JPS63156062A - High permittivity ceramic composition and manufacture - Google Patents

High permittivity ceramic composition and manufacture

Info

Publication number
JPS63156062A
JPS63156062A JP62167034A JP16703487A JPS63156062A JP S63156062 A JPS63156062 A JP S63156062A JP 62167034 A JP62167034 A JP 62167034A JP 16703487 A JP16703487 A JP 16703487A JP S63156062 A JPS63156062 A JP S63156062A
Authority
JP
Japan
Prior art keywords
dielectric constant
ceramic composition
high dielectric
composition according
constant ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62167034A
Other languages
Japanese (ja)
Other versions
JPH054354B2 (en
Inventor
修 古川
精一 吉田
今井 基真
光雄 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to KR1019870009324A priority Critical patent/KR890002696B1/en
Priority to US07/090,605 priority patent/US4767732A/en
Priority to DE8787112546T priority patent/DE3782470T2/en
Priority to EP87112546A priority patent/EP0257653B1/en
Publication of JPS63156062A publication Critical patent/JPS63156062A/en
Publication of JPH054354B2 publication Critical patent/JPH054354B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • C04B35/4684Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase containing lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/472Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on lead titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は高誘電率磁器組成物及びその製造方法に係り、
特に広範囲な温度領域にわたって誘電率の温度変化の小
さい高誘電率磁器組成物及びその製造方法に関する。
[Detailed description of the invention] [Object of the invention] (Industrial application field) The present invention relates to a high dielectric constant ceramic composition and a method for producing the same.
In particular, the present invention relates to a high dielectric constant ceramic composition whose dielectric constant changes little over a wide temperature range, and a method for producing the same.

(従来の技術) 誘電体材料として要求される電気的特性としては、誘電
率、誘電率温度係数、誘電損失、誘電率バイアス電界依
存性、容量抵抗積等があげられる。
(Prior Art) Electrical properties required for dielectric materials include dielectric constant, temperature coefficient of dielectric constant, dielectric loss, dependence of dielectric constant on electric field, and capacitance-resistance product.

特に容量抵抗M(CR値)は、充分高い値を取る必要が
あり、EIAJ(日本電子機械工業会)の電子機器用積
層磁器コンデンサ(チップ型)規格RC−3698Bに
常温で500MΩ・μF以上と規定されている。さらに
より厳しい条件でも使用できるように、高温(例えば米
国防上規格M I L −C−55681Bでは125
℃でCR値が定められている。)でも高い容量抵抗積を
維持することが要求される。
In particular, the capacitance resistance M (CR value) needs to take a sufficiently high value, and must be 500MΩ・μF or more at room temperature according to the EIAJ (Electronic Industries Association of Japan) standard for multilayer ceramic capacitors (chip type) for electronic equipment RC-3698B. stipulated. Furthermore, in order to be able to use it under even more severe conditions, high temperature (for example, 125
The CR value is determined in °C. ), it is required to maintain a high capacitance-resistance product.

また、特に広範囲な温度領域にわたって安定な温度特性
を要求される場合があり1例えばEIA(米国電子工業
会)規格のX7R特性には一55℃〜+125℃の温度
領域における容量の変化が±15%以内と規定されてい
る。
In addition, there are cases where stable temperature characteristics are particularly required over a wide temperature range.1 For example, the EIA (Electronic Industries Association) standard X7R characteristics have a capacitance change of ±15°C in the temperature range of -55°C to +125°C. % or less.

さらに積層タイプの素子を考えた場合、電極層と誘電体
層とは一体的に焼成されるため、電極材料としては誘電
体材料の焼成温度でも安定なものを用いる必要がある。
Furthermore, when considering a laminated type element, since the electrode layer and the dielectric layer are fired integrally, it is necessary to use an electrode material that is stable even at the firing temperature of the dielectric material.

従って誘電体材料の焼成温度が高いとPt、 Pd等の
高価材料を用いなければならず、Ag等の安定な材料を
使用できるように1例えば1100℃以下程度の低温で
の焼成が可能であることが要求される。
Therefore, if the firing temperature of the dielectric material is high, expensive materials such as Pt and Pd must be used.In order to use stable materials such as Ag, firing at a low temperature of, for example, 1100°C or less is possible. This is required.

従来から知られている高誘電率磁器組成物としてチタン
酸バリウムをベースとして、これに錫酸塩、ジルコン酸
塩、チタン酸塩等を固溶したものがある。
Conventionally known high dielectric constant ceramic compositions include barium titanate as a base and solid solutions of stannate, zirconate, titanate, etc. therein.

しかし、チタン酸バリウム系の材料の焼成温度は130
0〜1400℃程度と高温であり、電極材料として必然
的に白金、パラジウム等の高温で酎えうる高価な材料を
用いなければならず、コスト高の原因となる。
However, the firing temperature of barium titanate-based materials is 130°C.
The temperature is high, about 0 to 1400° C., and expensive materials such as platinum and palladium that can be dissolved at high temperatures must be used as electrode materials, which causes high costs.

このチタン酸バリウム系の問題点を解消すべく。In order to solve the problems of this barium titanate system.

各種組成物の研究がなされている。例えば、鉄・ニオブ
酸鉛を主体としたもの(特開昭57−57204号)、
マグネシウム・ニオブ酸鉛を主体としたもの(特開昭5
5−51759号)、マグネシウム・タングステン酸鉛
を主体としたもの(特開昭55−144609号)、マ
グネシウム・鉄・タングステン酸鉛を主体としたもの(
特開昭58−217462号)等がある。
Various compositions have been studied. For example, those mainly composed of iron and lead niobate (Japanese Patent Application Laid-Open No. 57-57204),
Mainly composed of magnesium and lead niobate (Japanese Unexamined Patent Application Publication No. 1989-1989)
5-51759), those mainly composed of magnesium/lead tungstate (JP-A-55-144609), those mainly composed of magnesium/iron/lead tungstate (
JP-A No. 58-217462), etc.

しかしながら誘電率が高く、その温度変化が例えば−5
5℃〜+125℃のような広い温度範囲にわたって小さ
く、かつ絶縁抵抗が高いというような電気的諸特性に優
れ、かつ、低温焼結が可能であるという高誘電率磁器組
成物は得られていないのが現状である。
However, the dielectric constant is high, and the temperature change is -5
A high dielectric constant ceramic composition that is small over a wide temperature range of 5°C to +125°C, has excellent electrical properties such as high insulation resistance, and can be sintered at low temperatures has not been obtained. is the current situation.

一方、誘電率の温度特性の異なる組成物を混合して平坦
な温度特性を得ようとする研究もなされている0例えば
特開昭59−203759号にはPb(MgtzaNb
ali)Oi−Pb(Mnxzzlltzi)Ox系。
On the other hand, research has also been carried out to obtain flat temperature characteristics by mixing compositions with different temperature characteristics of dielectric constants.
ali)Oi-Pb(Mnxzzlltzi)Ox system.

PbCMg1tsNb*ts)Os−PbTiOs−P
bCFexi3’l、ts)Oz 系の混合について開
示がある。しかしながらT、C,Cが大きく、温度特性
は十分ではない、またJJAP 、 voQ、24(1
985)Supplement24−2. pp、42
7−420にはPbCF@ztsNb、tx)Oz−P
bCF6ttsW1ハ)Osの混合にっいて開示がある
が、コンデンサ材料として重要なCR値については考慮
がなく、またT、C,Cが大きく、温度特性は十分では
ない。
PbCMg1tsNb*ts)Os-PbTiOs-P
There is a disclosure of a mixture of the bCFexi3'l,ts)Oz system. However, T, C, and C are large and the temperature characteristics are not sufficient, and JJAP, voQ, 24 (1
985) Supplement24-2. pp, 42
7-420 has PbCF@ztsNb,tx)Oz-P
bCF6ttsW1 c) Although there is a disclosure regarding the mixture of Os, there is no consideration of CR value, which is important as a capacitor material, and T, C, and C are large, and the temperature characteristics are not sufficient.

(発明が解決しようとする問題点) 本発明は以上の点を考慮してなされたもので。(Problem that the invention attempts to solve) The present invention has been made in consideration of the above points.

誘電率及び絶縁抵抗が高く、かつ誘電率の温度変化が小
さく、低温で焼結することができる高誘電率磁器組成物
の製造方法を提供することを目的とする。
It is an object of the present invention to provide a method for manufacturing a high-permittivity ceramic composition that has a high dielectric constant and insulation resistance, has a small temperature change in the dielectric constant, and can be sintered at a low temperature.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は一般式 (1−XXヘーa−^政b) (CZnuJthis)1−c−ticK&is Nb
、/3)cTia)Os ・xBaTiOsで表わした
とき、 0 ≦  a  ≦ 0.35 0 ≦  b  ≦ 0.35 0.01  ≦ a十b  ≦ 0.350<c   
≦ 0.9 0dd   ≦ 0.5 0 < c+d < 1.0 0.3  ≦  X  ≦ 0.65 を満たす高誘電率磁器組成物であり、このような磁器組
成物は製造する際に、原料として少なくともチタン酸バ
リウム粉を用いることにより得ることができるというも
のである。
(Means for Solving the Problems) The present invention is based on the general formula (1-XXhea-^policyb) (CZnuJthis)1-c-ticK&is Nb
, /3) cTia)Os ・xBaTiOs When expressed as 0 ≦ a ≦ 0.35 0 ≦ b ≦ 0.35 0.01 ≦ a + b ≦ 0.350 < c
≦ 0.9 0dd ≦ 0.5 0 < c+d < 1.0 0.3 ≦ X ≦ 0.65. It can be obtained by using at least barium titanate powder.

(作用) 一般に磁器組成物は出発原料としてPb、 Ba、 S
r。
(Function) Generally, porcelain compositions contain Pb, Ba, S as starting materials.
r.

Zn、 Mg、 Nb、 Ti等の酸化物もしくは焼成
により酸化物になる炭酸塩、しゆう酸塩等の塩類、水酸
化物、有機化合物等を所定の割合で秤量し、十分混合し
た後に仮焼した後、この仮焼物を粉砕し原料粉末を製造
する。この様な原料粉末を用い所望の形状に成型した後
、焼成することにより、高誘電率のセラミックを得る8 本発明では上述したような一般的方法に代え、原料粉と
してBaTi0.粉を少なくとも含む原料と、他の成分
とを混合して焼成する。このような方法により製造され
た高誘電率磁器組成物は、さらに誘電率の温度変化幅が
縮減される。
Oxides such as Zn, Mg, Nb, and Ti, salts such as carbonates and oxalates that become oxides upon firing, hydroxides, organic compounds, etc. are weighed out in a predetermined proportion, mixed thoroughly, and then calcined. After that, the calcined product is pulverized to produce a raw material powder. By molding such raw material powder into a desired shape and firing it, a ceramic with a high dielectric constant is obtained.8 In the present invention, instead of the general method as described above, BaTi0. A raw material containing at least powder and other ingredients are mixed and fired. In the high dielectric constant ceramic composition produced by such a method, the range of temperature change in dielectric constant is further reduced.

すなわち本発明製造方法は次のような工程をとる。出発
原料のうちBaTi0.を構成する成分である8aおよ
びTiの酸化物もしくは焼成により酸化物になる炭酸塩
、しゅう酸塩等の塩類、水酸化物、有機化合物等を、予
めBaTi0.の化学式になるように調製し1000〜
1350℃で仮焼する。この際、多少化学量論比がずれ
てもかまわない。この仮焼粉と、他の出発原料とを所定
の割合で秤量し、十分混合粉砕する。この場合BaTi
0.粉を粉砕しすぎないように樹脂コーティングボール
等を用いることが好ましい、なお、この場合、pbを主
体とする他の出発原料(Ba、 Tiを含んでいても良
い)は別に混合し700〜900℃程度で仮焼しておく
ことが望ましい。
That is, the manufacturing method of the present invention includes the following steps. Among the starting materials, BaTi0. 8a, which is a component of BaTi0. Prepared to have the chemical formula of 1000 ~
Calcinate at 1350℃. At this time, it does not matter if the stoichiometric ratio deviates to some extent. This calcined powder and other starting materials are weighed at a predetermined ratio and thoroughly mixed and pulverized. In this case BaTi
0. It is preferable to use a resin-coated ball or the like to avoid crushing the powder too much. In this case, other starting materials mainly consisting of PB (which may also contain Ba and Ti) are mixed separately and It is desirable to calcinate at around ℃.

またBaTi0.を構成する成分の粉末に少量の他の元
素が含まれていても構わない。
Also, BaTi0. It does not matter if the powder of the constituent components contains a small amount of other elements.

十分混合粉砕した粉末を用い所望の形状に成型した後、
焼成することにより、高誘電率磁器組成物を得る。
After thoroughly mixing and pulverizing the powder and molding it into the desired shape,
By firing, a high dielectric constant ceramic composition is obtained.

なお、混合、粉砕用のボールは、不純物の混入を防止す
るため1部分安定化ジルコニアボール等の硬度が大きく
、かつ靭性の高いボールを用いることが好ましい、また
BaTi0.を主体とする第1の成分とpbを構成元素
とするペロブスカイト構造の第2の成分とを混合する場
合には、 BaTi0.を粉砕しすぎないように、樹脂
コーティングボール等を用いることが好ましい。
As for the mixing and grinding balls, it is preferable to use balls with high hardness and high toughness, such as partially stabilized zirconia balls, in order to prevent the mixing of impurities. When mixing the first component mainly consisting of BaTi0. It is preferable to use a resin-coated ball or the like to avoid crushing too much.

このようにして得られた磁器組成物は基本的にBaTi
0.主体の第1の成分と、 pbを構成元素とするペロ
ブスカイト構造の第2の成分との混合焼結体となる。 
BaTi0.は125℃近傍のキュリ一点をもち、第2
の成分との相乗効果で良好な温度特性を得ることができ
る。また誘電率、CR値も高く、コンデンサ用として好
適となる。焼結の際BaTi0.粉が細かすぎると、第
1成分と第2成分との拡散がすすみすぎてしまい、温度
特性向上の効果を得ることが困難となる。また、大きす
ぎると焼結体中のボア・クラックが極端に増加するため
に、CR値が低下するとともに機械的強度が低下し、特
に積層タイプの素子を作成する場合に組成のがたよりを
起こし1歩留り低下の原因となる。
The porcelain composition thus obtained is basically BaTi.
0. The result is a mixed sintered body of the main first component and the second component having a perovskite structure containing pb as a constituent element.
BaTi0. has a single Curie point near 125°C, and the second
Good temperature characteristics can be obtained by the synergistic effect with the components. Furthermore, the dielectric constant and CR value are high, making it suitable for use in capacitors. During sintering, BaTi0. If the powder is too fine, the first component and the second component will diffuse too much, making it difficult to obtain the effect of improving temperature characteristics. In addition, if the size is too large, the number of bores and cracks in the sintered body will increase significantly, resulting in a decrease in CR value and mechanical strength, which will cause compositional fluctuations, especially when creating a laminated type element. This causes a decrease in yield by 1.

従って用いるBaTi0i粉はその50wt%以上が0
.7〜3tmさらに好ましくは0.8〜2.nの粒径を
有するものを用いることが好ましい6粒径の制御の方法
は例えば粒径が大きい場合、ボール°ミルの粉砕条件を
変えたり、粒径が小さい場合仮焼条件を調整することに
より達成できる。なお、前述の第2成分としてのキュリ
一点は温度特性を考慮しBaTi0iとの関係で、12
5℃以下、ざら・に第1成分と第2成分との相互作用を
考慮すると室温〜80℃付近に設定されたものを用いる
。また焼成温度低下(例えば1100℃以下)を重視す
る時は室温以下のものを用いることが好ましい、またキ
ュリ一点を変更するため、BaTi0.粉においてBa
の一部をSr、Ca、Ceで置換したり、Tiの一部を
Zr、 Snで置換したりすることは可能である。
Therefore, more than 50 wt% of the BaTi0i powder used is 0.
.. 7-3tm, more preferably 0.8-2. It is preferable to use particles with a particle size of It can be achieved. Note that the Curie point as the second component mentioned above is 12
The temperature should be set at 5° C. or lower, roughly between room temperature and around 80° C. considering the interaction between the first and second components. Also, when lowering the firing temperature (for example, 1100°C or lower) is important, it is preferable to use a temperature lower than room temperature. Ba in powder
It is possible to replace a part of Ti with Sr, Ca, or Ce, or to replace a part of Ti with Zr or Sn.

次に本発明組成物について説明する0本発明は、一般式 %式%) で表わされるが、一般式で表示した場合pbの置換元素
Ba及びSrは、少量の置換でペロブスカイト構造を形
成できるが、(a十b)が0.01未満ではペロブスカ
イト構造が形成されにくく、誘電率が低下してしまう、
また(a+b)が0.35を超えてしまうと焼成温度が
高くなってしまう* Q g dについてはこの範囲を
はずれると誘電率の温度変化が大きくなってしまう、ま
た(Zn1ハNb* zs )成分をある程度含んでい
た方が良く、c+d≦0.9が好ましい。
Next, the composition of the present invention will be explained. The composition of the present invention is expressed by the general formula (%). When expressed in the general formula, the substituting elements Ba and Sr of pb can form a perovskite structure with a small amount of substitution. , (a + b) is less than 0.01, it is difficult to form a perovskite structure, and the dielectric constant decreases.
Also, if (a + b) exceeds 0.35, the firing temperature will become high. * Regarding Q g d, if it is outside this range, the temperature change in the dielectric constant will become large, and (Zn1 ha Nb * zs ) It is better to contain a certain amount of components, and c+d≦0.9 is preferable.

またXが0.65を超えると焼成温度が高くなってしま
い、0.3未満では誘電率の温度変化が大きくなってし
まう、特に温度変化を重挑する場合は0.5くx≦0.
65.  焼成温度を重視する場合は0.3≦x≦0.
5が好ましい。
Also, if X exceeds 0.65, the firing temperature will become high, and if it is less than 0.3, the temperature change in the dielectric constant will become large.In particular, if the temperature change is to be carried out heavily, 0.5 x ≦0.
65. If the firing temperature is important, 0.3≦x≦0.
5 is preferred.

ap by Og d、Xを上述の範囲に限定した場合
に、誘電率が大きく、かつ広範囲な温度領域にわたって
誘電率の変化が小さく、絶縁抵抗が高く、しかも例えば
1150’C以下程度の低温で焼結できる磁器組成物が
得られる。
When ap by Og d, A porcelain composition that can be bonded is obtained.

なお、本発明組成物は、 (1−X) (Pl)1−a−bBaaSrb)((Z
nx tzR)z ts )1−C4(Mg、is N
BI ts )cTld)03 ” xBaTio。
The composition of the present invention has the following composition: (1-X) (Pl)1-a-bBaaSrb) ((Z
nx tzR)z ts )1-C4(Mg, is N
BI ts)cTld)03”xBaTio.

を主体とするものであるが、多少化学量論比からずれて
も構わず、酸化物に換算すると。
However, it does not matter if the ratio deviates slightly from the stoichiometric ratio, when converted to oxide.

Pb0 26.49〜53.33%+1%Ba0 15
.01〜39.48 wt%SrO0,00〜9.71
 wt% Zn0  0.49〜6.86 wt%MgOO,00
〜3.14 tzt% Nb、0. 8.00〜23.03 wt%Tie、 
 7.81〜23.641t%となる。好ましくは、 PbO26,49〜52.58 wt%BaO15,0
1〜39.07 wt%SrOO,00〜9.57 w
t% Zn0  0.49〜6.86 wt%MgOO,00
〜3.14 wt% Nb、0. 8.00〜23.03 wt%Tie、 
 7.81〜23.39 wt%である。
Pb0 26.49~53.33%+1%Ba0 15
.. 01-39.48 wt%SrO0.00-9.71
wt% Zn0 0.49-6.86 wt%MgOO,00
~3.14 tzt% Nb, 0. 8.00-23.03 wt%Tie,
It becomes 7.81-23.641t%. Preferably, PbO26,49-52.58 wt% BaO15,0
1~39.07wt%SrOO,00~9.57w
t% Zn0 0.49-6.86 wt%MgOO,00
~3.14 wt% Nb, 0. 8.00-23.03 wt%Tie,
It is 7.81 to 23.39 wt%.

これらのうち、特にZrでT1の一部を置換したものは
、キュリ一点前後での誘電率の低下が少なく。
Among these, those in which part of T1 is replaced with Zr have a small decrease in dielectric constant around the Curie point.

適している。したがって、BaTi0.に代えてBa 
(Ti、−5Zra)Oaを用いてもよい、ただし、こ
の場合Zr置換量は多くても6mol!%(0≦e≦0
.06)とする。これを超えると混合焼結体からなる磁
器を形成したとき高温側でのT、C,Cが大きくなって
しまうからである。
Are suitable. Therefore, BaTi0. Ba instead of
(Ti, -5Zra)Oa may be used, however, in this case, the amount of Zr substitution is at most 6 mol! %(0≦e≦0
.. 06). This is because if the temperature exceeds this value, T, C, and C on the high temperature side will become large when porcelain made of a mixed sintered body is formed.

また酸化物に換算すると Pb0 19.28〜40.35%+1%Ba0 26
.73〜46.73 wt%Sr0  0.00〜7.
15 wt%Zn0  0.36〜5.11 wt%M
gOO,00〜2.33 wt% Nb、0. 5.84〜17.11 wt%?10. 
13.08〜26.64 wt%ZrO,0,00〜1
.93 wt% となる。
Also, when converted to oxide, Pb0 19.28 to 40.35% + 1% Ba0 26
.. 73-46.73 wt%Sr0 0.00-7.
15 wt%Zn0 0.36-5.11 wt%M
gOO, 00-2.33 wt% Nb, 0. 5.84-17.11 wt%? 10.
13.08-26.64 wt% ZrO, 0.00-1
.. It becomes 93 wt%.

また1本発明の効果を損わない範囲での不純物。Also, 1. impurities within a range that does not impair the effects of the present invention.

添加物等の含有も構わない0例えば、 Ca0g La
20xtMnO,Cod、 Nip、 Sb、O,、S
in、、 ZrO,等の遷移金属。
It is okay to include additives, etc. For example, Ca0g La
20xtMnO, Cod, Nip, Sb, O,, S
Transition metals such as in, ZrO, etc.

ランタンド元素等があげられる。しかしながら、これら
の添加物の含有量は、多くてもlwt%程度である。
Examples include lanthanide elements. However, the content of these additives is about lwt% at most.

積層タイプの素子を製造する場合は、前述の原料粉末ま
たは混合粉砕後の粉末にバインダー、溶剤等を加えスラ
リー化して、グリーンシートを形成しこのグリーンシー
ト上に内部電極を印刷した後、所定の枚数を積層・圧着
し、焼成することにより製造する。
When manufacturing a laminated type element, a binder, a solvent, etc. are added to the raw material powder or mixed and pulverized powder to form a slurry, a green sheet is formed, internal electrodes are printed on this green sheet, and then the predetermined Manufactured by laminating and crimping several sheets and firing them.

この時、本発明の誘電体材料は低温で焼結ができるため
、内部電極材料として例えばAg主体の安価な材料を用
いることができる。
At this time, since the dielectric material of the present invention can be sintered at a low temperature, an inexpensive material mainly composed of Ag, for example, can be used as the internal electrode material.

また、このように低温で焼成が可能であることから、回
路基板上等に印刷・焼成する厚膜誘電体ペーストの材料
としても有効である。
Furthermore, since it can be fired at such a low temperature, it is also effective as a material for thick film dielectric pastes printed and fired on circuit boards and the like.

この様な本発明磁器組成物は、高誘電率かっ、その温度
特性が良好である。また、CR値も大きく、特に高温で
も十分な値を有し、高温での信頼性に優れている。
Such a ceramic composition of the present invention has a high dielectric constant and good temperature characteristics. In addition, the CR value is large, particularly sufficient even at high temperatures, and has excellent reliability at high temperatures.

さらに誘電率バイアス電界依存性も優れており。Furthermore, the dielectric constant bias electric field dependence is also excellent.

2KV/isでもlO%以下程度の材料を得ることもで
きる。従って、高圧用の材料として有効である。
Even at 2KV/is, it is possible to obtain a material of about 10% or less. Therefore, it is effective as a material for high pressure.

また誘電損失が小さく、交流用、高周波用として有効で
ある。
Furthermore, it has low dielectric loss and is effective for AC and high frequency applications.

さらに前述のごとく誘電率の温度特性に優れているため
、電歪素子へ応用した場合でも変位量の湿度変化の小さ
い素子を得ることができる。
Furthermore, as described above, since the dielectric constant has excellent temperature characteristics, even when applied to an electrostrictive element, an element with small humidity change in displacement can be obtained.

さらに、焼成時のグレインサイズも1〜3−と均一化さ
れるため耐圧性にも優れている。
Furthermore, since the grain size during firing is made uniform to 1 to 3-3, it has excellent pressure resistance.

以上電気的特性について述べたが、機械的強度も十分に
優れたものである。
Although the electrical properties have been described above, the mechanical strength is also sufficiently excellent.

(実施例) 以下に本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

出発原料のうち、 BaTi0.を構成する成分である
BaC0,とTiO□をあらかじめBaTi0z の化
学式になるように秤量し、ボールミル等で混合し、10
00〜1350℃で仮焼し、さらにボールミルを用いて
粉砕した。
Among the starting materials, BaTi0. BaC0 and TiO□, which are the components of
The mixture was calcined at 00 to 1350°C and further ground using a ball mill.

この場合、ボールミルの粉砕条件を変えて、得られたB
aTi0.の粉末の粒径を制御した。なお、粒径はブレ
ーン法を用いて平均粒径を測定した。
In this case, by changing the grinding conditions of the ball mill, the obtained B
aTi0. The particle size of the powder was controlled. Note that the particle size was determined by measuring the average particle size using the Blaine method.

一方、BaTi0.以外のPb、 Ba、 Sr、 Z
n、 Tl、 Mgなどの酸化物もしくは炭酸化物等を
別にボールミル等で混合し、700〜900℃で仮焼し
、粉砕した。
On the other hand, BaTi0. Pb, Ba, Sr, Z other than
Oxides or carbonates such as n, Tl, and Mg were mixed separately in a ball mill or the like, calcined at 700 to 900°C, and pulverized.

次いで、これらの仮焼体を所定の割合になるように秤量
し、ポットを用いて混合した。乾燥の後。
Next, these calcined bodies were weighed to a predetermined ratio and mixed using a pot. After drying.

バインダーを加えて造粒し、プレスして直径17m厚さ
約2面の円板状素体を形成した。
A binder was added, granulated, and pressed to form a disk-shaped element body with a diameter of 17 m and a thickness of about 2 sides.

この素体を空気中1000−1100℃2時間の条件で
焼結し、両生面に銀電極を焼付け、各特性を測定した。
This element body was sintered in air at 1000-1100°C for 2 hours, silver electrodes were baked on the amphib side, and various properties were measured.

誘電損失、容量はI KHz、 I Vrms、 25
℃の条件でのデジタルLCRメーターによる測定値であ
り、この値から誘電率を算出した。また、絶縁抵抗は1
00Vの電圧を2分間印加した後、絶縁抵抗計を用いて
測定した値から算出した。なお、誘電率の温度特性は2
5℃の値を基準とし、−55℃〜+125℃の温度範囲
における変化幅の最大値で表わした。容量抵抗積(CR
値)は25℃および125℃での(比銹電率)×(絶縁
抵抗)×(真空の誘電率)から求めた。絶縁抵抗の測定
は、空気中の湿気の効果を除くため、シリコンオイル中
で行なった・ 一般式 %式%) で表わされる組成について行なった結果を第1表の実施
例1〜5,7〜12に示す。比較のため1粒径の小さな
[1aTiO,を用いた例を参考例1として第1表に示
す、さらに、比較のため1粒径の大きなりaTiO3を
用いた例を参考例2として第1表に示す。
Dielectric loss, capacitance is I KHz, I Vrms, 25
These are the values measured by a digital LCR meter under the conditions of ℃, and the dielectric constant was calculated from this value. Also, the insulation resistance is 1
It was calculated from the value measured using an insulation resistance meter after applying a voltage of 00V for 2 minutes. Note that the temperature characteristic of the dielectric constant is 2
Based on the value of 5°C, it was expressed as the maximum value of the change width in the temperature range of -55°C to +125°C. Capacitance resistance product (CR
The value) was determined from (specific electrical constant) x (insulation resistance) x (vacuum permittivity) at 25°C and 125°C. The insulation resistance was measured in silicone oil to eliminate the effect of moisture in the air. 12. For comparison, an example using [1aTiO, which has a small particle size] is shown in Table 1 as Reference Example 1. Furthermore, for comparison, an example using [1aTiO, which has a large particle size] is shown in Table 1 as Reference Example 2. Shown below.

また、純粋なりaTiO,に替えてキュリ一点を10〜
30℃低下させた(Ba、 、、Sr、 、、 )Ti
O2を用いた結果を第1表の実施例6に示す。
Also, replace pure aTiO with one cucumber for 10~
(Ba, , , Sr, , , )Ti lowered by 30°C
The results using O2 are shown in Example 6 in Table 1.

(以下余白) また、純粋なりaTiO3に替えてキュリ一点を10〜
30℃低下させたBa (TiL−eZra)Osを用
い、一般式%式%) ((乃、M幅/3)1イー(瓢/3−is )。1句へ
・−(Ti、槍。凰または (Pb(i−)D (4−a−b>Ba(t−X)a+
X5r(x−x+b)((ZrhtsNb* ts)(
1−x)tz−c−a>CMktsNb2iz)<x−
x>−c、Ti<x−x>d+xt1−eJXx*e)
Osで表わされる組成について行なった結果を第2表の
実施例13〜15および参考例5に示す。
(Left below) Also, instead of pure aTiO3, add one cucumber for 10~
Using Ba (TiL-eZra)Os lowered by 30°C, the general formula % formula %) ((乃, M width / 3) 1 E (gourd / 3-is ). To 1 phrase - (Ti, spear.凰 or (Pb(i-)D (4-a-b>Ba(t-X)a+
X5r(x-x+b)((ZrhtsNb*ts)(
1-x) tz-c-a>CMktsNb2iz)<x-
x>-c, Ti<x-x>d+xt1-eJXx*e)
The results obtained for the composition represented by Os are shown in Examples 13 to 15 and Reference Example 5 in Table 2.

(以下余白) 第1表からあきらかなように本発明の磁器組成物は高誘
電率(K=4000以上)かつ温度特性が良好(−55
℃〜+125℃で+22.−33%以内)である。
(Left below) As is clear from Table 1, the ceramic composition of the present invention has a high dielectric constant (K=4000 or more) and good temperature characteristics (-55
+22.℃~+125℃. -33% or less).

また、CR値も50000F(25℃)以上と大きく、
特に125℃でも1000ΩF以上あり、高温での信頼
性に優れている。
In addition, the CR value is large at over 50,000F (25℃),
In particular, it has a resistance of 1000ΩF or more even at 125°C, and has excellent reliability at high temperatures.

参考例1は、粒径の小さなりaTiO,を用いた例であ
るが、誘電率の値が小さく、また温度変化幅も大きくな
ってしまうことを示している。
Reference Example 1 is an example using aTiO having a small particle size, but it shows that the dielectric constant value is small and the temperature change width is also large.

また、参考例2は粒径の大きなりaTiO3を用いた例
であるが、CR値がいちじるしく低下してしまう。
Further, although Reference Example 2 is an example using aTiO3 having a large particle size, the CR value is significantly lowered.

また、実施例6はBaTi0.の替わりにキュリ一点を
100℃付近に移動させたBa、 、 、 Sr、 、
 、 Tie、を用いたものであるが、この場合にも優
れた特性が得られた。 BaTi0.をSrで置換する
以外にもCa、 Ce、 Zr。
Further, in Example 6, BaTi0. Instead of , Ba, , , Sr, , where one point of Curi was moved to around 100℃
, Tie, and excellent characteristics were obtained in this case as well. BaTi0. In addition to replacing Sr with Ca, Ce, and Zr.

Snなどにより置換を行ないキュリ一点を10〜30℃
移動させた成分を用いても同様の結果が得られた。
Substitute with Sn etc. and heat one cucumber at 10-30℃
Similar results were obtained using the transferred components.

また第1表および第2表からあきらかなように実施例7
〜15は高誘電率(K = 2300以上)かつ温度特
性が良好(−55℃〜+125℃で±10%以内)であ
る、また、とくに、 BaTi0.に代えてBa(Ti
、、5sZro 、。)0.を用いた実施例13〜15
においては一55℃〜+125℃の態度範囲で±7.5
%以内をみたす良好な温度特性が得られた。また、CR
値も8000ΩF(25℃)以上と大きく、特に125
℃でも2500ΩF以上あり、高温での信頼性にすぐれ
ている。
Furthermore, as is clear from Tables 1 and 2, Example 7
-15 has a high dielectric constant (K = 2300 or more) and good temperature characteristics (within ±10% at -55°C to +125°C), and in particular, BaTi0. Ba(Ti
,,5sZro,. )0. Examples 13 to 15 using
±7.5 in the temperature range from -55℃ to +125℃
% or less was obtained. Also, CR
The value is also large, over 8000ΩF (25℃), especially 125
It has a resistance of more than 2500 ΩF even at ℃, and has excellent reliability at high temperatures.

参考例5はBaTiO3に代えてT1の一部をZrで1
2moQ%置換したBa(Tie、*、zro、za)
Osを用いたものであるが高温側の誘電率の変化幅が±
10%をこえてしまっている。したがって、Zr置換量
は本発明の範囲が好ましい。また、[3aTiOsをZ
rで置換する以外に、Tiの一部をSnで置換したり、
またBaの一部をSr、 Ca、 Coで置換して、キ
ュリ一点を10〜30℃移動させた成分を用いても同様
の結果が得られた。
In reference example 5, a part of T1 is replaced with BaTiO3 by Zr.
2moQ% substituted Ba (Tie, *, zro, za)
Although it uses Os, the range of change in permittivity on the high temperature side is ±
It has exceeded 10%. Therefore, the amount of Zr substitution is preferably within the range of the present invention. In addition, [3aTiOs is Z
In addition to replacing with r, some of Ti may be replaced with Sn,
Similar results were also obtained using components in which a part of Ba was replaced with Sr, Ca, or Co, and the Curie point was shifted by 10 to 30°C.

次いで、実施例3にさらに0.25moQ%のMnOお
よびCoOを添加含有した組成を用いて積層セラミック
コンデンサを作成した実施例を説明する。
Next, an example will be described in which a multilayer ceramic capacitor was fabricated using a composition in which 0.25 moQ% of MnO and CoO were added to Example 3.

まず、この様な組成を有するBaTi0.およびその他
の仮焼粉を所定の割合で秤量し、よく混合して有機溶剤
を加えてスラリー化した後、ドクターブレード型キャス
ターを用いて30μsのグリーンシートを作成した。こ
のグリーンシート上に70Ag/30Pdの電極ペース
トを所定のパターンで印刷し、このような電極パターン
を有するシートを20層積層圧着した。その後、所定の
形状に切断し、脱脂を行ない、1080℃2Hの条件で
焼成を行なった。焼結後、外部電極としてAgペースト
を焼付け、積層セラミックコンデンサを製造した。その
電気的特性を第3表に示す。
First, BaTi0. and other calcined powders were weighed at a predetermined ratio, mixed well, and an organic solvent was added to form a slurry, after which a 30 μs green sheet was created using a doctor blade type caster. A 70Ag/30Pd electrode paste was printed on this green sheet in a predetermined pattern, and 20 sheets having such an electrode pattern were laminated and pressure-bonded. Thereafter, it was cut into a predetermined shape, degreased, and fired at 1080° C. for 2 hours. After sintering, Ag paste was baked as an external electrode to produce a multilayer ceramic capacitor. Its electrical characteristics are shown in Table 3.

第3表 得られた積層セラミックコンデンサの誘電率は約570
0であり、また、第3表に示すごとく、各特性が十分に
優れていることがわかる。特に温度時−性は一55℃〜
+125℃で±22%以内であり、 EIAのX7S特
性を満足するものである。
Table 3 The dielectric constant of the obtained multilayer ceramic capacitor is approximately 570
0, and as shown in Table 3, it can be seen that each property is sufficiently excellent. Especially when the temperature is -55℃~
It is within ±22% at +125°C and satisfies the EIA X7S characteristics.

次いで、 実施例15にさらに0.1moQ%のMnO
およびCooを添加含有した組成を用いて積層セラミッ
クコンデンサを作成した実施例を説明する。
Next, 0.1 moQ% MnO was added to Example 15.
An example will be described in which a multilayer ceramic capacitor was manufactured using a composition containing additives and Coo.

まず、この様な組成を有するBaTia 、5sZro
 、ashyおよびその他の仮焼粉を所定の割合で秤量
し、よく混合して有機溶剤を加えてスラリー化した後。
First, BaTia, 5sZro, which has such a composition
, ashy and other calcined powders are weighed in a predetermined ratio, mixed well, and an organic solvent is added to form a slurry.

ドクターブレード型キャスターを用いて30−のグリー
ンシートを作成した。このグリーンシート上に70Pd
/30Agの電極ペーストを所定のパターンで印刷し、
このような電極パターンを有するシートを20層積層圧
着した。その後、所定の形状に切断し、脱脂を行ない、
1220℃2Hの条件で焼成を行なった。焼結後、外部
電極としてA、ペーストを焼付け、積層セラミックコン
デンサを製造した。その電気的特性を第4表に示す。
A 30-green sheet was prepared using a doctor blade type caster. 70Pd on this green sheet
/30Ag electrode paste is printed in a predetermined pattern,
Twenty layers of sheets having such electrode patterns were laminated and pressure-bonded. After that, cut it into a predetermined shape, degrease it,
Firing was performed at 1220° C. for 2 hours. After sintering, paste A was baked as an external electrode to produce a multilayer ceramic capacitor. Its electrical characteristics are shown in Table 4.

第4表 得られた積層セラミックコンデンサの誘電率は約270
0であり、また、第2表に示すごとく、各特性が十分に
優れていることがわかる。特に温度特性は一55℃〜+
125℃で±7.5%以内であり、EIAのX7F特性
を満足するものである。
Table 4 The dielectric constant of the obtained multilayer ceramic capacitor is approximately 270
0, and as shown in Table 2, it can be seen that each property is sufficiently excellent. In particular, the temperature characteristics are -55℃~+
It is within ±7.5% at 125° C. and satisfies the EIA X7F characteristics.

このように、本発明による高誘電率磁器組成物の製造方
法は誘電率が大きく、かつ広範囲な温度領域にわたって
誘電率の変化が小さいなど各種特性に優れた高誘電率磁
器組成物を提供することができるので、特に積層セラミ
ックコンデンサの製法として有効である。また1本発明
の製造方法においては亜鉛ニオブ酸鉛およびチタン酸バ
リウムを主体としたものを用いたが、他の成分でこれら
に替わるものを用いても本発明と同様の効果が得られる
場合がある。
As described above, the method for producing a high-permittivity ceramic composition according to the present invention provides a high-permittivity ceramic composition that has a large dielectric constant and has excellent various properties such as a small change in dielectric constant over a wide temperature range. This method is particularly effective as a manufacturing method for multilayer ceramic capacitors. In addition, in the manufacturing method of the present invention, zinc lead niobate and barium titanate were used as main ingredients, but the same effects as the present invention may be obtained by using other ingredients in place of these. be.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の磁器組成物および製造方法
によれば、高誘電率で絶縁抵抗が高くかつ温度特性に優
れた高誘電率磁器組成物を得ることができる。特に広い
温度範囲にわたっていちじるしく温度特性が改善された
磁器を得ることができるため、積層セラミックコンデン
サ、積層型セラミック変位素子等の積層タイプのセラミ
ック素子への応用に適している。
As explained above, according to the ceramic composition and manufacturing method of the present invention, it is possible to obtain a high dielectric constant ceramic composition that has a high dielectric constant, high insulation resistance, and excellent temperature characteristics. In particular, it is possible to obtain ceramics with significantly improved temperature characteristics over a wide temperature range, so it is suitable for application to multilayer ceramic elements such as multilayer ceramic capacitors and multilayer ceramic displacement elements.

代理人 弁理士 則 近 憲 佑 同  松山光之Agent: Patent Attorney Noriyuki Chika Same as Mitsuyuki Matsuyama

Claims (1)

【特許請求の範囲】 (1)一般式 (1−x)(Pb_1_−_a_−_bBa_aSr_
b){(Zn_1_/_3Nb_2_/_3)_1_−
_c_−_d(Mg_1_/_3Nb_2_/_3)_
cTi_d}O_3・xBaTiO_3で表わしたとき
、 0≦a≦0.35 0≦b≦0.35 0.01≦a+b≦0.35 0<c≦0.9 0<d≦0.5 0<c+d<1.0 0.3≦x≦0.65 を満たすことを特徴とする高誘電率磁器組成物。 (2)0.3≦x≦0.5であることを特徴とする特許
請求の範囲第1項記載の高誘電率磁器組成物。 (3)0.5<x≦0.65であることを特徴とする特
許請求の範囲第1項記載の高誘電率磁器組成物。 (4)0<c+d≦0.9であることを特徴とする特許
請求の範囲第1項記載の高誘電率磁器組成物。 (5)BaTiO_3のTiの一部をZrで置換したこ
とを特徴とする特許請求の範囲第1項記載の高誘電率磁
器組成物。 (6)一般式 (1−x)(Pb_1_−_a_−_bBa_aSr_
b){(Zn_1_/_3Nb_2_/_3)_1_−
_c_−_d(Mg_1_/_3Nb_2_/_3)_
cTi_d}O_3・xBa(Ti_1_−_eZr_
e)O_3で表わしたとき、 0≦a≦0.35 0≦b≦0.35 0.01≦a+b≦0.35 0<c≦0.9 0<d≦0.5 0<e≦0.06 0.3≦x≦0.65 0<c+d<1.0 を満たすことを特徴とする特許請求の範囲第5項記載の
高誘電率磁器組成物。 (7)0.3≦x≦0.5であることを特徴とする特許
請求の範囲第6項記載の高誘電率磁器組成物。 (8)0.5<x≦0.65であることを特徴とする特
許請求の範囲第6項記載の高誘電率磁器組成物。 (9)0<c+d≦0.9であることを特徴とする特許
請求の範囲第6項記載の高誘電率磁器組成物。 (10)一般式 (1−x)(Pb_1_−_a_−_bBa_aSr_
b){(Zn_1_/_3Nb_2_/_3)_1_−
_c_−_d(Mg_1_/_3Nb_2_/_3)_
cTi_d}O_3・xBaTiO_3で表わしたとき
、 0≦a≦0.35 0≦b≦0.35 0.01≦a+b≦0.35 0<c≦0.9 0<d≦0.5 0<c+d<1.0 0.3≦x≦0.65 を満たす高誘電率磁器組成物を製造する際に、原料とし
て少なくともチタン酸バリウム粉を用いることを特徴と
する高誘電率磁器組成物の製造方法。 (11)チタン酸バリウム粉の50wt%以上が粒径0
.7〜3μmであることを特徴とする特許請求の範囲第
10項記載の高誘電率磁器組成物の製造方法。 (12)0.3≦x≦0.5であることを特徴とする特
許請求の範囲第10項記載の高誘電率磁器組成物の製造
方法。 (13)0.5<x≦0.65であることを特徴とする
特許請求の範囲第10項記載の高誘電率磁器組成物の製
造方法。 (14)0<c+d≦0.9であることを特徴とする特
許請求の範囲第10項記載の高誘電率磁器組成物の製造
方法。 (15)BaTiO_3のTiの一部をZrで置換した
ことを特徴とする特許請求の範囲第10項記載の高誘電
率磁器組成物の製造方法。 (16)一般式 (1−x)(Pb_1_−_a_−_bBa_aSr_
b){(Zn_1_/_3Nb_2_/_3)_1_−
_c_−_d(Mg_1_/_3Nb_2_/_3)_
cTi_d}O_3・xBa(Ti_1_−_eZr_
e)O_3で表わしたとき、 0≦a≦0.35 0≦b≦0.35 0.01≦a+b≦0.35 0<c≦0.9 0<d≦0.5 0<e≦0.06 0.3≦x≦0.65 を満たすことを特徴とする特許請求の範囲第14項記載
の高誘電率磁器組成物の製造方法。 (17)0.3≦x≦0.5であることを特徴とする特
許請求の範囲第15項記載の高誘電率磁器組成物の製造
方法。 (18)0.5<x≦0.65であることを特徴とする
特許請求の範囲第15項記載の高誘電率磁器組成物の製
造方法。 (19)0<c+d≦0.9であることを特徴とする特
許請求の範囲第15項記載の高誘電率磁器組成物の製造
方法。
[Claims] (1) General formula (1-x) (Pb_1_-_a_-_bBa_aSr_
b) {(Zn_1_/_3Nb_2_/_3)_1_-
_c_-_d(Mg_1_/_3Nb_2_/_3)_
When expressed as cTi_d}O_3・xBaTiO_3, 0≦a≦0.35 0≦b≦0.35 0.01≦a+b≦0.35 0<c≦0.9 0<d≦0.5 0<c+d A high dielectric constant ceramic composition that satisfies <1.0 0.3≦x≦0.65. (2) The high dielectric constant ceramic composition according to claim 1, characterized in that 0.3≦x≦0.5. (3) The high dielectric constant ceramic composition according to claim 1, characterized in that 0.5<x≦0.65. (4) The high dielectric constant ceramic composition according to claim 1, characterized in that 0<c+d≦0.9. (5) The high dielectric constant ceramic composition according to claim 1, wherein a part of Ti in BaTiO_3 is replaced with Zr. (6) General formula (1-x) (Pb_1_-_a_-_bBa_aSr_
b) {(Zn_1_/_3Nb_2_/_3)_1_-
_c_-_d(Mg_1_/_3Nb_2_/_3)_
cTi_d}O_3・xBa(Ti_1_−_eZr_
e) When expressed as O_3, 0≦a≦0.35 0≦b≦0.35 0.01≦a+b≦0.35 0<c≦0.9 0<d≦0.5 0<e≦0 .06 0.3≦x≦0.65 0<c+d<1.0 The high dielectric constant ceramic composition according to claim 5. (7) The high dielectric constant ceramic composition according to claim 6, characterized in that 0.3≦x≦0.5. (8) The high dielectric constant ceramic composition according to claim 6, characterized in that 0.5<x≦0.65. (9) The high dielectric constant ceramic composition according to claim 6, characterized in that 0<c+d≦0.9. (10) General formula (1-x) (Pb_1_-_a_-_bBa_aSr_
b) {(Zn_1_/_3Nb_2_/_3)_1_-
_c_-_d(Mg_1_/_3Nb_2_/_3)_
When expressed as cTi_d}O_3・xBaTiO_3, 0≦a≦0.35 0≦b≦0.35 0.01≦a+b≦0.35 0<c≦0.9 0<d≦0.5 0<c+d <1.0 0.3≦x≦0.65 A method for producing a high permittivity ceramic composition, characterized in that at least barium titanate powder is used as a raw material when producing a high permittivity ceramic composition satisfying 0.3≦x≦0.65. . (11) 50wt% or more of barium titanate powder has a particle size of 0
.. 11. The method for producing a high dielectric constant ceramic composition according to claim 10, wherein the diameter is 7 to 3 μm. (12) The method for producing a high dielectric constant ceramic composition according to claim 10, characterized in that 0.3≦x≦0.5. (13) The method for producing a high dielectric constant ceramic composition according to claim 10, characterized in that 0.5<x≦0.65. (14) The method for producing a high dielectric constant ceramic composition according to claim 10, characterized in that 0<c+d≦0.9. (15) A method for producing a high dielectric constant ceramic composition according to claim 10, characterized in that a part of Ti in BaTiO_3 is replaced with Zr. (16) General formula (1-x) (Pb_1_-_a_-_bBa_aSr_
b) {(Zn_1_/_3Nb_2_/_3)_1_-
_c_-_d(Mg_1_/_3Nb_2_/_3)_
cTi_d}O_3・xBa(Ti_1_−_eZr_
e) When expressed as O_3, 0≦a≦0.35 0≦b≦0.35 0.01≦a+b≦0.35 0<c≦0.9 0<d≦0.5 0<e≦0 .06 0.3≦x≦0.65 The method for producing a high dielectric constant ceramic composition according to claim 14, characterized in that 0.3≦x≦0.65 is satisfied. (17) The method for producing a high dielectric constant ceramic composition according to claim 15, characterized in that 0.3≦x≦0.5. (18) The method for producing a high dielectric constant ceramic composition according to claim 15, characterized in that 0.5<x≦0.65. (19) The method for producing a high dielectric constant ceramic composition according to claim 15, characterized in that 0<c+d≦0.9.
JP62167034A 1986-08-28 1987-07-06 High permittivity ceramic composition and manufacture Granted JPS63156062A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019870009324A KR890002696B1 (en) 1986-08-28 1987-08-25 High dielectric constant ceramic material and method of manufacturing the same
US07/090,605 US4767732A (en) 1986-08-28 1987-08-28 High dielectric constant ceramic material and method of manufacturing the same
DE8787112546T DE3782470T2 (en) 1986-08-28 1987-08-28 CERAMIC MATERIAL WITH A HIGH DIELECTRIC CONSTANT, AND METHOD FOR THE PRODUCTION THEREOF.
EP87112546A EP0257653B1 (en) 1986-08-28 1987-08-28 High dielectric constant ceramic material and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-199963 1986-08-28
JP19996386 1986-08-28

Publications (2)

Publication Number Publication Date
JPS63156062A true JPS63156062A (en) 1988-06-29
JPH054354B2 JPH054354B2 (en) 1993-01-19

Family

ID=16416515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62167034A Granted JPS63156062A (en) 1986-08-28 1987-07-06 High permittivity ceramic composition and manufacture

Country Status (2)

Country Link
JP (1) JPS63156062A (en)
KR (1) KR890002696B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183786A (en) * 1990-11-20 1993-02-02 Matsushita Electric Industrial Co., Ltd. Dielectric material, and a condenser made from the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496135B1 (en) * 2002-09-18 2005-06-16 (주) 알엔투테크놀로지 Low temperature cofired ceramic composition, and its use

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54518A (en) * 1977-06-02 1979-01-05 Nippon Signal Co Ltd:The Comfirming method of operation of dot head
JPS56152102A (en) * 1980-04-28 1981-11-25 Kyoritsu Ceramic Materials Raw material composition for producing high dielectric porcelain
JPS58188004A (en) * 1982-04-26 1983-11-02 松下電器産業株式会社 High dielectric constant porcelain composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54518A (en) * 1977-06-02 1979-01-05 Nippon Signal Co Ltd:The Comfirming method of operation of dot head
JPS56152102A (en) * 1980-04-28 1981-11-25 Kyoritsu Ceramic Materials Raw material composition for producing high dielectric porcelain
JPS58188004A (en) * 1982-04-26 1983-11-02 松下電器産業株式会社 High dielectric constant porcelain composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183786A (en) * 1990-11-20 1993-02-02 Matsushita Electric Industrial Co., Ltd. Dielectric material, and a condenser made from the same

Also Published As

Publication number Publication date
KR880002773A (en) 1988-05-11
KR890002696B1 (en) 1989-07-24
JPH054354B2 (en) 1993-01-19

Similar Documents

Publication Publication Date Title
JP3046436B2 (en) Ceramic capacitors
US4767732A (en) High dielectric constant ceramic material and method of manufacturing the same
JP3039397B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
EP1767507B1 (en) Dielectric ceramic composition and laminated ceramic capacitor
JP3346293B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
KR20030056175A (en) Nonreducible dielectric ceramic composition
JPH11100263A (en) Dielectric ceramic composition
JP2566995B2 (en) High dielectric constant porcelain composition and ceramic capacitor
JPH0785460B2 (en) Multilayer porcelain capacitor
JPH0825795B2 (en) Non-reducing dielectric ceramic composition
JP3634930B2 (en) Dielectric porcelain composition
JP2915217B2 (en) Dielectric porcelain and porcelain capacitor
JPH04115409A (en) Non-reducing dielectric ceramic composite
JPS63156062A (en) High permittivity ceramic composition and manufacture
JP2779740B2 (en) Dielectric porcelain and porcelain capacitor
KR102064105B1 (en) Dielectric ceramic composition and electronic device using the same
JP2821768B2 (en) Multilayer ceramic capacitors
JPS61251563A (en) High permittivity ceramic composition
JP2694975B2 (en) Method for producing high dielectric constant porcelain composition
JPH0544763B2 (en)
JPS6226705A (en) High permeability ceramic composition
JPH0360787B2 (en)
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor
JPH0715855B2 (en) Ceramic capacitors
JPH0478577B2 (en)