物1
00molに対して、(Ba1-y Cay a ZrO2+a
(但し、0.5≦y≦1.0、0.9≦a≦1.1)で
表される第一添加物を1.5〜3.5mol添加し、さ
らにMnO、MgOからなる第二添加物とMO3 (但
し、MはMo,Wから選択された元素)またはA2 5
(但し、AはTa,Nb,Vから選択された元素)から
選択された少なくとも1 種または2種以上を含む第三添
加物及び、(Ba1-z Caz b SiO2+b (但し、0
≦z≦1.0、0.8≦b≦1.2)で表される酸化物
ガラスを有することを特徴とする誘電体磁器組成物。
1. A main composition 1 having a composition formula of (Ba 1-x Y x ) TiO 3 (provided that 0.003 ≦ x ≦ 0.020).
For 00 mol, (Ba 1-y Ca y ) a ZrO 2 + a
(However, 0.5 to 3.5 mol of the first additive represented by 0.5 ≦ y ≦ 1.0 and 0.9 ≦ a ≦ 1.1) is added, and a second additive made of MnO and MgO is added. Additive and MO 3 (where M is an element selected from Mo and W) or A 2 O 5
(Where, A is Ta, Nb, elemental selected from V) third additive containing at least at least one or two or selected from and, (Ba 1-z Ca z ) b SiO 2 + b ( where , 0
≦ z ≦ 1.0, 0.8 ≦ b ≦ 1.2), a dielectric ceramic composition comprising an oxide glass.
【請求項2】 主組成物(Ba1-x x )TiO3 10
0molに対して、各添加物の比率が 第二添加物:1.5〜3.0mol 第三添加物:0.05〜0.20mol 酸化物ガラス:0.5〜5.0mol 0<第二添加物のMnO≦0.5molであり、前記添
加物の平均粒径は0.1μm以下であることを特徴とす
る請求項1記載の誘電体磁器組成物。
2. The main composition (Ba 1-x Y x ) TiO 3 10
The ratio of each additive to 0 mol is the second additive: 1.5 to 3.0 mol, the third additive: 0.05 to 0.20 mol, the oxide glass: 0.5 to 5.0 mol, 0 <the second. The dielectric ceramic composition according to claim 1, wherein MnO ≦ 0.5 mol of the additive and the average particle size of the additive are 0.1 μm or less.
【請求項3】 主組成物である(Ba1-x x )TiO
3 の平均粒径が0.2μm〜0.5μmである請求項1
記載又は請求項2記載の誘電体磁器組成物。
3. A main composition of (Ba 1-x Y x ) TiO 3.
3. The average particle size of 3 is 0.2 μm to 0.5 μm.
The dielectric ceramic composition according to claim 2 or claim 3.
【請求項4】 セラミック誘電体層を有する電子部品で
あり、前記セラミック誘電体層が請求項1〜3記載の誘
電体組成である電子部品。
4. An electronic component having a ceramic dielectric layer, wherein the ceramic dielectric layer has the dielectric composition according to any one of claims 1 to 3.
【請求項5】 前記セラミック誘電体層とNi内部電極
とが交互に積層してある積層セラミックコンデンサ本体
を有する請求項4記載の電子部品。
5. The electronic component according to claim 4, further comprising a monolithic ceramic capacitor body in which the ceramic dielectric layers and Ni internal electrodes are alternately laminated.
JP2001372180A 2001-12-06 2001-12-06 Dielectric ceramic composition and electronic parts Pending JP2003176172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372180A JP2003176172A (en) 2001-12-06 2001-12-06 Dielectric ceramic composition and electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372180A JP2003176172A (en) 2001-12-06 2001-12-06 Dielectric ceramic composition and electronic parts

Publications (1)

Publication Number Publication Date
JP2003176172A true JP2003176172A (en) 2003-06-24

Family

ID=19181116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372180A Pending JP2003176172A (en) 2001-12-06 2001-12-06 Dielectric ceramic composition and electronic parts

Country Status (1)

Country Link
JP (1) JP2003176172A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207972A (en) * 2007-02-23 2008-09-11 Tdk Corp Dielectric ceramic composition and electronic component
JP2008222457A (en) * 2007-03-08 2008-09-25 Tdk Corp Dielectric ceramic composition and electronic component
JP2008260659A (en) * 2007-04-12 2008-10-30 Tdk Corp Dielectric porcelain composition and electronic component
JP2009084065A (en) * 2007-09-27 2009-04-23 Kyocera Corp Dielectric porcelain and capacitor
JP2009084063A (en) * 2007-09-27 2009-04-23 Kyocera Corp Dielectric porcelain and capacitor
JP2009107852A (en) * 2007-10-26 2009-05-21 Kyocera Corp Dielectric porcelain and capacitor
JP2009107851A (en) * 2007-10-26 2009-05-21 Kyocera Corp Dielectric porcelain and capacitor
JP2017228737A (en) * 2016-06-24 2017-12-28 太陽誘電株式会社 Multilayer ceramic capacitor, ceramic powder, and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207972A (en) * 2007-02-23 2008-09-11 Tdk Corp Dielectric ceramic composition and electronic component
JP2008222457A (en) * 2007-03-08 2008-09-25 Tdk Corp Dielectric ceramic composition and electronic component
JP2008260659A (en) * 2007-04-12 2008-10-30 Tdk Corp Dielectric porcelain composition and electronic component
JP2009084065A (en) * 2007-09-27 2009-04-23 Kyocera Corp Dielectric porcelain and capacitor
JP2009084063A (en) * 2007-09-27 2009-04-23 Kyocera Corp Dielectric porcelain and capacitor
JP2009107852A (en) * 2007-10-26 2009-05-21 Kyocera Corp Dielectric porcelain and capacitor
JP2009107851A (en) * 2007-10-26 2009-05-21 Kyocera Corp Dielectric porcelain and capacitor
JP2017228737A (en) * 2016-06-24 2017-12-28 太陽誘電株式会社 Multilayer ceramic capacitor, ceramic powder, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4821357B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP5035016B2 (en) Dielectric porcelain composition and electronic component
JP4967965B2 (en) Dielectric porcelain composition and electronic component
JP5360079B2 (en) Dielectric ceramic composition and ceramic electronic component
JP5434407B2 (en) Ceramic electronic component and manufacturing method thereof
JP2005145791A (en) Electronic components, dielectric porcelain composition, and method for manufacturing the same
JP2009143735A (en) Dielectric porcelain composition and electronic component
JP2008247656A (en) Method for producing dielectric porcelain composition and method for manufacturing electronic component
JP5668572B2 (en) Dielectric ceramic composition and ceramic electronic component
CN114914085B (en) Dielectric composition, electronic component, and laminated electronic component
JP2011162396A (en) Dielectric ceramic composition and electronic component
JP2014162679A (en) Dielectric ceramic composition, and electronic part
JP4717302B2 (en) Dielectric porcelain composition and electronic component
JP5067534B2 (en) Dielectric porcelain composition and electronic component
JP5141718B2 (en) Dielectric ceramic composition and ceramic electronic component
JP5482747B2 (en) Dielectric ceramic composition and ceramic electronic component
JP2007145683A (en) Electronic device, dielectric ceramic composition and production method of the same
JP2005314224A (en) Dielectric ceramic composition and electronic component
JP4863007B2 (en) Dielectric porcelain composition and electronic component
JP4951896B2 (en) Dielectric porcelain composition and electronic component
JP2003176172A (en) Dielectric ceramic composition and electronic parts
JP2005029423A (en) Dielectric ceramic composition and electronic component
JP2008162862A (en) Dielectric porcelain composition and electronic component
JP2004203669A (en) Dielectric porcelain composition, electronic components, and manufacturing processes thereof
JP2003176173A (en) Dielectric ceramic composition and electronic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080514