JPS61248304A - Non-reducing dielectric ceramic composition - Google Patents

Non-reducing dielectric ceramic composition

Info

Publication number
JPS61248304A
JPS61248304A JP60090664A JP9066485A JPS61248304A JP S61248304 A JPS61248304 A JP S61248304A JP 60090664 A JP60090664 A JP 60090664A JP 9066485 A JP9066485 A JP 9066485A JP S61248304 A JPS61248304 A JP S61248304A
Authority
JP
Japan
Prior art keywords
dielectric
ceramic composition
dielectric constant
composition
dielectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60090664A
Other languages
Japanese (ja)
Inventor
信儀 藤川
新留 隆司
横江 宣雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60090664A priority Critical patent/JPS61248304A/en
Publication of JPS61248304A publication Critical patent/JPS61248304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁器コンデンサ、特にニッケルから成る内部′
電極を有する積層型磁器コンデンサの非還元性誘電体磁
器組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a ceramic capacitor, particularly an internal capacitor made of nickel.
The present invention relates to a non-reducible dielectric ceramic composition for a laminated ceramic capacitor having electrodes.

〔従来の技術〕[Conventional technology]

従来、一般に積層型磁器コンデンサは表面に内部電極が
塗付されたシート状のBaTiO3を主成分とする誘電
体を複数枚積層するとともに各シートの内部電極を交互
に並列に一対の外部接続用電極に接続し、これを焼結一
体化することにより形成されている。このような積層型
磁器コンデンサは近年のエレクトロニクスの進展に伴な
い電子部品の小型化が急速に進行し、広範な電子回路に
使用されるようになってきている。
Conventionally, a multilayer ceramic capacitor generally consists of laminating a plurality of sheets of dielectric material mainly composed of BaTiO3 with internal electrodes coated on the surface, and the internal electrodes of each sheet are alternately connected in parallel with a pair of external connection electrodes. It is formed by connecting the two to one another and sintering them into one piece. Such laminated ceramic capacitors have come to be used in a wide range of electronic circuits as electronic components have rapidly become smaller with the advancement of electronics in recent years.

しかしながら、この従来のBaTiOx を主成分とす
る誘電体材料は1250℃〜1350℃の高温で焼成す
る必要があり、この材料を積層型磁器コンダンサの誘電
体として使用した場合、内部電極は前記誘電体の焼成温
度にて溶融することなく、かつ酸化することがない高価
な貴金属であるバッジラム(融点1555℃)iたはそ
の合金が使用され、特に静電容量が大きいものでは内部
電属数が大となってコスト高とする欠点を有していた。
However, this conventional dielectric material mainly composed of BaTiOx needs to be fired at a high temperature of 1250°C to 1350°C, and when this material is used as the dielectric of a laminated ceramic capacitor, the internal electrodes are Badgelum (melting point: 1555°C), an expensive precious metal that does not melt or oxidize at firing temperatures of Therefore, it had the disadvantage of high cost.

したがつて従来の積層型磁器コンデンサは容量効率が高
く、その他誘電的特性に優れかつ高信頼性にあるにも拘
わらず価格面がその進展に大きな障害となっていた。
Therefore, although conventional multilayer ceramic capacitors have high capacitance efficiency, other excellent dielectric properties, and high reliability, their price has been a major obstacle to their progress.

そこで、上記従来の積層型磁器コンデンサの高価となる
欠点を解消するために内部電極として安価な卑金属、例
えばニッケpを使用することが試みられている。しかし
ながら、ニッケルなどの卑金属を内部電極として使用す
ると、チタン酸バリウム(BaTiOs )等から成る
誘電体と卑金属内部電極とを同時焼成する際、前記卑金
属が酸化することなく金属膜として焼結する条件はNi
/NiOの平衡酸素分圧が1300℃において約3 X
 10  atmであるから、それ以下の酸素分圧でな
ければならず、この場合チタン酸バリウムまたはその固
溶体からなる誘電体は、一般に前記の酸素分圧下では還
元されてしまって絶縁性を失ない、その結集積層型磁器
コンデンサとしての実用的な誘電体特性が得られなく々
るという欠点を有していた。
Therefore, in order to eliminate the disadvantage of the high cost of the conventional multilayer ceramic capacitors, attempts have been made to use inexpensive base metals, such as nickel-P, as internal electrodes. However, when a base metal such as nickel is used as an internal electrode, when co-firing a dielectric material such as barium titanate (BaTiOs) and a base metal internal electrode, the conditions for sintering the base metal as a metal film without oxidation are insufficient. Ni
The equilibrium oxygen partial pressure of /NiO is approximately 3X at 1300℃
10 atm, the oxygen partial pressure must be lower than that, and in this case, a dielectric material made of barium titanate or a solid solution thereof will generally be reduced under the above oxygen partial pressure and will not lose its insulating properties. The drawback is that it is difficult to obtain practical dielectric properties for a multilayer ceramic capacitor.

また一方、ニッケルなどの内部YjL極を有する積層型
磁器コンデンサとして使用できる非還元性誘電体磁器組
成物として、チタン酸バリウム固溶体(Ba、 Ca、
 Sr ) TiO2において塩基性酸化物である( 
Ba、 Oa、 Sr )Oを、酸性酸化物であるT1
0x )C対して化学量論比より過剰と己、ニッケルな
どの卑金属を内部電極として使用できる非還元性誘電体
磁器組成物が特公昭57−42588号公報等番こおい
て提案されている。
On the other hand, barium titanate solid solutions (Ba, Ca,
Sr) is a basic oxide in TiO2 (
Ba, Oa, Sr)O is converted into T1, which is an acidic oxide.
A non-reducible dielectric ceramic composition in which a base metal such as nickel can be used as an internal electrode in excess of the stoichiometric ratio with respect to 0x)C has been proposed in Japanese Patent Publication No. 57-42588 and other publications.

これは一般に、ABDj型結晶においては、酸素八面体
(プログスカイト)構造の中心に位置するBイオンに対
して、Bイオンよシ大きい酸素に対して1z配位をとる
Aイオンが化学量論比より過剰である場合、結晶格子が
酸素原子を強く引きつけ、還元され難いことが知られて
おり、前記公報に記載された発明は、この化学量論比の
ずれに立脚し、誘電体の非還元性を向上させたものであ
る。
This is because, in general, in an ABDj-type crystal, the A ion, which has a 1z coordination with respect to oxygen, which is larger than the B ion, has a stoichiometric relationship with respect to the B ion located at the center of the oxygen octahedral (progusskite) structure. It is known that when the ratio is in excess, the crystal lattice strongly attracts oxygen atoms and it is difficult to reduce them.The invention described in the above publication is based on this stoichiometric ratio deviation, It has improved reducibility.

しかしながら、前記公報に記載された誘電体磁器組成物
は誘電率の温度変化率が大きく、誘電体特性が低下する
という欠点を有していた。
However, the dielectric ceramic composition described in the above-mentioned publication had the disadvantage that the rate of change in dielectric constant with temperature was large and the dielectric properties deteriorated.

また誘電率の温度変化率が小さい高誘電率系誘電体磁器
組成物としてBaTiOs にスズ酸ビスマス、ジルコ
ン酸ビスマスなどのビスマス系化合物を添加したものが
ある。これはビスマス系化合物の強いデデレッサー効果
により BaTi0zのキュリ一点近傍での誘電率の極
大値を低下させ、誘電率の温度変化率を小さくさせたも
のである。しかしながらニッケρなどの卑金属を内部電
極としBaT10 sにビスマス系化合物を添加した誘
電体を前記NL’NiOの平衡酸素分圧以下で同時焼成
する場合、ビスマス系化合物は還元されてしまって絶縁
性を失ない、その結果、満足な誘電体特性が得られなく
なるという欠点・を有していた。
Further, as a high dielectric constant dielectric ceramic composition having a small rate of change in dielectric constant with temperature, there is a composition in which a bismuth compound such as bismuth stannate or bismuth zirconate is added to BaTiOs. This is because the maximum value of the dielectric constant near the Curie point of BaTi0z is lowered due to the strong de-deressor effect of the bismuth-based compound, and the temperature change rate of the dielectric constant is reduced. However, when a dielectric material made of BaT10s with a base metal such as nickel rho as an internal electrode and a bismuth compound added thereto is co-fired at a temperature below the equilibrium oxygen partial pressure of NL'NiO, the bismuth compound is reduced and the insulating properties are lost. However, as a result, satisfactory dielectric properties cannot be obtained.

更に、前記Ni/NiOの平衡酸素分圧付近で焼成して
も誘電体自身は還元されず誘電率の温度変化率が小さい
非還元性誘電率系誘電体磁器組成物としてBaTiOs
 −MnO−MgO系組成物が特開昭57−71866
号公報において提案されている。
Furthermore, the dielectric material itself is not reduced even when fired near the equilibrium oxygen partial pressure of Ni/NiO, and BaTiOs is used as a non-reducible dielectric ceramic composition having a small temperature change rate of dielectric constant.
-MnO-MgO based composition disclosed in JP-A-57-71866
It is proposed in the publication No.

これはMnO及びMgOがBaTiOsの還元を抑制す
る作用をなし、前記平衡酸素分圧付近で焼成しても誘電
体は還元されず、充分な絶縁性を有し、更にMgOは前
記ビスマス系化合物と同様のデデレッサー効果を有して
いることから誘電率の温度変化率を小さくしたものであ
る。しかしながら、前記公報に記載された誘電体磁器組
成物は誘電率それ自体が低く、MgOm加量を増してF
、 1. A、規格(Electroni、c工ndu
stries ASSOOl、atlOn 5tand
ard)の誘電率の温度変化率(但し、−55°C〜+
125°Cの範囲で+25℃を基準とする)を±15%
以内にすると誘電率が2200以下と更に低くなり、実
用的な誘電体特性が得られなくなるという欠点を有して
いた。
This is because MnO and MgO act to suppress the reduction of BaTiOs, and the dielectric is not reduced even when fired near the equilibrium oxygen partial pressure, and has sufficient insulating properties. Since it has a similar de-deressor effect, the rate of change in dielectric constant with temperature is reduced. However, the dielectric ceramic composition described in the above-mentioned publication has a low dielectric constant, and when the amount of MgOm is increased, F
, 1. A. Standards (Electroni, c engineering
stries ASSOOl, atlOn 5tand
ard) temperature change rate of dielectric constant (however, -55°C to +
±15% of +25°C in the range of 125°C
If it is less than 2,200, the dielectric constant becomes even lower to 2200 or less, which has the disadvantage that practical dielectric properties cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明は前記欠点に鑑み案出されたもので、その目的は
BaTiOs 、 Nbz○5およびMnOノ組成物に
オイテ、1250℃〜1350℃における酸素分圧が3
XIOatm〜3 X 10  atmの雰囲気で焼成
するとき還元することがなく、また内部電極として使用
するニッケルなどの卑金属粉末粒子も酸化することがな
く金属膜として焼結し、高い比誘電率と優れた絶縁性を
有し、かつ誘電率の温度変化率が広い温度範囲にわたっ
て小さく、誘電正接が小さい極めて経済性の高い高誘電
率系の非還元性誘電体磁器組成物を提供することにある
The present invention was devised in view of the above-mentioned drawbacks, and its purpose is to provide a composition of BaTiOs, Nbz○5 and MnO with an oxygen partial pressure of 3 at 1250°C to 1350°C.
When fired in an atmosphere of It is an object of the present invention to provide a highly economical high-permittivity non-reducible dielectric ceramic composition that has insulating properties, has a small temperature change rate of dielectric constant over a wide temperature range, and has a small dielectric loss tangent.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の非還元性誘電体磁器組成物は組成式が(BaT
i−03)X −(Nb*05)Y @ (Mn○)Z
で示される三成分系磁器組成物で、第1図において下記
A、B、C,Dの各点で囲まれた範囲内の組成から成る
ことを特徴とするものである。ただし、上記組成式中、
X、Y、Zはモlし分率を表わし、X + Y + Z
 = 100を満足する。
The non-reducible dielectric ceramic composition of the present invention has a composition formula (BaT
i-03)X -(Nb*05)Y @ (Mn○)Z
This is a three-component porcelain composition shown in Figure 1, which is characterized by having a composition within the range surrounded by the following points A, B, C, and D. However, in the above composition formula,
X, Y, Z represent the mole fraction, X + Y + Z
= 100 is satisfied.

YZ A   98.75  0.25   1.0B   
89.75  0.25  10.0C89,001,
0010,O D   95.00  1.00   4.0本発明は
前記ビスマス系化き物と同様のデデレッサー効果を示す
五酸化ニオブ(NbzOi)をBaTi、Osに添加す
ることによりBaTj−Osのキュリ一点近傍での誘電
率の極大値を低くし、誘電率の温度変化atmの低い酸
素分圧下で焼成する際に生ずる酸素欠陥とによって形成
されるドナー準位電子を、Mn○を添加することによっ
て形成されるアクセプタ準位で再結合せしめることによ
り、誘電体磁器の半導体化を抑制し、高い絶縁性を保持
させたものである。
YZ A 98.75 0.25 1.0B
89.75 0.25 10.0C89,001,
0010, O D 95.00 1.00 4.0 The present invention improves the curve of BaTj-Os by adding niobium pentoxide (NbzOi), which exhibits the same de-deressor effect as the bismuth-based compounds, to BaTi and Os. By adding Mn○, the maximum value of the dielectric constant in the vicinity is lowered, and the donor level electrons formed by the oxygen defects generated when firing under the low oxygen partial pressure of the temperature change ATM of the dielectric constant are formed by adding Mn○. By recombining at the acceptor level, the dielectric ceramic is prevented from becoming a semiconductor and maintains high insulation properties.

〔実施例〕〔Example〕

次に本発明を実施例に基づき説明する。出発原料として
BaCO5、Ti、Otを1150℃にて固相反応させ
BaTiOsを合成するとともにIll粉砕した。次に
前記合成微粉末BaT101とNbgOsおよびMnC
0zをそれぞれ第1表の割合になる様に秤量し、分散剤
および分散媒とともにボールミルにて混合して原料スフ
リーを調製した。そして次にこの原料スフリーに可塑剤
とともに有機バインダーを加え、充分攪拌、真空脱泡の
のち、ドクターブレード法によりフィルム状に成形した
。次いで前記フィルムを20枚積み重ね、ホットプレス
により熱圧着し、得られた板状試料(厚さ0.5 mt
ll )を縦約IQ*m、横約IQ mmに切断した。
Next, the present invention will be explained based on examples. As starting materials, BaCO5, Ti, and Ot were subjected to a solid phase reaction at 1150°C to synthesize BaTiOs, which was then pulverized. Next, the synthetic fine powder BaT101, NbgOs and MnC
0z was weighed so as to have the proportions shown in Table 1, and mixed together with a dispersant and a dispersion medium in a ball mill to prepare a raw material souffle. Next, an organic binder was added together with a plasticizer to this raw material Softfree, and after thorough stirring and vacuum defoaming, it was formed into a film using a doctor blade method. Next, 20 sheets of the above films were stacked and bonded together using a hot press to form a plate-shaped sample (thickness: 0.5 m
ll) was cut into a length of about IQ*m and a width of about IQ mm.

この試料を酸素分圧3×10  〜3X10atmに制
御し、キャリアガスをN2ガスとして1250’C〜1
350℃にて2時間焼成した。最後に得られた焼成体の
上下両面にインジウム−ガリウム(In−Ga)合金を
塗付した。
The oxygen partial pressure of this sample was controlled at 3 x 10 - 3 x 10 atm, and the carrier gas was N2 gas, and the temperature was 1250'C - 1.
It was baked at 350°C for 2 hours. Finally, an indium-gallium (In-Ga) alloy was applied to both the upper and lower surfaces of the obtained fired body.

そしてこれらの評価試料を室温にて48時間放置した後
、周波数1.00 KHz 、入力信号レベル1.OV
rmsにて静電容量および誘電正接を測定し、静)電容
量から比誘電率を算出した。その後直流50Vを1分間
印加し、その時の絶縁抵抗を測定した。
After these evaluation samples were left at room temperature for 48 hours, a frequency of 1.00 KHz and an input signal level of 1. O.V.
The capacitance and dielectric loss tangent were measured at rms, and the relative dielectric constant was calculated from the capacitance. Thereafter, a DC voltage of 50 V was applied for 1 minute, and the insulation resistance at that time was measured.

また−55℃〜+125℃の温度範囲においても上記と
同様の条件にて静電容量および誘電正接を測定し、+2
5℃での静電容量に対する各温度での静電容量の変化率
を算出した。
In addition, capacitance and dielectric loss tangent were measured under the same conditions as above in the temperature range of -55℃ to +125℃, and +2
The rate of change in capacitance at each temperature with respect to the capacitance at 5° C. was calculated.

上記の結果を第1表に示す。但し、表中の絶縁抵抗は静
電容量(C1μF)と絶縁抵抗(R,Mn)との積(C
!R,Mn・μF)で表わした。
The above results are shown in Table 1. However, the insulation resistance in the table is the product (C
! R, Mn・μF).

第1表から明らかな様に、試料番号1,4,10.15
はNb20i H(一対するMnOのモア’y分率比Z
/Yが4.0未満の場合であシ、誘電体磁器の半導体化
が起り、絶縁抵抗C,Rが1〜13 MΩ・μFと極め
て低く、誘電正接tanδも4.15〜12.50%と
非常に大きくなっている。また試料番号2,11.22
゜26.33.37に示すように、Nt)gos (7
)含有量が0.25モル%未満または1600モル%を
超える場合には、前述の比誘電率の温度変化率が±15
%を超え、已工、A、規格からはずれてしまう。また試
料番号38は順○の添加量がio、ooモ〜%を超えた
場合で、比誘電率が2500以下と小さくなシ、いずれ
も実用的な誘電特性が得られていない。
As is clear from Table 1, sample numbers 1, 4, 10.15
is Nb20iH (Mo'y fraction ratio Z of pair of MnO
If /Y is less than 4.0, the dielectric ceramic becomes a semiconductor, the insulation resistances C and R are extremely low at 1 to 13 MΩ・μF, and the dielectric loss tangent tan δ is also 4.15 to 12.50%. It has become very large. Also sample number 2, 11.22
As shown in ゜26.33.37, Nt) gos (7
) If the content is less than 0.25 mol% or more than 1600 mol%, the above-mentioned temperature change rate of dielectric constant is ±15
% and deviates from the standard. Further, sample number 38 is a case in which the amount of addition in the order ○ exceeds io, oo%~%, and the dielectric constant is as small as 2500 or less, and practical dielectric properties are not obtained in either case.

それに対し、本発明の請求範囲内の誘電体磁器組成物は
、比誘電率が2591〜3537と十分大きく、誘電正
接tanδが0.26〜1.18%と極めて小さく、絶
縁抵抗C,Rが527〜1125 MΩ・μFと非常に
大きく、かつ前述の比誘電率の温度変化率も±15%以
内となシ、いずれも優れた誘電特性を有している。
On the other hand, the dielectric ceramic composition within the scope of the claims of the present invention has a sufficiently large dielectric constant of 2591 to 3537, an extremely small dielectric loss tangent tan δ of 0.26 to 1.18%, and insulation resistances C and R. The dielectric constant is extremely large, 527 to 1125 MΩ·μF, and the temperature change rate of the above-mentioned dielectric constant is within ±15%, and both have excellent dielectric properties.

〔発明の効果〕〔Effect of the invention〕

第1図におけるABCDの各点に囲まれた本発明の範囲
内の誘電体磁器組成物は比誘電率、誘電正接tanδ、
絶縁抵抗C@R,比誘電率の温度特性のいずれの特性に
おいても満足し得るものである。
The dielectric ceramic composition within the scope of the present invention surrounded by each point ABCD in FIG. 1 has a relative dielectric constant, a dielectric loss tangent tan δ,
Both the insulation resistance C@R and the temperature characteristics of the dielectric constant are satisfactory.

また、本発明において、焼成温度が1250°C〜13
50℃の範囲で酸素分圧がNi / NiOの平衡酸素
分圧以下の焼成条件では、誘電体磁器はニッケル金属電
極と同時に焼結することができ、かつ焼結磁器の誘電特
性を全て満足し、その上ニッケル金属微粒子も酸化する
ことなく金属膜として焼結するものであることから、ニ
ッケルを内部電極とする積層型磁器コンデンサの誘電体
磁器として十分実用性のあることが理解される。
Further, in the present invention, the firing temperature is 1250°C to 13°C.
Under firing conditions where the oxygen partial pressure is less than the equilibrium oxygen partial pressure of Ni/NiO in the range of 50°C, dielectric porcelain can be sintered simultaneously with nickel metal electrodes and satisfies all the dielectric properties of sintered porcelain. Moreover, since the nickel metal fine particles are sintered into a metal film without being oxidized, it is understood that the material is sufficiently practical as a dielectric ceramic for a laminated ceramic capacitor using nickel as an internal electrode.

【図面の簡単な説明】 第1図は本発明の非還元性誘電体磁器組成物の組成範囲
を示す三元系図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a ternary diagram showing the composition range of the non-reducible dielectric ceramic composition of the present invention.

Claims (1)

【特許請求の範囲】 組成式が (BaTiO_3)X・(Nb_2O_5)Y・(Mn
O)Zで示される三成分系磁器組成物で、第1図におい
て下記A、B、C、Dの各点で囲まれた範囲内の組成か
ら成る非還元性誘電体磁器組成物。ただし、上記組成式
中、X、Y、Zはモル分率を表わし、X+Y+Z=10
0を満足する。      X    Y     Z A  98.75 0.25  1.0 B  89.75 0.25 10.0 C  89.00 1.00 10.0 D  95.00 1.00  4.0
[Claims] The compositional formula is (BaTiO_3)X・(Nb_2O_5)Y・(Mn
O) A non-reducible dielectric ceramic composition, which is a three-component ceramic composition indicated by Z and has a composition within the range surrounded by the following points A, B, C, and D in FIG. However, in the above composition formula, X, Y, and Z represent the mole fraction, and X+Y+Z=10
Satisfies 0. X Y Z A 98.75 0.25 1.0 B 89.75 0.25 10.0 C 89.00 1.00 10.0 D 95.00 1.00 4.0
JP60090664A 1985-04-25 1985-04-25 Non-reducing dielectric ceramic composition Pending JPS61248304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60090664A JPS61248304A (en) 1985-04-25 1985-04-25 Non-reducing dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60090664A JPS61248304A (en) 1985-04-25 1985-04-25 Non-reducing dielectric ceramic composition

Publications (1)

Publication Number Publication Date
JPS61248304A true JPS61248304A (en) 1986-11-05

Family

ID=14004803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60090664A Pending JPS61248304A (en) 1985-04-25 1985-04-25 Non-reducing dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPS61248304A (en)

Similar Documents

Publication Publication Date Title
KR100271726B1 (en) Ceramic composirion and multilayer ceramic capacitor made therefrom
JP3039397B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
KR100256199B1 (en) Monolithic ceramic capacitor
JP3180681B2 (en) Multilayer ceramic capacitors
JP3326513B2 (en) Multilayer ceramic chip capacitors
JPH0678189B2 (en) Non-reducing high dielectric constant dielectric ceramic composition
KR980011542A (en) Dielectric ceramic composition and multilayer ceramic capacitor using same
JPS61250905A (en) Dielectric ceramic composition and manufacture thereof
KR19980070404A (en) Monolithic ceramic capacitors
TWI798412B (en) Dielectric ceramic composition and ceramic electronic part
JPH11302072A (en) Dielectric ceramic, laminated ceramic capacitor and its production
JPH0831232A (en) Nonreducing dielectric ceramic composition
JPS62256422A (en) Laminated type porcelain capacitor
JPH0283256A (en) Dielectric material porcelain composition
JPH0825795B2 (en) Non-reducing dielectric ceramic composition
TWI796464B (en) Dielectric ceramic composition and ceramic electronic part
JPS62157603A (en) Nonreductive dielectric porcelain compound
US5202814A (en) Nonreducing dielectric ceramic composition
JP2001114559A (en) Dielectric composition
JP2004210613A (en) Dielectric ceramic, its producing method and laminated ceramic capacitor
JPS61248304A (en) Non-reducing dielectric ceramic composition
JP3064518B2 (en) Dielectric porcelain composition
JPS62278163A (en) Non-reductive dielectric ceramic composition
JP3134430B2 (en) Non-reducing dielectric ceramic composition
JPS622408A (en) Non-reducing dielectric ceramic composition