KR100632001B1 - Glass compositions for low temperature sintering, glass frit, dielectric compositions and multilayer ceramic condenser using the same - Google Patents

Glass compositions for low temperature sintering, glass frit, dielectric compositions and multilayer ceramic condenser using the same

Info

Publication number
KR100632001B1
KR100632001B1 KR20050069342A KR20050069342A KR100632001B1 KR 100632001 B1 KR100632001 B1 KR 100632001B1 KR 20050069342 A KR20050069342 A KR 20050069342A KR 20050069342 A KR20050069342 A KR 20050069342A KR 100632001 B1 KR100632001 B1 KR 100632001B1
Authority
KR
Grant status
Grant
Patent type
Prior art keywords
glass
composition
dielectric
low
temperature
Prior art date
Application number
KR20050069342A
Other languages
Korean (ko)
Inventor
김찬공
나은상
손성범
송태호
정한승
허강헌
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES, OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/129Ceramic dielectrics containing a glassy phase, e.g. glass ceramic
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Abstract

A glass composition, glass frit, and dielectric composition for low temperature sintering, and a multi-layered ceramic condenser using the same are provided to uniformly sinter BaTiO3 dielectric layer at a low temperature. A glass composition includes aLi2O-bK2O-cCaO-dBao-eB2O3-fSiO2, wherein a, b, c, d, e, and f satisfy the relationship of a+b+c+d+e+f=100, a between 2 and 10, b between 2 and 10, c between 0 and 25, d between 0 and 25, e between 5 and 20, and f between 50 and 80. A dielectric composition includes BaTiO3 as a main component and a residue comprising a glass composition of aLi2O-bK2O-cCaO-dBao-eB2O3-fSiO2.

Description

저온 소결용 유리 조성물, 유리 프릿, 유전체 조성물 및 이를 이용한 적층 세라믹 콘덴서{Glass Compositions for Low Temperature Sintering, Glass Frit, Dielectric Compositions and Multilayer Ceramic Condenser Using the Same} Glass composition for a low temperature co-fired, glass frit, a dielectric composition and a laminated ceramic capacitor using the same {Glass Compositions for Low Temperature Sintering, Glass Frit, Dielectric Compositions and Multilayer Ceramic Condenser Using the Same}

도 1는 본 발명의 일 실시형태에 따른 적층 세라믹 콘덴서의 단면도이다. Figure 1 is a cross-sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention.

도 2은 본 발명의 일 실시형태에 따른 적층 세라믹 콘덴서의 제조 공정을 나타내는 공정 흐름도이다. Figure 2 is a process flowchart illustrating a manufacturing process of the multilayer ceramic capacitor according to an embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명> <Description of the Related Art>

100: 적층 세라믹 콘덴서 101, 103: 내부 전극 100: multilayer ceramic capacitor 101, 103: inner electrode

102: 유전체층 104, 105: 외부 전극 102: dielectric layer 104, 105: outer electrode

110: 콘덴서 본체 110: capacitor main body

본 발명은 유리 조성물, 유리 프릿(glass frit), 유전체 조성물 및 이를 이용한 적층 세라믹 콘덴서에 관한 것이다. The present invention relates to a glass composition, the glass frit (glass frit), a dielectric composition and a multilayer ceramic capacitor using the same. 보다 상세하게는 높은 비표면적을 가지며 고온 유동성이 우수하고, BaTiO 3 에 대한 용해성이 뛰어난 보로실리케이트(borosilicate)계 유리 프릿, 그 조성물 및 이를 함유하는 유전체 조성물과 이를 이용한 적층 세라믹 콘덴서에 관한 것이다. More particularly, the present invention relates to a dielectric composition and a multilayer ceramic capacitor using the same high-temperature fluidity is excellent, and the excellent containing borosilicate (borosilicate) based glass frit, the composition and solubility in this BaTiO 3 having a high specific surface area.

최근 전기 및 전자 제품의 소형화, 경량화, 고성능화가 급속히 진행됨에 따라, 이에 사용되는 적층 세라믹 콘덴서도 점차 소형화 및 고용량화되어 가고 있다. According to the latest electrical and downsizing, weight reduction, higher performance of the rapid progress of electronic products, it is also becoming increasingly compact and high capacity multilayer ceramic capacitor to be used for it. 이러한 소형화 및 고용량화를 위해서, 적층 세라믹 콘덴서에 사용되는 유전체층은 점점 박층화되고 있고 유전체층의 적층수도 높아지고 있다. For such small size and high capacity, the dielectric layers used in the multilayer ceramic capacitor is getting angry and a thin layer of the dielectric multilayer can be increased. 최근에는 3㎛ 이하 두께의 BaTiO 3 유전체층을 470층 이상 적층함으로써 초고용량의 콘덴서를 구현하고 있으며, 경우에 따라 2㎛ 이상의 두께를 갖는 유전체층을 필요로 하고 있다. In recent years, and it requires a dielectric layer having a thickness 2㎛ least in some cases, and implementing a second high-capacity capacitor by laminating more than 470 layers of the BaTiO 3 dielectric 3㎛ less thickness. 이와 같이 적층 세라믹 콘덴서의 초고량화 및 고적층화를 위해서는 유전체층의 박층화가 필연적으로 요구되며, 유전체가 박층화됨에 따라 균일한 미세구조의 확보가 콘덴서의 유전 특성 및 신뢰성 구현에 가장 중요한 요소이다. In this way, and a thin layer of dielectric upset necessarily required in order to beginning goryanghwa spots and stratification of the multilayer ceramic capacitor, is the most important element in the dielectric is made thin dielectric properties of ensuring a uniform microstructure of the capacitor and the reliability as the implementation.

유전체층의 박층화 이외에도 내부 전극의 연결성이 또한 적층 세라믹 콘덴서의 용량 구현에 있어 매우 중요한 요소로 작용한다. This thin layer in addition to the electrode connections of the dielectric layer also functions as a very important factor in the implementation of the capacity of the multilayer ceramic capacitor. 일반적으로 내부 전극으로 사용되는 Ni 전극층은 세라믹 유전체의 소결온도에 비해 수백℃ 낮은 온도에서 소결이 완료되므로, 소성온도가 너무 높을 경우 내부 전극층과 유전체층 간의 소결 수축의 불일치가 심화되어 이들 층간의 박리(delamination)이 야기되기 쉽다. Ni electrode layer is typically used as an internal electrode is because sintering is done in a few hundred ℃ temperature lower than the sintering temperature of the ceramic dielectric, when the firing temperature is too high, the mismatch of the sintering shrinkage between the internal electrode layers and dielectric layers deepen peeling of these layers ( prone to delamination) is caused. 또한, 고온에서 열처리(소결)함에 따라 Ni 전극층이 급격하게 뭉침으로 인해 전극 끊김이 초래되어 콘덴서의 용량이 저하되고, 단락 발생율(쇼트율) 상승을 초래하게 된다. In addition, as in the high-temperature heat treatment (sintering) is Ni electrode layer is sharply dropped due to bunching results in the electrode decreases the capacitance of the capacitor, resulting in a short circuit rate (short ratio) increases. 따라서, 이를 방지하기 위해 Ni 내부 전극과 세라믹 유전체층을 1100℃이하의 저온에서 환원성 분위기에서 소결하는 것이 바람직하다. Therefore, it is desirable that sintering in a reducing atmosphere, the Ni inner electrode and the ceramic dielectric layer at a low temperature of less than 1100 ℃ In order to prevent this.

또한, 적층 세라믹 콘덴서가 고품질의 성능을 나타내기 위해서는 그 용량의 온도 안정성이 요구된다. In addition, the temperature stability of that capacity is required in order for multilayer ceramic capacitor to represent a high-quality performance. 콘덴서의 용도에 따라서, EIA 규격의 X5R 유전 특성이 요구되는데, 이 규격에 따르면 용량의 변화율(ΔC)이 -55~85℃에서 ±15% 이내(기준 온도 25℃)이어야 한다. Therefore, the use of the capacitor, there is a X5R dielectric characteristics of the EIA standard requirements, there must be, according to this specification within ± 15% from the rate of change (ΔC) with a capacity of -55 ~ 85 ℃ (reference temperature 25 ℃).

종래의 적층 세라믹 콘덴서 제조용 소결조제로는, 통상적으로 BaO-CaO-SiO 2 계 유리 프릿 또는 BaSiO 3 계 혼합 분말이 사용되고 있다. By preparative conventional multilayer ceramic capacitor is a sintering aid, it is typically a BaO-CaO-SiO 2 based glass frit or BaSiO 3 based mixed powder used. 그러나 이들 소결조제는 1200℃ 이상의 높은 융점을 가지므로, 1150℃이하의 저온에서의 소결을 촉진시키기가 어렵다. However, these sintering aid is because of the high melting point of more than 1200 ℃, it is difficult to promote the sintering at temperatures below 1150 ℃. 또한, 종래의 유리질 소결조제를 사용하는 경우에는 고온에서 액상 형성이 급격하게 진행됨으로 인해 적층 세라믹 콘덴서 제조를 위한 소결 온도 범위가 매우 제한적이라는 문제점이 발생한다. In the case of using the conventional vitreous sintering agent has a problem arises that the sintering temperature range for a multilayer ceramic capacitor manufacturing, due to the sudden progress of the liquid phase formation at higher temperatures of very limited. 일보특허공개공보 2000-311828호에는, 적층 세라믹 콘덴서 제조용 소결조제로서 (Ba, Ca) x SiO 2+x (x=0.8~1.2)를 개시하고 있다. Daily, the Unexamined Patent Publication (Kokai) No. 2000-311828, discloses a multilayer ceramic capacitor as a sintering aid for preparing (Ba, Ca) x SiO 2 + x (x = 0.8 ~ 1.2). 그러나, 상기 공보에 개시된 소결조제를 함유한 유전체층은 그 소결온도가 1100℃를 넘기때문에, 3㎛이하의 초박층의 유전체층을 구비하는 적층 세라믹 콘덴서를 구 현하는 데에는 한계가 있다. However, a dielectric layer containing a sintering aid are disclosed in the above publication has, There limit to implement a multilayer ceramic capacitor having a dielectric layer of the second thin layer of less than 3㎛ because the sintering temperature pass a 1100 ℃.

본 발명은 상기한 문제점을 해결하기 위한 것으로서, 그 목적은 1100℃이하의 저온에서 BaTiO 3 유전체를 균일하게 소결시킬 수 있고 X5R 유전특성을 만족시킬 수 있는 저온 소결용 유리 조성물 및 이러한 조성물로 이루어진 유리 프릿을 제공하는 것이다. The present invention for solving the above problems, and an object can be uniformly sintered BaTiO 3 dielectric at a low temperature of less than 1100 ℃ and glass consisting X5R glass composition for a low temperature to meet the dielectric properties sintering and such compositions to provide a frit.

본 발명의 다른 목적은 상기 유리 조성물을 이용함으로써 1100℃ 이하의 저온에서 소결 가능하고 X5R 유전특성을 만족시킬 수 있는 유전체 조성물을 제공하는 것이다. Another object of the invention is to be sintered at temperatures below 1100 ℃ by using the above glass composition, and provides a dielectric composition which can meet the X5R dielectric properties.

본 발명의 또 다른 목적은 상기 유전체 조성물을 이용함으로써 1100℃이하의 저온 소결로 제조될 수 있고 X5R 유전특성을 나타내는 적층 세라믹 콘덴서를 제공하는 것이다. A further object of the present invention is to provide a multilayer ceramic capacitor showing a X5R dielectric properties can be made from a low firing temperature of less than 1100 ℃ by using the above dielectric compositions.

상술한 기술적 과제를 달성하기 위하여, 본 발명에 따른 유리 조성물은 aLi 2 O-bK 2 O-cCaO-dBaO-eB 2 O 3 -fSiO 2 로 이루어지고, 상기 a, b, c, d, e 및 f는 a+b+c+d+e+f=100, 2≤a≤10, 2≤b≤10, 0≤c≤25, 0≤d≤25, 5≤e≤20 및 50≤f≤80을 만족한다. In order to achieve the above-mentioned technical problem, the glass compositions according to the invention is made of a aLi 2 O-bK 2 O- cCaO-dBaO-eB 2 O 3 -fSiO 2, wherein a, b, c, d, e, and f is a + b + c + d + e + f = 100, 2≤a≤10, 2≤b≤10, 0≤c≤25, 0≤d≤25, 5≤e≤20 and 50≤f≤ it satisfies 80.

상기 유리 조성물에 있어서, 바람직하게는, 상기 a, b, c, d, e 및 f는 3≤a≤8, 2≤b≤5, 0≤c≤15, 0≤d≤15, 10≤e≤20, 55≤f≤75을 만족한다. In the glass composition, it is preferable that the a, b, c, d, e and f are 3≤a≤8, 2≤b≤5, 0≤c≤15, 0≤d≤15, 10≤e ≤20, it meets the 55≤f≤75. 더 바람직하게는, 상기 a, b, c, d, e 및 f는 3≤a≤8, 2≤b≤5, 0≤c≤15, 5≤d≤15, 12.5≤e≤17.5, 60≤f≤75을 만족한다. More preferably, the a, b, c, d, e and f are 3≤a≤8, 2≤b≤5, 0≤c≤15, 5≤d≤15, 12.5≤e≤17.5, 60≤ It meets the f≤75.

본 발명의 유리 프릿은, 조성식 aLi 2 O-bK 2 O-cCaO-dBaO-eB 2 O 3 -fSiO 2 (a+b+c+d+e+f=100, 2≤a≤10, 2≤b≤10, 0≤c≤25, 0≤d≤25, 5≤e≤20 및 50≤f≤80)로 표시되는 유리 조성물로 이루어지고, 100 내지 300nm의 입도를 갖는 초미립 구형 분체 형태로 되어 있다. The glass frit of the present invention, the composition formula aLi 2 O-bK 2 O- cCaO-dBaO-eB 2 O 3 -fSiO 2 (a + b + c + d + e + f = 100, 2≤a≤10, 2≤ b≤10, 0≤c≤25, 0≤d≤25, 5≤e≤20, and is made of a glass composition represented by 50≤f≤80), in the form of ultra fine spherical powder having a particle size of 100 to 300nm It is.

상기 유리 프릿에 있어서, 바람직하게는, 상기 a, b, c, d, e 및 f는 3≤a≤8, 2≤b≤5, 0≤c≤15, 0≤d≤15, 10≤e≤20, 55≤f≤75을 만족한다. In the frit glass, it is preferable that the a, b, c, d, e and f are 3≤a≤8, 2≤b≤5, 0≤c≤15, 0≤d≤15, 10≤e ≤20, it meets the 55≤f≤75. 더 바람직하게는, 상기 a, b, c, d, e 및 f는 3≤a≤8, 2≤b≤5, 0≤c≤15, 5≤d≤15, 12.5≤e≤17.5, 60≤f≤75을 만족한다. More preferably, the a, b, c, d, e and f are 3≤a≤8, 2≤b≤5, 0≤c≤15, 5≤d≤15, 12.5≤e≤17.5, 60≤ It meets the f≤75.

본 발명의 다른 목적으로 달성하기 위하여, 본 발명의 유전체 조성물은, In order to achieve the object of the present invention, the dielectric composition of the present invention,

주성분인 BaTiO 3 와; The main component BaTiO 3, and; 상기 유리 조성물을 함유하는 부성분을 포함하고, Includes the sub-component containing the glass composition,

상기 부성분은, 상기 주성분 100몰에 대해, 상기 유리 조성물 1.0~3.0몰, MgCO 3 0.5~2.0몰, 희토류 산화물(상기 희토류 산화물은 Y 2 O 3 , Ho 2 O 3 , Dy 2 O 3 및 Yb 2 O 3 로 이루어진 그룹으로부터 1종 이상 선택됨) 0.3~1.0몰 및 MnO 0.05~1.0몰을 포함한다. The auxiliary component is, relative to the main component as 100 mol, the glass composition of 1.0 to 3.0 mol, MgCO 3 0.5 ~ 2.0 mol, rare earth oxide (the rare earth oxide is Y 2 O 3, Ho 2 O 3, Dy 2 O 3 and Yb 2 O 3 at least one member selected from the group consisting of a) a 0.3 to 1.0 mole of MnO and 0.05 ~ 1.0 mol.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명의 적층 세라믹 콘덴서는, 복수의 유전체층, 상기 유전체층 사이에 형성된 내부 전극 및 상기 내부 전극에 전기적으로 접속된 외부 전극을 포함하고, 상기 유전체층은 상술한 본 발명에 따른 유전체 조성물로 이루어진다. In accordance with still another aspect of the present invention, a multilayer ceramic capacitor of the present invention includes an external electrode electrically connected to the internal electrode and the internal electrode formed between the plurality of dielectric layers, the dielectric layer, the dielectric layer is the above-described It made of a dielectric composition according to the invention. 상기 내부 전극은 도전 재료로서 Ni 또는 Ni 합금을 함유할 수 있다. The inner electrode is a conductive material may contain Ni or a Ni alloy.

본 발명을 이용하면, 1100℃이하의 저온에서 BaTiO 3 유전체 슬러리를 균일하게 소결시킴으로써 내부 전극층과 유전체층 간의 소결 수축의 불일치를 감소시킬 수 있다. With the present invention, it is possible to reduce the mismatch of the sintering shrinkage between the internal electrode layers and dielectric layers by uniformly sintering the BaTiO 3 dielectric slurry at a low temperature of less than 1100 ℃. 이에 따라, Ni 내부 전극의 뭉침을 억제하여 쇼트율을 감소시킬 수 있다. Accordingly, it is possible to suppress the aggregation of the Ni inner electrode reduces the short rate. 또한, X5R 유전 특성을 만족시키는 적층 세라믹 콘덴서를 얻을 수 있다. In addition, it is possible to obtain a multilayer ceramic capacitor satisfying the X5R dielectric properties.

이하, 본 발명에 대하여 상세히 설명한다. Hereinafter, a detailed description of the present invention.

본 발명들은, 알칼리 보로실리케이트(alkali-borosilicate)계 유리가 1000℃ 이하의 낮은 액상 형성 온도를 가지면서 동시에 BaTiO 3 에 대한 용해도가 높다는 실험적 사실에 주목하여, BaTiO 3 에 대한 1100℃ 이하의 저온 소결조제로서의 가능성을 확인하였다. The invention, the alkali borosilicate (alkali-borosilicate) based glass that while having a low liquid phase forming temperature not higher than 1000 ℃ at the same time noting the experimental fact that a higher solubility of the BaTiO 3, the low temperature sintering of less than 1100 ℃ for BaTiO 3 It confirmed the possibility as an aid. 본 발명의 유리 조성물에 따르면, 적절한 알칼리 산화물을 함유한 알칼리 보로실리케이트계 유리 조성에 적정량의 알칼리토류 산화물(CaO 및 BaO 중 적어도 1종)을 첨가함으로써, 적층 세라믹 콘덴서의 정전용량 온도계수(Tcc)를 안정화시켜 X5R 유전 특성을 만족시킬 수 있다. According to the glass composition of the present invention, by the addition of (at least one of CaO and BaO) a suitable amount of alkaline earth oxide to the alkali borosilicate based glass composition containing appropriate alkali oxides, the temperature coefficient capacitance of a multilayer ceramic capacitor (Tcc) by stabilizing the can satisfy X5R dielectric properties.

<유리 조성물> <Glass composition>

본 발명의 유리 조성물은 산화리튬(Li 2 O), 산화칼륨(K 2 O), 산화보론(B 2 O 3 ) 및 산화규소(SiO 2 )를 포함하고, 필요에 따라 산화칼슘(CaO) 및 산화바륨(BaO) 중에서 1종이상을 포함할 수 있다. The glass composition is Li (Li 2 O) oxidation of the present invention, potassium (K 2 O), containing the oxide of boron (B 2 O 3) and silicon oxide (SiO 2) and calcium oxide (CaO) oxide as necessary and oxidation among the barium oxide (BaO) may comprise at least one member.

유리 조성물 내의 SiO 2 함량은, Li 2 O, K 2 O, CaO, BaO, B 2 O 3 및 SiO 2 의 총 몰수 100을 기준으로 50 내지 80 몰%이다. SiO 2 content in the glass composition is, Li 2 O, K 2 O , CaO, BaO, B 2 O 3 and based on 50 to 80 mol% of the total number of moles of SiO 2 to 100. 바람직하게는 SiO 2 의 함량은 55~75몰%이고, 더 바람직하게는 60~75몰%이다. Preferably, the content of SiO 2 is 55 to 75 mol% and, more preferably 60 to 75 mol%. SiO 2 는, 실리콘 원자가 그 주위를 둘러싼 4개의 산소 원자를 사이에 두고 인접하는 4개의 실리콘 원자와 결합하는 구조를 가진다. SiO 2 is, has a structure that combines the four neighboring silicon atoms to leave between the four oxygen atoms surrounding a silicon atom therearound. 이러한 SiO 2 는 유리 망목 형성 산화물(glass network-former)로서, 유리의 고온 유동성 과 융점, 그리고 BaTiO 3 모재에 대한 용해도를 결정하는 가장 중요한 인자로 작용한다. This SiO 2 acts as the most important factor in determining the solubility in the form of oxide glass mesh form (glass network-former), a high temperature fluid and the melting point, and a BaTiO 3 base material of the glass. 유리 조성물 내의 SiO 2 함량이 50몰% 미만이 경우에는, BaTiO 3 모재에 대한 용해도가 떨어져 저온 소결성을 향상시킬 수 없다. The SiO 2 content in the glass composition is less than 50 mol% in this case, the solubility in BaTiO 3 base material away from the low temperature sintering property can not be improved. SiO 2 함량이 80몰% 초과할 경우에는, 고온 유동성이 떨어지고 액상 형성 온도가 높아지므로 그 유리 조성물은 1100℃ 이하의 저온 소결용 소결조제로 부적합할 수 있다. When to SiO 2 content is more than 80 mol%, the high temperature fluid is increased dropping the liquid phase forming temperature of the glass composition may be unsuitable as a sintering aid for sintering the low temperature of less than 1100 ℃.

유리 조성물 내의 B 2 O 3 의 함량은 5~20몰%이다. The content of B 2 O 3 in the glass composition is 5 to 20% by mole. B 2 O 3 은 SiO 2 와 더불어 유리 망목 형성 산화물 역할을 하며 BaTiO 3 모재에 대한 용해도를 결정하는 주요 인자이다. B 2 O 3 is the main factor in the glass mesh formed oxide act, with SiO 2 and BaTiO 3 determines the solubility in the base material. 뿐만 아니라, B 2 O 3 은 융제로서 유리의 융점을 크게 떨어뜨리며 고온 유동성을 크게 향상시키는 역할을 한다. As well as, B 2 O 3 is tteurimyeo severely degraded the melting point of the glass as a flux serve to significantly improve the high temperature fluid. 특히 고온 유동성의 향상을 위해 B 2 O 3 은 유리 조성물 내에 5몰% 이상의 함량으로 첨가되는 것이 바람직하다. In particular, in order to improve the high-temperature fluid B 2 O 3 it is preferably added in an amount more than 5 mol% in the glass composition. B 2 O 3 의 함량이 20 몰% 초과시에는 유리의 구조 약화로 인해 화학적 내구성이 떨어지기 쉽고, 결정화로 인한 유리 형성 능력의 저하가 우려된다. The content of B 2 O 3 exceeds 20 mol%, the chemical durability tends to fall due to the weakening of the glass structure is a fear that deterioration of the glass-forming ability due to crystallization.

유리 조성물 내의 Li 2 O의 함량은 2~10 몰%이다. The content of Li 2 O in the glass composition is from 2 to 10 mol%. Li 2 O은 유리 망목 수식 산화물(glass network-modifier)로서, SiO 2 혹은 B 2 O 3 으로 이루어진 유리 망목 구조를 끊어주어 유리 융점을 떨어뜨리고, 고온 유동성을 향상시키는 역할을 한다. Li 2 O is a glass mesh modifier oxide (glass network-modifier), SiO 2 or a given cut off the glass network structure consisting of B 2 O 3 to drop the glass melting, and serves to improve the high-temperature fluid. Li 2 O의 함량이 2 몰% 미만시 유리의 고온 유동성이 떨어지고, 액상 형성 온도가 과도하게 높아질 수 있다. The content of Li 2 O poor high temperature fluidity of the glass when less than 2% mole, may be higher the liquid temperature is excessively formed. Li 2 O의 함량이 10 몰% 초과시에는 유리의 구조 약화 및 결정화로 인해 유리 형성이 어려울 수 있다. The content of Li 2 O exceeds 10 mol%, the glass may be difficult to form because of the structural weakening and the crystallization of the glass.

유리 조성물 내의 K 2 O의 함량은 2~10 몰%이다. The content of K 2 O in the glass composition is from 2 to 10 mol%. K 2 O은 Li 2 O과 마찬가지로 유리 망목 수식 산화물로서, SiO 2 혹은 B 2 O 3 으로 이루어진 유리 망목 구조를 끊어주어 유리 융점을 떨어뜨리며, 고온 유동성을 향상시키는 역할을 한다. K 2 O serves to mesh as the free modifier oxide, like Li 2 O, SiO 2 or B 2 O 3 given the cut glass network structure consisting of tteurimyeo drop the glass melting point, improving the high temperature fluid. 특히 Li 2 O등의 다른 알칼리 산화물과 동시에 투입될 경우, K 2 O은 화학적으로 상호 보완되는 효과(혼합 알칼리 효과)가 생겨 유리의 화학적 내구성을 강화시켜 줄 뿐만 아니라 유전체의 유전손실을 감소시켜 주는 역할을 한다. In particular, to be injected at the same time as the other alkali oxide such as Li 2 O, K 2 O is effective to be complementary to the chemical (mixed alkali effect) that blossomed that not only enhances the chemical durability of the glass to reduce the dielectric loss of the dielectric the roles. K 2 O의 함량이 2~10 몰%일 경우, 유리가 적절한 고온 유동성을 가지며, Li 2 O과의 적절한 보완효과를 얻을 수 있다. When the content of K 2 O 2 ~ 10 mol%, the glass has an appropriate high temperature fluidity, it is possible to obtain an appropriate effect of the complement and the Li 2 O.

유리 조성물 내의 CaO와 BaO의 함량은 0~25 몰%이다. The content of CaO and BaO in the glass composition is 0 to 25 mol%. CaO는 망목 수식 산화물로서 유리 융점을 떨어뜨림과 동시에, 알칼리금속 산화물에 의해 약화된 유리의 구조를 강화시켜 화학적 내구성을 향상시키는 역할을 한다. CaO is at the same time dropping the melting point glass as a mesh modified oxide, it serves to reinforce the structure of the weakened glass by the alkaline metal oxides improve the chemical durability. 그러나, CaO는 유리의 고온 점도를 급격하게 저하시켜 세라믹의 급격한 소결수축을 야기하는 단점이 있다. However, CaO is the disadvantage that by drastically lowering the high temperature viscosity of the glass leading to the rapid sintering shrinkage of the ceramic. BaO은 알칼리토류 산화물 중 유리의 융점을 가장 크게 저하시킬 수 있는 성분으로서, 특히 유리의 고온 점도 변화를 완만하게 하여 세라믹의 급격한 소결수축을 방지하는 역할을 한다. BaO is so as to have a gentler as a component which can significantly lower the melting point of the glass of the alkaline earth oxide, in particular high temperature viscosity change of a glass acts to prevent rapid sintering shrinkage of the ceramic. 또한, CaO와 BaO는 BaTiO 3 유전체의 용량 온도특성을 안정화 시키는 역할을 하며, 그 첨가량이 지나칠 경우 소결성을 저하시킨다. In addition, CaO and BaO acts to stabilize the capacitance-temperature characteristic of the dielectric BaTiO 3, to lower the sinterability if the addition amount pass. CaO와 BaO중 적어도 1종의 함량이 25몰% 초과시에는 유리 형성 능력을 저하시킬 뿐만 아니라 BaTiO 3 유전체의 저온 소결성을 크게 약화시킨다. BaO and CaO in excess of at least 25 mol% content of species has greatly weaken the low temperature sintering property of not only lowering the glass-forming ability BaTiO 3 dielectric.

<유리 프릿> <Glass frit>

본 발명의 유리 프릿은 본 발명에 따른 상기 유리 조성물로 구성되며, 100 내지 300nm의 입도를 갖는 초미립 구상 형태의 분말로 되어 있다. The glass frit of the present invention is composed of the glass composition according to the invention, it is in the form of ultra fine spherical powder having a particle size of 100 to 300nm. 3㎛이하 두께의 유전체 박층을 형성하기 위해서는, 유전체 슬러리에 사용되는 BaTiO 3 모재는 150~300nm 정도의 입도를 가지며, 소결조제이외의 부성분도 수백 nm 이하의 입도를 가진다. In order to form a dielectric thin layer of thickness less than 3㎛, BaTiO 3 base material used in the dielectric slurry has a particle size of about 150 ~ 300nm, and has a particle size of several hundred nm or less auxiliary component other than a sintering aid. 따라서 유전체 슬러리에 첨가되는 유리 프릿의 입도가 1㎛ 이상이면, 2~3㎛ 두께의 유전체 박층을 균일하게 소결시키기 어렵다. Thus, if the particle size of the glass frit to be added to the dielectric slurry 1㎛ or more, two or difficult to uniformly sinter the dielectric thin layer of 3㎛ thickness. 또한 유리 프릿의 형상이 침상이거나 괴상인 경우 불균일한 소결을 야기할 우려가 있으므로 구형의 유리 프릿을 사용하는 것이 유리하다. If also the shape of the glass frit or the needle-like lump because it may lead to non-uniform sintering is beneficial to use the glass frit of the rectangle. 본 발명의 유리 프릿은, 예를 들어 상기 유리 조성물로 이루어진 유리 플레이크(glass flake)를 기계적으로 분쇄한 후 기상 열처리를 함으로써 얻을 수 있다. The glass frit of the present invention are, for example, after milling the glass flakes (glass flake) made of the glass composition is mechanically can be obtained by a vapor phase heat treatment.

이하, 본 발명의 유리 프릿의 제조방법에 대해 설명한다. Hereinafter, a description will be given of a manufacturing method of the glass frit of the present invention. 여기서는 구체적인 예시를 통해 설명하는데, 본 발명이 이에 한정되는 것이 아니다. Here, to explain a concrete example, it is not the present invention is not limited thereto.

먼저, 전술한 유리 조성물의 조성을 만족하도록 성분 분말들(Li 2 O, K 2 O, CaO, BaO, B 2 O 3 및 SiO 2 분말들)을 칭량하고 충분히 혼합한 다음에 1400~1500℃에서 용융한다. First, melting at 1400 ~ 1500 ℃ in weighing the ingredients the powder so as to satisfy the composition of the above-described glass composition (Li 2 O, K 2 O, CaO, BaO, B 2 O 3 and SiO the second powder) are mixed sufficiently, and then do. 이후 트윈 롤러(twin roller)를 통하여 급냉시킴으로써 유리 플레이크를 얻고 이를 볼밀로 건식 분쇄한다. After rapid cooling via the twin roller (twin roller) by getting the glass flakes and dry grinding them in a ball mill. 상기의 분쇄한 글라스를 기상 열처리함으로써 100~300nm의 입도를 갖는 초미립 구형분체 형태의 유리 프릿을 얻을 수 있다. By heat treating the gas phase by grinding of the glass can be obtained ultra fine spherical glass frit in powder form having a particle size of 100 ~ 300nm.

이와 같이 얻은 유리 프릿은 전술한 유리 조성물로 이루어지며, 적층 세라믹 콘덴서의 저온 소결용 소결조제로 이용될 수 있다. The glass frit so obtained is formed of the above-described glass composition, it can be used as a sintering aid for the low-temperature sintering of the multilayer ceramic capacitor. 전술한 유리 조성물로 이루어진 상기 유리 프릿을 소결조제로 이용함으로써, 1100℃이하의 저온에서 BaTiO 3 유전체층을 균일하게 소결시킬 수 있다. By using the glass frit consisting of the above-described glass composition by a sintering aid, and at a low temperature of less than 1100 ℃ it can be uniformly sinter the BaTiO 3 dielectric.

<유전체 조성물> <Dielectric composition>

본 발명의 유전체 조성물은, 주성인 BaTiO 3 와, 부성분으로서 상술한 유리 조성물, MgCO 3 , 희토류 산화물(Y 2 O 3 , Ho 2 O 3 , Dy 2 O 3 및 Yb 2 O 3 로 이루어진 그룹으로부터 1종 이상 선택됨), 및 MnO을 포함한다. A dielectric composition of the present invention, JEL of BaTiO 3 and the above-described as a sub-component glass composition, MgCO 3, rare earth oxide (Y 2 O 3, Ho 2 O 3, Dy 2 O 3 and Yb 2 O 3 from the group consisting of 1 species and at least including selected), and MnO. 상기 부성분들의 함량은, 상기 주성분(BaTiO 3 ) 100몰에 대해, 상기 유리 조성물이 1.0~3.0몰, MgCO 3 이 0.5~2.0몰, 상기 희토류 산화물이 0.3~1.0몰 및 MnO이 0.05~1.0몰이다. The content of the auxiliary component, said main component (BaTiO 3) with respect to 100 mol, the glass composition is 1.0 to 3.0 mol, MgCO 3 is 0.5 to 2.0 mole, wherein the rare earth oxide is 0.3 to 1.0 mole and MnO is 0.05 to 1.0 molar .

이와 같은 성분과 함량을 구비한 유전체 조성물을 이용하여 적층 세라믹 콘덴서를 제조함으로써, 1100℃이하의 저온 소결을 구현할 수 있고 X5R 유전특성을 만족하는 용량의 온도 안정성을 얻을 수 있다. By using such a dielectric composition comprising a component and the content of manufacturing a multilayer ceramic capacitor and may implement the low firing temperature of less than 1100 ℃ and it is possible to obtain a temperature stability of capacitance satisfying X5R dielectric properties.

<적층 세라믹 콘덴서> <Multilayer Ceramic Capacitor>

도 1은 본 발명의 일 실시형태에 따른 적층 세라믹 콘덴서를 나타내는 단면도이다. 1 is a cross-sectional view showing a multilayer ceramic capacitor according to an embodiment of the present invention. 도 1을 참조하면, 적층 세라믹 콘덴서(100)는 유전체층(102)과 내부 전극층(101, 103)이 교대로 적층된 구성의 콘덴서 본체(110)을 갖는다. 1, the multilayer ceramic capacitor 100 has a capacitor body 110 of a configuration laminated to a dielectric layer 102 and internal electrode layers 101 and 103 alternately. 이 콘덴서 본체(110)의 외면에는 외부 전극(104, 105)이 형성되어 있고, 외부 전극(104, 105)은 대응되는 내부 전극(103, 101)에 각각 전기적으로 접속되어 있다. The outer surface of the capacitor main body 110 is formed on the external electrodes 104, 105, external electrodes 104 and 105 are respectively electrically connected to the corresponding internal electrode (103, 101).

상기 유전체층(102)은, 상술한 본 발명의 유전체 조성물을 포함하여 이루어진다. The dielectric layer (102) comprises a dielectric composition of the present invention described above. 즉, 유전체층(102)을 이루는 유전체 조성물은, 주성분인 BaTiO 3 와, 상술한 유리 조성물을 함유하는 부성분을 포함한다. That is, the dielectric composition forming the dielectric layer 102, includes a sub ingredient containing a main component of BaTiO 3, and the above-mentioned glass composition. 상기 부성분은, 상기 주성분 100몰에 대해, 상기 유리 조성물 1.0~3.0몰, MgCO 3 0.5~2.0몰, 상기 희토류 산화물 0.3~1.0몰 및 MnO 0.05~1.0몰을 포함한다. The auxiliary component is, relative to the main component as 100 mol, the glass composition includes 1.0 to 3.0 mol, MgCO 3 0.5 ~ 2.0 mol, the rare earth oxides 0.3 to 1.0 mol of MnO and 0.05 ~ 1.0 mol.

상기 유전체층(102)의 두께는 특별히 한정되어 있지는 않지만, 초박형의 고용량 콘덴서를 구현하기 위해 1층당 3㎛이하일 수 있다. The thickness of the dielectric layer (102) Although not particularly limited, and may be up to 1 per layer 3㎛ to implement the ultra-thin high-capacity capacitor. 바람직하게는, 유전체층 (102)은 1 내지 3㎛의 두께를 가질 수 있다. Preferably, the dielectric layer 102 may have a thickness of 1 to 3㎛. 상기 내부 전극(101, 103)에 함유되는 도전재는 특별히 한정되지 않는다. A conductive material included in the internal electrodes 101 and 103 are not particularly limited. 그러나, 유전체층(102)이 내환원성을 갖기 때문에, 내부 전극(101, 103) 재료로 Ni 또는 Ni 합금을 사용하는 것이 바람직하다. However, since the dielectric layer 102 has a resistance to reduction, it is preferable to use Ni or a Ni alloy as an internal electrode (101, 103) material. 외부 전극(104. 105) 재료로는 Cu 또는 Ni을 사용할 수 있다. The external electrode (104. 105) the material may be Cu or Ni.

상기 적층 세라믹 콘덴서(100)는, 종래의 적층 세라믹 콘덴서와 마찬가지로, 슬러리의 제조 및 그린 시트 성형, 내부 전극의 인쇄, 적층, 압착, 소결 등의 공정을 통해 제조될 수 있다. The multilayer ceramic capacitor 100 includes, as in the conventional multilayer ceramic capacitor, the production and molding of the green sheet slurry may be prepared through a process, such as printing of the internal electrodes, stacked and pressed and sintered.

이하, 도 2를 참조하여, 본 발명의 일 실시형태에 따른 적층 세라믹 콘덴서의 제조 공정을 구체적으로 설명한다. With reference to Figure 2, the detailed description of a manufacturing process of a multilayer ceramic capacitor according to an embodiment of the present invention. 먼저, 상술한 유리 조성 및 유전체 조성을 만족하도록 주성분 BaTiO 3 분말과, 부성분 분말를 각각 칭량하여 준비한다(S1, S1' 단계). First, the main component BaTiO 3 powder, prepared by weighing each subcomponent bunmalreul so as to satisfy the above-described glass composition and a dielectric composition (S1, S1 'step). 즉, 주성분인 BaTiO 3 100몰에 대한 몰%로 상기 aLi 2 O-bK 2 O-cCaO-dBaO-eB 2 O 3 -fSiO 2 (a+b+c+d+e+f=100, 2≤a≤10, 2≤b≤10, 0≤c≤25, 0≤d≤25, 5≤e≤20, 50≤f≤80)로 조성되는 유리(100-300nm의 초미립 구형 분체로 된 유리 프릿으로 제공될 수 있음) 1.0~3.0몰과, MgCO 3 0.5~2.0몰과, 희토류 산화물(Y 2 O 3 , Ho 2 O 3 , Dy 2 O 3 및 Yb 2 O 3 중 적어도 1종) 0.3~1.0몰과, MnO 0.05~1.0몰을 칭량한다. That is, the main component of BaTiO 3 in the 100 mole% based on the mole aLi 2 O-bK 2 O- cCaO-dBaO-eB 2 O 3 -fSiO 2 (a + b + c + d + e + f = 100, 2≤ a≤10, 2≤b≤10, 0≤c≤25, 0≤d≤25, 5≤e≤20, 50≤f≤80) glass (glass in the ultra fine spherical powder of 100-300nm to which the composition may be provided at a frit), 1.0 to 3.0 mol and, MgCO 3 0.5 ~ 2.0 moles, and rare earth oxide (Y 2 O 3, Ho 2 O 3, Dy 2 O 3 and at least one of Yb 2 O 3) 0.3 ~ and 1.0 mol, MnO are weighed to 0.05 ~ 1.0 mol.

그 후, 칭량된 분말들을 유기 용매로 혼합 및 분산하고(S2 단계), 유기바인더를 추가 혼합하여 유전체 슬러리를 얻는다(S3 단계). Then, the mixing and dispersion of the powder was weighed in an organic solvent (S2 step), thereby obtaining a dielectric slurry mixture by adding an organic binder (step S3). 유기 바인더로는 폴리비닐부티랄을 사용할 수 있고, 용매로는 아세톤 또는 톨루엔을 사용할 수 있다. With an organic binder used may be a polyvinyl butyral, a solvent can be used acetone, or toluene.

그 후, 상기 슬러리를 시트(그린 시트) 형태로 성형한다(S4 단계). Thereafter, molding the slurry into a sheet (green sheet) form (step S4). 예를 들어, 상기 슬러리는 3㎛이하의 두께를 갖는 그린 시트로 성형될 수 있다. For example, the slurry can be molded into a green sheet having a thickness of not more than 3㎛. 그 다음에, 성형된 그린 시트 상에 Ni 등의 내부 전극을 인쇄하고, 내부 전극이 인쇄된 복수의 그린 시트를 적층한다(S5 단계). Then, the laminated printing internal electrodes, such as Ni on the formed green sheet, and the green plurality of internal electrodes are printed sheet (step S5). 다음으로, 이 적층체를 압착하고 개별 칩(그린 칩)으로 절단한다(S6 단계). Next, the cut in the laminate and pressing the individual chips (green chip) (step S6). 다음으로, 이 그린 칩을 250 내지 350℃의 온도로 가열하여 칩 내의 바인더 또는 분산제 등을 제거한다.(S7 단계). Next, by heating the green chip at a temperature of 250 to 350 ℃ to remove the binder or a dispersant or the like in the chip (step S7).

그 후, 탈바인더 처리된 상기 적층체를 예를 들어, 1100℃이하의 온도에서 소결(소성)한다(S8 단계). Then, the binder removal processing of the laminate for example, sintering (firing) at a temperature not higher than 1100 ℃ (step S8). 이 때, 상기 소성시 소성온도가 1150℃를 초과하면 종래기술에서와 같이 유전체층과 내부전극사이에 박리가 일어나거나 Ni 전극층이 뭉치는 현상이 발생할 수 있다. At this time, if the time of firing the firing temperature exceeds 1150 ℃ prior the separation between the dielectric layers and internal electrode up, as in the technique or Ni electrode layer is wad may cause the symptoms. 이는 곧 내부전극의 단락발생과 직결되어 결국 신뢰성을 저하시키는 문제점으로 작용하므로, 본 발명에서는 상기 소성온도를 1100℃ 이하로 제한하는 것이 바람직하다. This is directly related to the upcoming short circuit of the electrode is preferably so acts in a problem of lowering the reliability after all, limit the firing temperature in the present invention to less than 1100 ℃.

그 후, 상기 소결체 외면에 Cu 또는 Ni등의 외부 전극용 페이스트를 도포하고 이 페이스트를 소성하여 외부 전극을 형성한다(S9 단계). Then, the application of the external electrode paste such as Cu or Ni in the sintered body and the outer surface forming an outer electrode by sintering the paste (Step S9). 필요에 따라, 외부 전 극 표면에 도금에 의한 피복층을 형성한다(S10 단계). To form a coating layer by the plating, the outer electrode surface, as needed (step S10). 이에 따라, 도 1에 도시된 바와 같은 적층 세라믹 콘덴서(100)를 얻게 된다. Thus, it is obtained a multilayer ceramic capacitor 100 as shown in FIG. 그 후, 적층 세라믹 콘덴서의 여러 가지 물성을 측정하여 콘덴서의 특성을 평가할 수 있다(S11 단계). Then, to evaluate the properties of the capacitor by measuring the various physical properties of the multilayer ceramic capacitor (step S11).

본 발명자들은 다양한 실험을 통해, 상기 유리 조성물 및 상기 유전체 조성물을 이용한 적층 세라믹 콘덴서는 X5R 특성을 만족하며, 우수한 전기적 특성을 나타낸다는 것을 실험적으로 알게 되었다. The present inventors through various experiments, a multilayer ceramic capacitor using the above-mentioned glass composition and the dielectric composition has been experimentally found that a satisfies the X5R characteristic and exhibits excellent electric characteristics.

<실시예> <Example>

이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. The present invention the following examples will be described in more detail. 그러나, 본 발명이 이들 실시예에 한정되는 것은 아니다. However, the present invention is not limited to these examples. 본 발명의 실시예에서는 상용 고적층칩의 제작에 앞서 약 10층 정도로 적층한 저적층 시편을 우선 제작하여 제반 물성을 관찰하였다. According to an embodiment of the present invention by first making a low-stacked specimens are stacked about 10 layers prior to the production of commercial and multi-layer chip was observed for various physical properties.

상기 aLi 2 O-bK 2 O-cCaO-dBaO-eB 2 O 3 -fSiO 2 (a+b+c+d+e+f=100, 2≤a≤10, 2≤b≤10, 0≤c≤25, 0≤d≤25, 5≤e≤20, 50≤f≤80)로 조성되는 유리를 제조하기 위해, 표 1의 조성을 만족하도록 각 원소를 칭량하여 충분히 혼합한 후 1400~1500℃에서 용융하였다. The aLi 2 O-bK 2 O- cCaO-dBaO-eB 2 O 3 -fSiO 2 (a + b + c + d + e + f = 100, 2≤a≤10, 2≤b≤10, 0≤c ≤25, 0≤d≤25, 5≤e≤20, to produce a glass composition that is to 50≤f≤80), Table 1, the composition was weighed so as to satisfy the respective elements in the 1400 ~ 1500 ℃ were thoroughly mixed in It was melted. 이후 트윈 롤러(twin roller)를 통하여 급냉시킴으로써 글라스 플레이크(glass flake)를 얻고 이를 건식 분쇄한 후 기상 열처리함으로써 100~300nm의 입 도를 갖는 초미립 구형분체 형태의 유리 프릿을 제조하였다. After the twin roller (twin roller) by the quench glass flakes (glass flake) was prepared to obtain ultra fine spherical glass frit in powder form having a mouth also of 100 ~ 300nm this by vapor heat treatment after dry grinding through. 이와 함께, 비교재로서, 알칼리 산화물(Li 2 O, K 2 O 등)을 함유하지 않은 유리 프릿을 준비하였다. In addition, as a comparative material was prepared a glass frit that does not contain an alkali oxide (Li 2 O, K 2 O, etc.).

그 후, 상기의 유리 프릿을 포함하여 각 부성분을 표 2와 같이 칭량한 후, 유기 용매로 혼합 및 분산하였다. Then, after the respective sub-component including the above glass frit were weighed as shown in Table 2, it was mixed and dispersed in an organic solvent.

이후, 유기 바인더를 추가, 혼합하여 슬러리를 제조하고 이를 필름상에 약 5㎛로 도포하여 성형시트를 제조하였다. Then, the shaped sheet was prepared by preparing a slurry by adding, mixing an organic binder was applied at about 5㎛ it on the film. 이어 Ni 내부전극을 인쇄하고, 내부전극이 인쇄된 각 유전체 시트를 10층 적층하였으며 내부전극이 인쇄되지 않은 성형시트로 상하부를 추가 적층하였다. Following Ni printing internal electrodes, and was laminated to each of the dielectric sheets the internal electrode is printed layer 10 was laminated to the upper and lower shaped sheet that is added to the internal electrode is printed. 상기 적층체를 85℃, 1000kg/㎠의 압력으로 15분 동안 CIP(Cold Isostatic Press)를 한 후 절단하여 시편을 제조하였다. After a CIP (Cold Isostatic Press) for 15 minutes, the laminate under a pressure of 85 ℃, 1000kg / ㎠ was prepared by cutting the specimen. 상기 시편들은 250~350℃에서 40시간 이상 열처리하여 유기 바인더, 분산제 등을 소각하였고, 온도 및 분위기 제어가 가능한 소성로를 이용하여 1050~1200℃ 범위 내의 여러 온도에서 소결하였다. The specimens were sintered at different temperatures in the range of 1050 ~ 1200 ℃ was incineration of organic binder, dispersant, etc. to heat treatment over 40 hours at 250 ~ 350 ℃, using the temperature and the possible sintering furnace atmosphere control. 이 때 소성 분위기내 산소분압은 10 -11 ~10 -12 기압으로 제어하였다. At this time, the oxygen partial pressure in the firing atmosphere was controlled to 10 -11 to 10 -12 atm. 소결이 끝난 시편들은 Cu 외부전극을 도포하여 850~920℃ 사이에서 전극 소성을 행하였으며, 전극 소성이 완료된 후 도금 공정을 진행하여 시편 제작을 완료하였다. Specimens was completed specimen prepared by proceeding to the plating process was carried out after the electrodes and baked at between 850 ~ 920 ℃, baking electrode by coating a Cu outer electrode complete sintering is finished. 상기 제작된 시편을 이용하여 일정 시간이 지난 후 전기적 특성을 측정하였다. After a certain period of time by using the produced specimens were measured electrical properties.

시편의 전기적 특성은 Capacitance meter(Agilent, 4278A)를 이용하여 1KHz, 1 Vrms 조건에서 용량과 유전손실을 측정하였고, High Resistance meter(Agilent, 4339B)를 이용하여 정격 전압하에서 180초 조건으로 절연저항을 측정하였다. Electrical properties of the specimen Capacitance meter (Agilent, 4278A) was measured for capacitance and dielectric loss at 1KHz, 1 Vrms condition using using a High Resistance meter (Agilent, 4339B) the insulation resistance of 180 cho conditions under rated voltage It was measured. 또한 유전율의 온도의존성은 TCC(Temperature characteristics coefficient) 측정장비(4220A test chamber)를 이용하여 -55℃~135℃에서의 변화치로 측정하였다. In addition the temperature dependence of the dielectric constant using the TCC (Temperature coefficient characteristics) measuring devices (4220A test chamber) were measured value changes in the -55 ℃ ~ 135 ℃. 각 소성온도에 따른 유전체의 유전율은 소성후의 유전체층 두께를 구하여 계산하였다. The dielectric constant of a dielectric according to each sintering temperature is calculated to obtain after firing the dielectric layer thickness. 한편, 고온 부하 시험은 150℃에서 직류 전압 18.9V를 인가하여 절연 저항의 경시 변화로 측정하였다. On the other hand, the high temperature load test by applying a DC voltage 18.9V at 150 ℃ was determined by change over time in insulation resistance. 그 측정 결과는 아래의 표 3과 같이 나타났다. The measurement results were as shown in Table 3 below.

상기 표 3에서 알 수 있는 바와 같이, 본 발명에 따른 발명예2~10은 1100℃이하의 저온에서 우수한 소결성을 보였다. As can be seen from Table 3, Inventive Example 2-10 according to the present invention showed excellent sintering property at a low temperature of less than 1100 ℃. 특히, 발명예3~9에서는, 유전율과 비저항이 우수하고 용량의 온도 변화율(TCC)이 매우 안정적이었다. In particular, the invention example 3 to 9 in the dielectric constant and the specific resistance is excellent and a temperature change rate of capacitance (TCC) was a very stable. 따라서, 발명예2~10의 샘플을 400층 이상의 고적층 시편으로 제작할 경우에도, X5R 특성(-55~85℃, △C=±15% 이하)을 충분히 만족할 것으로 예상된다. Therefore, even when producing the samples of Inventive Example 2 to 10 and a laminate layer 400 over the specimen, it is expected that fully satisfy the X5R characteristic (-55 ~ 85 ℃, △ C = ± 15% or less). 그러나, 본 발명의 예와 대조적으로 BaO-CaO-SiO 2 계 유리 프릿 내지는 BaSiO 3 계 혼합 분말을 사용한 비교예1과 2의 시편은 1150℃ 이하에서 낮은 소결성을 보였으며, 1100℃ 이하의 소결에는 전혀 적합치 않음을 알 수 있다. However, in contrast to the present invention for example BaO-CaO-SiO 2 based glass frit naejineun BaSiO 3 based comparison specimens of Examples 1 and 2 using the mixed powder showed a lower degree of sintering below 1150 ℃, sintering below 1100 ℃ has it can be seen that not all unsuitable.

본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니고, 첨부된 청구범위에 의해 한정하고자 한다. The present invention is directed to, defined by the appended claims rather than limited by the aforementioned embodiment and the accompanying drawings. 또한, 본 발명은 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게 자명할 것이다. In addition, the invention will be apparent to those having ordinary skill in the art is that various types of changes and modifications may be made without departing from the scope of the invention as set forth in the claims.

이상 설명한 바와 같이 본 발명의 유리 프릿을 이용함으로써 1100℃ 이하 저온에서 BaTiO 3 유전체층을 균일하게 소결시키므로 내부전극층과 유전체층간의 소결수축 불일치를 줄이며, Ni의 뭉침을 억제시켜 단락발생율을 극소화시킬 수 있다. By using the glass frit of the present invention as described above because uniform sintering a BaTiO 3 dielectric below 1100 ℃ low temperature reduces the sintering shrinkage mismatch between the internal electrode layers and dielectric layers, to inhibit the aggregation of Ni can minimize the short-circuit rate. 뿐만 아니라 우수한 전기적 특성과 더불어 X5R 유전특성(EIA규격: -55~85℃, △C=±15% 이내)을 만족시킬 수 있는 적층 세라믹 콘덴서를 얻을 수 있다. As well as excellent X5R dielectric characteristics with electric characteristics: it is possible to obtain the (EIA standard -55 ~ 85 ℃, △ C = ± less than 15%), a multilayer ceramic capacitor which can satisfy.

Claims (13)

  1. aLi 2 O-bK 2 O-cCaO-dBaO-eB 2 O 3 -fSiO 2 로 이루어지고, 상기 a, b, c, d, e 및 f는 a+b+c+d+e+f=100, 2≤a≤10, 2≤b≤10, 0≤c≤25, 0≤d≤25, 5≤e≤20 및 50≤f≤80을 만족하는 것을 특징으로 하는 유리 조성물. aLi 2 O-bK 2 O- cCaO-dBaO-eB 2 O 3 -fSiO comprise a 2, the a, b, c, d, e and f are a + b + c + d + e + f = 100, glass composition satisfy the 2≤a≤10, 2≤b≤10, 0≤c≤25, 0≤d≤25, 5≤e≤20 and 50≤f≤80.
  2. 제1항에 있어서, According to claim 1,
    상기 a, b, c, d, e 및 f는 3≤a≤8, 2≤b≤5, 0≤c≤15, 0≤d≤15, 10≤e≤20, 55≤f≤75을 만족하는 것을 특징으로 하는 유리 조성물. Wherein a, b, c, d, e and f satisfy the 3≤a≤8, 2≤b≤5, 0≤c≤15, 0≤d≤15, 10≤e≤20, 55≤f≤75 the glass composition characterized in that.
  3. 제1항에 있어서, According to claim 1,
    상기 a, b, c, d, e 및 f는 3≤a≤8, 2≤b≤5, 0≤c≤15, 5≤d≤15, 12.5≤e≤17.5, 60≤f≤75을 만족하는 것을 특징으로 하는 유리 조성물. Wherein a, b, c, d, e and f satisfy the 3≤a≤8, 2≤b≤5, 0≤c≤15, 5≤d≤15, 12.5≤e≤17.5, 60≤f≤75 the glass composition characterized in that.
  4. 조성식 aLi 2 O-bK 2 O-cCaO-dBaO-eB 2 O 3 -fSiO 2 (a+b+c+d+e+f=100, 2≤a≤10, 2≤b≤10, 0≤c≤25, 0≤d≤25, 5≤e≤20 및 50≤f≤80)로 표시되는 유리 조성물로 이루어지고, Compositional formula aLi 2 O-bK 2 O- cCaO-dBaO-eB 2 O 3 -fSiO 2 (a + b + c + d + e + f = 100, 2≤a≤10, 2≤b≤10, 0≤c made of a glass composition represented by ≤25, 0≤d≤25, 5≤e≤20 and 50≤f≤80),
    100 내지 300nm의 입도를 갖는 초미립 구형 분체 형태로 되어 있는 것을 특징으로 하는 유리 프릿. Glass frit, characterized in that is in the form of ultra fine spherical powder having a particle size of 100 to 300nm.
  5. 제4항에 있어서, 5. The method of claim 4,
    상기 a, b, c, d, e 및 f는 3≤a≤8, 2≤b≤5, 0≤c≤15, 0≤d≤15, 10≤e≤20, 55≤f≤75을 만족하는 것을 특징으로 하는 유리 프릿. Wherein a, b, c, d, e and f satisfy the 3≤a≤8, 2≤b≤5, 0≤c≤15, 0≤d≤15, 10≤e≤20, 55≤f≤75 glass frit characterized in that.
  6. 제4항에 있어서, 5. The method of claim 4,
    상기 a, b, c, d, e 및 f는 3≤a≤8, 2≤b≤5, 0≤c≤15, 5≤d≤15, 12.5≤e≤17.5, 60≤f≤75을 만족하는 것을 특징으로 하는 유리 프릿. Wherein a, b, c, d, e and f satisfy the 3≤a≤8, 2≤b≤5, 0≤c≤15, 5≤d≤15, 12.5≤e≤17.5, 60≤f≤75 glass frit characterized in that.
  7. 주성분인 BaTiO 3 와; The main component BaTiO 3, and;
    조성식 aLi 2 O-bK 2 O-cCaO-dBaO-eB 2 O 3 -fSiO 2 (a+b+c+d+e+f=100, 2≤a≤10, 2≤b≤10, 0≤c≤25, 0≤d≤25, 5≤e≤20 및 50≤f≤80)로 표시되는 유리 조성물을 함유하는 부성분을 포함하고, Compositional formula aLi 2 O-bK 2 O- cCaO-dBaO-eB 2 O 3 -fSiO 2 (a + b + c + d + e + f = 100, 2≤a≤10, 2≤b≤10, 0≤c including auxiliary component containing a glass composition represented by ≤25, 0≤d≤25, 5≤e≤20 and 50≤f≤80), and
    상기 부성분은, 상기 주성분 100몰에 대해, 상기 유리 조성물 1.0~3.0몰, MgCO 3 0.5~2.0몰, 희토류 산화물(상기 희토류 산화물은 Y 2 O 3 , Ho 2 O 3 , Dy 2 O 3 및 Yb 2 O 3 로 이루어진 그룹으로부터 1종 이상 선택됨) 0.3~1.0몰 및 MnO 0.05~1.0몰을 포함하는 것을 특징으로 하는 유전체 조성물. The auxiliary component is, relative to the main component as 100 mol, the glass composition of 1.0 to 3.0 mol, MgCO 3 0.5 ~ 2.0 mol, rare earth oxide (the rare earth oxide is Y 2 O 3, Ho 2 O 3, Dy 2 O 3 and Yb 2 O at least one member selected from the group consisting of 3) 0.3 to 1.0 mol and a dielectric composition comprising the MnO 0.05 ~ 1.0 mol.
  8. 제7항에 있어서, The method of claim 7,
    상기 a, b, c, d, e 및 f는 3≤a≤8, 2≤b≤5, 0≤c≤15, 0≤d≤15, 10≤e≤20, 55≤f≤75을 만족하는 것을 특징으로 하는 유전체 조성물. Wherein a, b, c, d, e and f satisfy the 3≤a≤8, 2≤b≤5, 0≤c≤15, 0≤d≤15, 10≤e≤20, 55≤f≤75 dielectric composition characterized in that.
  9. 제7항에 있어서, The method of claim 7,
    상기 a, b, c, d, e 및 f는 3≤a≤8, 2≤b≤5, 0≤c≤15, 5≤d≤15, 12.5≤e≤17.5, 60≤f≤75을 만족하는 것을 특징으로 하는 유전체 조성물. Wherein a, b, c, d, e and f satisfy the 3≤a≤8, 2≤b≤5, 0≤c≤15, 5≤d≤15, 12.5≤e≤17.5, 60≤f≤75 dielectric composition characterized in that.
  10. 복수의 유전체층과, 상기 유전체층 사이에 형성된 복수의 내부 전극과, 상기 내부 전극에 전기적으로 접속된 외부 전극을 포함하는 적층 세라믹 콘덴서에 있어서, In the plurality of dielectric layers and a plurality of internal electrodes formed between the dielectric layer and a multilayer ceramic capacitor that includes an external electrode electrically connected to the internal electrodes,
    상기 유전체층은, 주성분인 BaTiO 3 와; The dielectric layer, the main component BaTiO 3 and; 조성식 aLi 2 O-bK 2 O-cCaO-dBaO-eB 2 O 3 -fSiO 2 (a+b+c+d+e+f=100, 2≤a≤10, 2≤b≤10, 0≤c≤25, 0≤d≤25, 5≤e≤20 및 50≤f≤80)로 표시되는 유리 조성물을 함유하는 부성분을 포함하고, Compositional formula aLi 2 O-bK 2 O- cCaO-dBaO-eB 2 O 3 -fSiO 2 (a + b + c + d + e + f = 100, 2≤a≤10, 2≤b≤10, 0≤c including auxiliary component containing a glass composition represented by ≤25, 0≤d≤25, 5≤e≤20 and 50≤f≤80), and
    상기 부성분은, 상기 주성분 100몰에 대해, 상기 유리 조성물 1.0~3.0몰, MgCO 3 0.5~2.0몰, 희토류 산화물(상기 희토류 산화물은 Y 2 O 3 , Ho 2 O 3 , Dy 2 O 3 및 Yb 2 O 3 로 이루어진 그룹으로부터 1종 이상 선택됨) 0.3~1.0몰 및 MnO 0.05~1.0몰을 포함하는 것을 특징으로 하는 적층 세라믹 콘덴서. The auxiliary component is, relative to the main component as 100 mol, the glass composition of 1.0 to 3.0 mol, MgCO 3 0.5 ~ 2.0 mol, rare earth oxide (the rare earth oxide is Y 2 O 3, Ho 2 O 3, Dy 2 O 3 and Yb 2 O at least one member selected from the group consisting of 3) 0.3 to 1.0 mol, and a multilayer ceramic capacitor comprising the MnO 0.05 ~ 1.0 mol.
  11. 제10항에 있어서, 11. The method of claim 10,
    상기 a, b, c, d, e 및 f는 3≤a≤8, 2≤b≤5, 0≤c≤15, 0≤d≤15, 10≤e≤20, 55≤f≤75을 만족하는 것을 특징으로 하는 적층 세라믹 콘덴서. Wherein a, b, c, d, e and f satisfy the 3≤a≤8, 2≤b≤5, 0≤c≤15, 0≤d≤15, 10≤e≤20, 55≤f≤75 a multilayer ceramic capacitor which comprises.
  12. 제10항에 있어서, 11. The method of claim 10,
    상기 a, b, c, d, e 및 f는 3≤a≤8, 2≤b≤5, 0≤c≤15, 5≤d≤15, 12.5≤e≤17.5, 60≤f≤75을 만족하는 것을 특징으로 하는 적층 세라믹 콘덴서. Wherein a, b, c, d, e and f satisfy the 3≤a≤8, 2≤b≤5, 0≤c≤15, 5≤d≤15, 12.5≤e≤17.5, 60≤f≤75 a multilayer ceramic capacitor which comprises.
  13. 제10항에 있어서, 11. The method of claim 10,
    상기 내부 전극은 도전 재료로서 Ni 또는 Ni 합금을 함유하는 것을 특징으로 하는 적층 세라믹 콘덴서. A multilayer ceramic capacitor comprising the Ni or Ni alloy, the inner electrode is a conductive material.
KR20050069342A 2005-07-29 2005-07-29 Glass compositions for low temperature sintering, glass frit, dielectric compositions and multilayer ceramic condenser using the same KR100632001B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20050069342A KR100632001B1 (en) 2005-07-29 2005-07-29 Glass compositions for low temperature sintering, glass frit, dielectric compositions and multilayer ceramic condenser using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20050069342A KR100632001B1 (en) 2005-07-29 2005-07-29 Glass compositions for low temperature sintering, glass frit, dielectric compositions and multilayer ceramic condenser using the same
CN 200610099129 CN1903764B (en) 2005-07-29 2006-07-27 Glass composition for low temperature sintering, glass frit, dielectric composition and multilayer ceramic capacitor using the same
US11494611 US7605104B2 (en) 2005-07-29 2006-07-28 Glass composition for low temperature sintering, dielectric composition and multilayer ceramic capacitor using the same
JP2006205741A JP4794385B2 (en) 2005-07-29 2006-07-28 Non-reducing dielectric composition and a multilayer ceramic capacitor
US12493429 US7691762B2 (en) 2005-07-29 2009-06-29 Glass composition for low temperature sintering, glass frit, dielectric composition and multilayer ceramic capacitor using the same
US12624028 US7851393B2 (en) 2005-07-29 2009-11-23 Glass composition for low temperature sintering, glass frit, dielectric composition and multilayer ceramic capacitor using the same

Publications (1)

Publication Number Publication Date
KR100632001B1 true KR100632001B1 (en) 2006-09-27

Family

ID=37635442

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20050069342A KR100632001B1 (en) 2005-07-29 2005-07-29 Glass compositions for low temperature sintering, glass frit, dielectric compositions and multilayer ceramic condenser using the same

Country Status (4)

Country Link
US (3) US7605104B2 (en)
JP (1) JP4794385B2 (en)
KR (1) KR100632001B1 (en)
CN (1) CN1903764B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100983046B1 (en) * 2008-12-29 2010-09-17 삼성전기주식회사 Borosilicate glass compositions for sintering agent, dielectric compositions and multilayer ceramic capacitor using the same
US8343385B2 (en) 2010-11-08 2013-01-01 Samsung Electro-Mechanics Co., Ltd. Conductive paste composition and method for producing multilayer ceramic capacitor using the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265003A (en) * 2005-03-22 2006-10-05 Nippon Chem Ind Co Ltd Composition for forming dielectric ceramic and dielectric ceramic material
JP5067541B2 (en) * 2007-03-30 2012-11-07 Tdk株式会社 The dielectric ceramic composition, a composite electronic component and a multilayer ceramic capacitor
US8896725B2 (en) 2007-06-21 2014-11-25 Fotonation Limited Image capture device with contemporaneous reference image capture mechanism
KR100993010B1 (en) * 2008-06-26 2010-11-09 한국과학기술연구원 Low Fired Dielectric Ceramic Composition
CN101585709B (en) 2009-06-18 2012-02-29 华中科技大学 Preparation method of barium strontium titanate semiconductive ceramics
US20110043964A1 (en) * 2009-08-21 2011-02-24 Darfon Electronics Corp. Ceramic powder composition, ceramic material, and multi-layer ceramic capacitor fabricated thereby
KR101079464B1 (en) * 2009-12-22 2011-11-03 삼성전기주식회사 multilayer ceramic capacitor
JP6202775B2 (en) * 2010-08-11 2017-09-27 日本電気硝子株式会社 Li2O-Al2O3-SiO2-based crystallized glass
KR101483819B1 (en) * 2011-01-18 2015-01-16 삼성전기주식회사 Glass powder and method for preparing the same
KR101525643B1 (en) * 2011-05-20 2015-06-03 삼성전기주식회사 Multilayered ceramic electronic component
US8618640B2 (en) 2011-07-29 2013-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method of shielding through silicon vias in a passive interposer
KR20130065199A (en) * 2011-12-09 2013-06-19 삼성전기주식회사 Conductive paste for external electrode, multi-layered ceramic electronic parts fabricated by using the same and fabricating method thereof
KR101383253B1 (en) * 2012-04-19 2014-04-10 삼화콘덴서공업주식회사 Metal paste manufacturing method for internal electrode of multi layer ceramic capacitor
KR101532137B1 (en) * 2013-07-23 2015-06-26 삼성전기주식회사 Dielectric composition for low temperature sintering, multilayer ceramic electronic device including the same and method for fabricating the multilayer ceramic electronic device
KR20160073121A (en) * 2014-12-16 2016-06-24 삼성전기주식회사 Low temperature sintering dielectric composition and multilayer cderamic capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015575A1 (en) 1998-09-10 2000-03-23 Epcos Ag Reduction-stable ceramic substances
JP2001278662A (en) 2000-03-30 2001-10-10 Kyocera Corp Method for manufacturing dielectric ceramic

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355002B2 (en) * 1984-12-18 1991-08-22
JPH0366266B2 (en) * 1985-06-25 1991-10-16 Matsushita Electric Works Ltd
KR950006202B1 (en) 1986-11-03 1995-06-12 아놀드 자일러, 에른스트 알테르 Lead-free glass frit compositions
US4814298A (en) * 1987-10-26 1989-03-21 Corning Glass Works Lead-free glasses for glaze materials
RU2016877C1 (en) * 1991-04-13 1994-07-30 Институт коллоидной химии и химии воды им.А.В.Думанского АН Украины Mass for preparing of porous ceramic material
DE69205497D1 (en) * 1991-06-14 1995-11-23 Cookson Group Plc Glass compositions.
US5362687A (en) * 1992-02-04 1994-11-08 Narumi China Corporation Lead-free frit glaze
JP2764513B2 (en) * 1993-01-21 1998-06-11 ティーディーケイ株式会社 Reduction resistant dielectric ceramic composition
RU2082596C1 (en) * 1993-01-22 1997-06-27 Государственный научно-исследовательский институт абразивов и шлифования Glassy bond for manufacturing abrasive tools from cubic boron nitride
JP3450903B2 (en) * 1994-07-19 2003-09-29 京セラ株式会社 Non-reducing dielectric ceramic composition
EP1391441A3 (en) * 1994-10-19 2004-03-03 TDK Corporation Multi layer ceramic chip capacitor
US5482902A (en) * 1994-12-21 1996-01-09 Corning Incorporated Brown-photochromic glasses
US5646081A (en) * 1995-04-12 1997-07-08 Murata Manufacturing Co., Ltd. Non-reduced dielectric ceramic compositions
JP3161278B2 (en) 1995-04-26 2001-04-25 株式会社村田製作所 The dielectric ceramic composition
JP2990194B1 (en) 1998-12-21 1999-12-13 日本フエロー株式会社 Cement products for lead-free low-melting-point glass composition
JP3568030B2 (en) 1999-02-26 2004-09-22 Tdk株式会社 The method of manufacturing the manufacturing method and the dielectric layer containing the electronic components of the dielectric ceramic composition
JP2001313469A (en) * 2000-02-23 2001-11-09 Ngk Spark Plug Co Ltd Capacitor including wiring board
US6556422B2 (en) * 2000-07-05 2003-04-29 Samsung Electro-Mechanics Co., Ltd. Dielectric ceramic composition, multi-layer ceramic capacitor using the same, and manufacturing method therefor
JP3987692B2 (en) * 2001-06-12 2007-10-10 太陽誘電株式会社 The dielectric ceramic composition and the magnetic capacitor
JP2003146697A (en) 2001-11-13 2003-05-21 Sanwa Denzai:Kk Dielectric composition
CN1450010A (en) 2002-04-09 2003-10-22 碧悠国际光电股份有限公司 Optical glass
JP4014468B2 (en) * 2002-08-07 2007-11-28 株式会社ノリタケカンパニーリミテド Decorating materials containing lead-free glass flux and the flux
JP2004203626A (en) * 2002-10-29 2004-07-22 Kyocera Corp Dielectric composition
KR100471155B1 (en) * 2002-12-03 2005-03-10 삼성전기주식회사 Dielectric ceramic composition for low temperature sintering and multiplayer ceramic chip capacitor produced using the composition
KR100522134B1 (en) * 2003-04-02 2005-10-18 한국과학기술연구원 Low-fire high-permittivity dielectric compositions
CN101006027B (en) * 2004-08-19 2010-05-05 株式会社村田制作所 Dielectric ceramic and monolithic ceramic capacitor
KR100946016B1 (en) * 2007-11-16 2010-03-09 삼성전기주식회사 Dielectric Ceramic Compositions for Low Temperature Sintering and High HOT-IR, and Multilayer Ceramic Capacitor Using the Same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015575A1 (en) 1998-09-10 2000-03-23 Epcos Ag Reduction-stable ceramic substances
JP2001278662A (en) 2000-03-30 2001-10-10 Kyocera Corp Method for manufacturing dielectric ceramic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100983046B1 (en) * 2008-12-29 2010-09-17 삼성전기주식회사 Borosilicate glass compositions for sintering agent, dielectric compositions and multilayer ceramic capacitor using the same
US8343385B2 (en) 2010-11-08 2013-01-01 Samsung Electro-Mechanics Co., Ltd. Conductive paste composition and method for producing multilayer ceramic capacitor using the same

Also Published As

Publication number Publication date Type
CN1903764A (en) 2007-01-31 application
US7851393B2 (en) 2010-12-14 grant
CN1903764B (en) 2011-01-19 grant
JP2007039325A (en) 2007-02-15 application
US7691762B2 (en) 2010-04-06 grant
US20100069222A1 (en) 2010-03-18 application
JP4794385B2 (en) 2011-10-19 grant
US7605104B2 (en) 2009-10-20 grant
US20090258231A1 (en) 2009-10-15 application
US20070027020A1 (en) 2007-02-01 application

Similar Documents

Publication Publication Date Title
US6301092B1 (en) Ceramic capacitor and method for making the same
US4607316A (en) Low temperature sintered ceramic capacitor with high DC breakdown voltage, and method of manufacture
US6829137B2 (en) Dielectric ceramic and monolithic ceramic capacitor including same
US6764976B2 (en) Dielectric ceramic composition and electronic device
US5734545A (en) Monolithic ceramic capacitor
US6310761B1 (en) Dielectric ceramic composition and monolithic ceramic capacitor
US6225250B1 (en) Dielectric ceramic composition
JP2004155649A (en) Dielectric ceramic, method of producing the same, and multilayer ceramic capacitor
JP2003277139A (en) Dielectric ceramic composition and electronic parts
JP2004224653A (en) Dielectric ceramic and its manufacturing method as well as multilayer ceramic capacitor
US4607314A (en) Low temperature sintered ceramic capacitor with high DC breakdown voltage, and method of manufacture
JP2004107200A (en) Dielectric porcelain, its producing method, multilayer electronic part and its producing method
US7057876B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2003068559A (en) Laminated ceramic capacitor and method of manufacturing the same
US20090128988A1 (en) Dielectric ceramic composition for low-temperature sintering and hot insulation resistance and multilayer ceramic capacitor using the same
US6380116B1 (en) Dielectric ceramic composition and monolithic ceramic capacitor
JPH11302072A (en) Dielectric ceramic, laminated ceramic capacitor and its production
US20070287625A1 (en) Electronic device, dielectric ceramic composition and the production method
JP2004099378A (en) Insulating glass ceramic and multilayered electronic component using the same
JP2006041371A (en) Laminated ceramic capacitor, and manufacturing method thereof
JP2010235327A (en) Dielectric ceramic composition
JP2006156450A (en) Laminated ceramic capacitor and its manufacturing method
JP2004035388A (en) Reduction-resistant low-temperature fired dielectric ceramic composition, multilayer ceramic capacitor using it, and its manufacturing method
JPH05234420A (en) Dielectric ceramic material and multilayered ceramic parts
US20100165542A1 (en) Borosilicate glass compositions for sintering agent, dielectric compositions and multilayer ceramic capacitor using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130624

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150707

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 12