JP2952062B2 - Non-reducing dielectric porcelain composition - Google Patents

Non-reducing dielectric porcelain composition

Info

Publication number
JP2952062B2
JP2952062B2 JP3045784A JP4578491A JP2952062B2 JP 2952062 B2 JP2952062 B2 JP 2952062B2 JP 3045784 A JP3045784 A JP 3045784A JP 4578491 A JP4578491 A JP 4578491A JP 2952062 B2 JP2952062 B2 JP 2952062B2
Authority
JP
Japan
Prior art keywords
dielectric
compound
sample
temperature load
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3045784A
Other languages
Japanese (ja)
Other versions
JPH04260665A (en
Inventor
松巳 渡辺
恭治 佐藤
均 増村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP3045784A priority Critical patent/JP2952062B2/en
Publication of JPH04260665A publication Critical patent/JPH04260665A/en
Application granted granted Critical
Publication of JP2952062B2 publication Critical patent/JP2952062B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は非還元性誘電体磁器組成
物に係り、特に高誘電率でかつ誘電体損失が小さく、高
温での電圧印加に対する寿命(以下、高温負荷寿命とい
う)の良好な高信頼性の誘電体磁器組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-reducing dielectric ceramic composition, and more particularly, to a high dielectric constant, a small dielectric loss, and a good life to a voltage application at a high temperature (hereinafter referred to as a high temperature load life). And a highly reliable dielectric ceramic composition.

【0002】[0002]

【従来の技術】通信機、電子計算機、テレビ受像機等の
電子機器に用いられるIC回路素子等に広く使用されて
いる積層セラミックコンデンサは小型で大容量のものが
好ましい。
2. Description of the Related Art A multilayer ceramic capacitor widely used for an IC circuit element or the like used in electronic equipment such as a communication device, an electronic computer, and a television receiver preferably has a small size and a large capacity.

【0003】このような小型で大容量の積層セラミック
コンデンサは、例えば、BaTiO3 の如きチタン酸塩
を主成分とした誘電体材料を使用することにより次のよ
うな方法で製造される。
[0003] In the multilayer ceramic capacitor of large capacity such small, for example, is produced by the following method by using a dielectric material mainly composed of such titanate BaTiO 3.

【0004】従来、積層セラミック・コンデンサを製造
する方法は大別して、印刷法及びシート法がある。
Conventionally, methods for manufacturing a multilayer ceramic capacitor are roughly classified into a printing method and a sheet method.

【0005】前者は、誘電体のスラリーを作った後これ
を例えばスクリーン印刷により所定形状に印刷し、乾燥
後その上に電極ペーストを印刷し、この電極ペーストが
乾燥した後に次の誘電体スラリーを印刷するという方法
を繰返すことにより、誘電体層と内部電極層を積層する
ものである。
In the former method, a dielectric slurry is prepared, then printed in a predetermined shape by, for example, screen printing, dried, and an electrode paste is printed thereon. After the electrode paste is dried, the next dielectric slurry is formed. By repeating the method of printing, a dielectric layer and an internal electrode layer are laminated.

【0006】後者は、誘電体シートを例えばドクターブ
レード法で作成し、その上に電極ペーストを印刷し、こ
れを複数枚積み重ねて熱圧着し積層化する。
In the latter case, a dielectric sheet is formed by, for example, a doctor blade method, an electrode paste is printed thereon, and a plurality of the sheets are stacked and thermocompression bonded.

【0007】このように適当な方法により積層化したも
のを空気中1250℃〜1400℃で焼成して焼結体を
作り、内部電極と導通する外部引出し電極をこれに焼付
けることにより積層セラミックコンデンサを得ていた。
[0007] The laminate obtained by the appropriate method is fired in air at 1250 ° C to 1400 ° C to produce a sintered body, and an external lead electrode which is electrically connected to the internal electrode is baked on the sintered body. Was getting.

【0008】これらの方法ではコンデンサの電極となる
内部電極と誘電体を同時に焼成するため、内部電極の材
料としては誘電体が焼結する温度内で電極が形成できる
こと、及び空気中で上記の温度に加熱しても酸化した
り、あるいは誘電体と反応しないことが必要である。こ
のためこれらの条件を満たすものとして白金やパラジウ
ムなどの貴金属が主に使用されていた。
In these methods, since the internal electrode and the dielectric which are the electrodes of the capacitor are simultaneously fired, the material of the internal electrode is that the electrode can be formed within the temperature at which the dielectric sinters, It is necessary that the material does not oxidize or react with the dielectric even when heated. For this reason, noble metals such as platinum and palladium have been mainly used to satisfy these conditions.

【0009】しかしながらこれらの貴金属は非常に安定
ではあるが、高価であって、積層セラミックコンデンサ
のコストに占める割合が20%〜50%程度と非常に大
きく、そのコストアップの最大の原因になっていた。
However, these precious metals are very stable, but are expensive, and the ratio of the cost of the multilayer ceramic capacitor to the cost is as large as about 20% to 50%, which is the biggest cause of the cost increase. Was.

【0010】この問題に対処するためにNi,Cu,F
e合金等の安価な卑金属を内部電極として使用する試み
がすでに行われている。
In order to address this problem, Ni, Cu, F
Attempts have already been made to use inexpensive base metals such as e-alloys as internal electrodes.

【0011】[0011]

【発明が解決しようとする課題】ところが、卑金属の電
極材料として、例えばNiを使用すると、Niは空気中
で誘電体層と同時に焼成された時に酸化し、誘電体層内
にNiが拡散して、金属電極層が形成されず絶縁化して
しまう。このため電極としての機能を果たさなくなる。
However, when, for example, Ni is used as the base metal electrode material, Ni oxidizes when fired simultaneously with the dielectric layer in air, and Ni diffuses into the dielectric layer. As a result, the metal electrode layer is not formed, and the insulating layer is formed. For this reason, the function as an electrode is not fulfilled.

【0012】それ故Niの酸化を防止するように、中性
あるいは還元性雰囲気中で焼成することになるが、この
場合には誘電体材料が還元され、誘電体層の比抵抗が非
常に低いものとなってしまい、特に高温負荷寿命が短く
なる。このため、コンデンサ用誘電体材料として使用で
きなくなるという問題点がある。
Therefore, firing is performed in a neutral or reducing atmosphere to prevent oxidation of Ni. In this case, the dielectric material is reduced and the specific resistance of the dielectric layer is very low. And, in particular, the high temperature load life is shortened. Therefore, there is a problem that it cannot be used as a dielectric material for a capacitor.

【0013】従って、本発明の目的は、積層セラミック
コンデンサに用いる誘電体材料として、Ni等の卑金属
と同時に中性あるいは還元性雰囲気中で焼成しても還元
されない非還元性であり、かつ誘電率が高く、誘電体損
失が小さく、絶縁抵抗が高く、高温負荷寿命が長い誘電
体磁器組成物を提供するものである。
Accordingly, an object of the present invention is to provide a dielectric material used for a multilayer ceramic capacitor which is non-reducing and not reduced even when fired in a neutral or reducing atmosphere simultaneously with a base metal such as Ni. The present invention provides a dielectric porcelain composition having a high dielectric loss, a low dielectric loss, a high insulation resistance, and a long high-temperature load life.

【0014】[0014]

【課題を解決するための手段】前記の問題点を解決する
ため、本発明者は鋭意研究の結果、チタン酸バリウムを
主成分とする多結晶固溶体からなり、この固溶体の組成
式が {Ba(1-x)Cax}A・{Ti(1-y)Zry}B・O3 +aM
1 +bM2 +c(M3 +M4)で示される組成物におい
て、M1 ,M2 ,M3 ,M4 が M1 :Mn,Crの化合物の少くとも一種 M2 :Siの化合物、 M3 :Yの化合物、 M4 :Wの化合物、 であり、かつx,y,A,B,a,b,cが 0≦x≦24 (モル%) 8≦y≦22 (モル%) 1.000 ≦A/B ≦1.040 0.05≦a≦1.0 (酸化物換算でのABO3 に対する重量
%) 0.05≦b≦1.0 (酸化物換算でのABO3 に対する重量
%) 0.05≦c≦2.0 (酸化物換算でのABO3 に対する重量
%) (ただし、M3 の最大値は、1.0 重量%、M4 の最大値
は1.0 重量%とする。)の範囲にある組成物である誘電
体磁器組成物が前記の問題点を解決することを見出し
た。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and as a result, have made a polycrystalline solid solution containing barium titanate as a main component, and the composition formula of this solid solution is {Ba ( 1-x) Cax} A ・ {Ti (1-y) Zry} B ・ O 3 + aM
1 + bM 2 + c (M 3 + M 4 ) In the composition represented by M 1 , M 2 , M 3 , and M 4 , at least one compound of M 1 : Mn, Cr, M 2 : Si compound, M 3 : A compound of Y, a compound of M 4 : W, and x, y, A, B, a, b, and c are 0 ≦ x ≦ 24 (mol%) 8 ≦ y ≦ 22 (mol%) 1.000 ≦ A / B ≤ 1.040 0.05 ≤ a ≤ 1.0 (% by weight relative to ABO 3 in terms of oxide) 0.05 ≤ b ≤ 1.0 (% by weight relative to ABO 3 in terms of oxide) 0.05 ≤ c ≤ 2.0 (% in terms of oxide) ABO wt% relative to 3) (provided that the maximum value of M 3 is 1.0 wt%, the dielectric ceramic composition is a composition in the range of to.) the maximum value of M 4 is 1.0% by weight the problem I found that solving the point.

【0015】[0015]

【実施例】出発原料として、BaCO3 ,TiO2 ,Z
rO2 ,CaCO3 ,MnOまたはCr2 3 ,SiO
2 ,Y2 3 ,WO3 を用い、それぞれ焼成後の組成が
後掲の表1、表2の如くになるように秤量し混合する。
EXAMPLES As starting materials, BaCO 3 , TiO 2 , Z
rO 2 , CaCO 3 , MnO or Cr 2 O 3 , SiO
2 , Y 2 O 3 , and WO 3 are weighed and mixed such that the compositions after firing are as shown in Tables 1 and 2 below.

【0016】その後脱水乾燥させ、1050℃〜124
0℃で2時間仮焼成する。この仮焼成体を微粉砕し、脱
水乾燥して粉末とする。
After that, it is dehydrated and dried, and 1050 ° C.-124
Temporarily bake at 0 ° C. for 2 hours. This calcined body is finely pulverized, dehydrated and dried to obtain a powder.

【0017】得られた粉末に適当量の有機バインダを加
え、厚さ20μmと厚さ100μmのシートを得る。次
にまず厚さ20μmのシートの両面に電極用としてNi
粉末をビヒクル中に分散させた電極ペーストをスクリー
ン印刷により塗布し電極とする。
An appropriate amount of an organic binder is added to the obtained powder to obtain a sheet having a thickness of 20 μm and a thickness of 100 μm. Next, first, Ni was used on both sides of a sheet having a thickness of 20 μm for electrodes.
An electrode paste in which powder is dispersed in a vehicle is applied by screen printing to form an electrode.

【0018】更にこの上下に厚さ100μmのシートを
熱圧着により圧着する。この厚さ100μmのシート
は、焼成後のハンドリングを考慮し、素体強度を上げる
ためのものであり、電気的特性には何等影響を及ぼさな
い。
Further, a sheet having a thickness of 100 μm is pressed on the upper and lower sides by thermocompression. The sheet having a thickness of 100 μm is used to increase the strength of the element body in consideration of handling after firing, and does not affect the electrical characteristics at all.

【0019】熱圧着したシートを約3.9 ×1.9 ミリの寸
法に切断し、これをジルコニア板の上にのせ、匣鉢の中
に入れて500℃まで空気中で加熱し有機バインダを燃
焼させ、その後N2 中またはN2 +H2 中で1300℃
〜1400℃で2時間燃焼する。
The thermocompression-bonded sheet is cut to a size of about 3.9 × 1.9 mm, placed on a zirconia plate, placed in a sagger and heated to 500 ° C. in air to burn the organic binder. in N 2 or N 1300 ° C. in 2 + H 2 in
Burn at 11400 ° C. for 2 hours.

【0020】焼結後の素地寸法は約3.2 ×1.6 ミリとな
る。その後空気+N2 中で800℃〜1100℃で2時
間アニーリングしてサンプルを得る。
The size of the green body after sintering is about 3.2 × 1.6 mm. Thereafter, annealing is performed at 800 ° C. to 1100 ° C. for 2 hours in air + N 2 to obtain a sample.

【0021】このサンプルの端部にIn−Gaを塗布
し、外部引出し電極とすることにより電気的特性を測定
する。電気的特性は比誘電率(εs )、誘電体損失(t
anδ、%)、絶縁抵抗(IR,Ω,25VDC,60
秒値)、高温負荷寿命(200℃で100VDCを印加
し、6mA以上の電流が流れるまでの時間、HR)を測
定する。
The electrical characteristics are measured by coating In-Ga on the end of the sample and using it as an external extraction electrode. Electrical characteristics include relative permittivity (ε s ), dielectric loss (t
anδ,%), insulation resistance (IR, Ω, 25VDC, 60
(Second value) and the high temperature load life (time until 200 mA or more and a current of 6 mA or more applied at 100 VDC, HR) are measured.

【0022】その結果を表1、表2に示す。なお、表
1、表2において、*印の付与されたものは、本発明の
範囲外のものであり、本発明の実施例のものと比較のた
めに提示する。
The results are shown in Tables 1 and 2. In Tables 1 and 2, those marked with * are out of the scope of the present invention and are presented for comparison with those of Examples of the present invention.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】表1、表2から明らかなように、本発明の
ものは比誘電率が7000以上と特に高く、誘電体損失
は0.9 〜5.0 %と小さな値を示しており、かつ高温での
負荷寿命が結100〜640時間と長いものである。ま
た常温における絶縁抵抗も高い値を示している。
As is clear from Tables 1 and 2, the material of the present invention has a particularly high relative dielectric constant of 7000 or more, a small value of dielectric loss of 0.9 to 5.0%, and a high temperature load. The service life is as long as 100 to 640 hours. The insulation resistance at room temperature also shows a high value.

【0026】次にこのような本発明の各組成範囲の数値
限定の理由を説明する。
Next, the reasons for limiting the numerical values of the respective composition ranges of the present invention will be described.

【0027】まずxが24より大きくなると、比誘電率
εs が低下する(例えば表2の試料No.26参照)。
[0027] First, when x is greater than 24, the relative dielectric constant epsilon s is reduced (see, for example, sample No.26 in Table 2).

【0028】またyが8より小さくなると、比誘電率ε
s が低下し、誘電体損失tanδも大きくなる(例えば
表2の試料No34参照)。これはキュリー点が高温側に
あるためである。
When y is smaller than 8, the relative dielectric constant ε
s decreases, and the dielectric loss tan δ also increases (for example, see Sample No. 34 in Table 2). This is because the Curie point is on the high temperature side.

【0029】一方、yが22より大きくなると、比誘電
率εs が低下する。これはキュリー点が低温側に移動す
るためである(例えば表2の試料No. 30参照)。
On the other hand, when y is greater than 22, the relative dielectric constant epsilon s is reduced. This is because the Curie point moves to the low temperature side (for example, see Sample No. 30 in Table 2).

【0030】またA/B が1000より小さくなると、誘
電体が還元し、絶縁抵抗IRが低下し、比誘電率εs
よび誘電体損失tanδの測定は不能であった。また高
温負荷寿命が短かくなる(例えば表2の試料No.21参
照)。
When A / B is less than 1000, the dielectric material is reduced, the insulation resistance IR is reduced, and it is impossible to measure the relative dielectric constant ε s and the dielectric loss tan δ. Further, the high temperature load life is shortened (for example, see Sample No. 21 in Table 2).

【0031】さらにA/B が1040より大きくなると比
誘電率εsが低下し、誘電体損失tanδも大きくな
る。絶縁抵抗IRも低下し、高温負荷寿命も短かくなる
(例えば表2の試料No. 25参照)。
Further, when A / B is larger than 1040, the relative permittivity ε s decreases, and the dielectric loss tan δ also increases. The insulation resistance IR also decreases, and the high-temperature load life also decreases (see, for example, Sample No. 25 in Table 2).

【0032】aが0.05より小さくなると、誘電体損失t
anδが大きく、高温負荷寿命も短かくなる(例えば表
1の試料No. 16参照)。
When a is smaller than 0.05, the dielectric loss t
An δ is large and the high temperature load life is short (for example, see Sample No. 16 in Table 1).

【0033】aが1.0 より大きくなると、比誘電率εs
が低下する(例えば表2の試料No. 20参照)。
When a is larger than 1.0, the relative dielectric constant ε s
(See, for example, Sample No. 20 in Table 2).

【0034】bが0.05より小さくなると、比誘電率εs
が低下し、高温負荷寿命も短かくなる(例えば表1の試
料No. 12参照)。
When b is smaller than 0.05, the relative dielectric constant ε s
And the high-temperature load life is shortened (for example, see Sample No. 12 in Table 1).

【0035】bが、1.0 より大きくなると、比誘電率ε
s が低下する(例えば表1の試料No. 15参照)。
When b is larger than 1.0, the relative dielectric constant ε
s decreases (for example, see Sample No. 15 in Table 1).

【0036】cが0.05より小さくなると、高温負荷寿命
が短かくなる(例えば表1の試料No. 1参照)。
When c is smaller than 0.05, the high temperature load life is shortened (for example, see Sample No. 1 in Table 1).

【0037】cが2.0 より大きくなると、誘電体が還元
し、絶縁抵抗IRが低下し、比誘電率εs 及び誘電体損
失tanδの測定は不能だった。また高温負荷寿命も短
かくなる(例えば表1の試料No. 9参照)。
When c was larger than 2.0, the dielectric material was reduced, the insulation resistance IR was reduced, and it was impossible to measure the relative dielectric constant ε s and the dielectric loss tan δ. Also, the high temperature load life is shortened (for example, see Sample No. 9 in Table 1).

【0038】しかし、cが2.0 以下でもM3(Y2 3)が
1.0 以上またはM4(WO3)が1.0 以上の時は、誘電体が
還元し、絶縁抵抗IRが低下し、比誘電率εs 及び誘電
体損失tanδの測定は不能であった。またいずれの場
合も高温負荷寿命も短かくなる(例えば表1の試料No.
10及び試料No. 6参照)。
However, even when c is 2.0 or less, M 3 (Y 2 O 3 )
When 1.0 or more or M 4 (WO 3 ) was 1.0 or more, the dielectric material was reduced, the insulation resistance IR was reduced, and the measurement of the relative dielectric constant ε s and the dielectric loss tan δ was impossible. In each case, the high temperature load life is also short (for example, sample No. 1 in Table 1).
10 and Sample No. 6).

【0039】[0039]

【発明の効果】本発明によれば中性または還元性雰囲気
中で焼成しても比誘電率が高く、誘電体損失が小さくか
つ高温負荷寿命も長く絶縁抵抗の高い高信頼性の誘電体
磁器組成物を得ることができる。
According to the present invention, a highly reliable dielectric ceramic having a high relative dielectric constant, a small dielectric loss, a long high-temperature load life and a high insulation resistance even when fired in a neutral or reducing atmosphere. A composition can be obtained.

【0040】これにより、Ni等の卑金属を内部電極と
する積層セラミックコンデンサを製造することができる
ようになった。
As a result, a multilayer ceramic capacitor using a base metal such as Ni as an internal electrode can be manufactured.

フロントページの続き (56)参考文献 特開 昭63−221504(JP,A) 特開 昭63−292508(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 35/49 Continuation of front page (56) References JP-A-63-221504 (JP, A) JP-A-63-292508 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C04B 35 / 49

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 チタン酸バリウムを主成分とする多結晶
固溶体からなり、該固溶体の組成式が、{Ba(1-x)Ca
x}A・{Ti(1-y)Zry}B・O3 +aM1 +bM2
c(M3 +M4)で示される時、M1 ,M2 ,M3 ,M4
が M1 :Mn,Crの化合物の少くとも一種 M2 :Siの化合物、 M3 :Yの化合物、 M4 :Wの化合物、 であり、かつa,b,cが酸化物換算で 0.05≦a≦1.0 (前記ABO3 に対する重量%) 0.05≦b≦1.0 (前記ABO3 に対する重量%) 0.05≦c≦2.0 (前記ABO3 に対する重量%) (ただし、M3 の最大値は、1.0 重量%、M4 の最大値
は1.0 重量%とする) 0 ≦x≦0.24 0.08 ≦y≦0.22 1.000≦A/B ≦1.040 の範囲にあることを特徴とする非還元性誘電体磁器組成
物。
1. A polycrystalline solid solution containing barium titanate as a main component, wherein the composition formula of the solid solution is {Ba (1-x) Ca
x} A · {Ti (1-y) Zry} B · O 3 + aM 1 + bM 2 +
When represented by c (M 3 + M 4 ), M 1 , M 2 , M 3 , M 4
Is a compound of M 1 : Mn, Cr at least one compound of M 2 : Si, a compound of M 3 : Y, a compound of M 4 : W, and a, b, c are 0.05 ≦ in terms of oxide. a ≦ 1.0 (% by weight based on the ABO 3 ) 0.05 ≦ b ≦ 1.0 (% by weight based on the ABO 3 ) 0.05 ≦ c ≦ 2.0 (% by weight based on the ABO 3 ) (However, the maximum value of M 3 is 1.0% by weight. , the maximum value of M 4 is 1.0 wt%) 0 ≦ x ≦ 0.24 0.08 ≦ y ≦ 0.22 1.000 ≦ a / B , characterized in that in the range of ≦ 1.040 nonreducing dielectric ceramic composition.
JP3045784A 1991-02-18 1991-02-18 Non-reducing dielectric porcelain composition Expired - Lifetime JP2952062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3045784A JP2952062B2 (en) 1991-02-18 1991-02-18 Non-reducing dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3045784A JP2952062B2 (en) 1991-02-18 1991-02-18 Non-reducing dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH04260665A JPH04260665A (en) 1992-09-16
JP2952062B2 true JP2952062B2 (en) 1999-09-20

Family

ID=12728909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3045784A Expired - Lifetime JP2952062B2 (en) 1991-02-18 1991-02-18 Non-reducing dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP2952062B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19635406B4 (en) * 1996-08-31 2005-09-01 Philips Intellectual Property & Standards Gmbh Capacitor and multilayer capacitor with a tungsten-containing BCZT ceramic dielectric
DE19722618A1 (en) * 1997-05-30 1998-12-03 Philips Patentverwaltung High temperature condenser
DE19737324A1 (en) * 1997-08-28 1999-03-04 Philips Patentverwaltung Multi-layer capacitor with silver and rare earth doped barium titanate
JP4556924B2 (en) * 2006-07-26 2010-10-06 Tdk株式会社 Dielectric porcelain composition and electronic component

Also Published As

Publication number Publication date
JPH04260665A (en) 1992-09-16

Similar Documents

Publication Publication Date Title
JP3908715B2 (en) Multilayer ceramic capacitor
JP3346293B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3878778B2 (en) Dielectric porcelain composition and electronic component
JP4687680B2 (en) Method for manufacturing dielectric ceramic composition and method for manufacturing electronic component
JP5461774B2 (en) Electronic component and manufacturing method thereof
JP2005145791A (en) Electronic components, dielectric porcelain composition, and method for manufacturing the same
JPH1012479A (en) Laminated ceramics capacitor
JP6753221B2 (en) Dielectric composition and laminated electronic components
JP2003277139A (en) Dielectric ceramic composition and electronic parts
JP2007063040A (en) Method for producing dielectric porcelain composition, and electronic component
JP4717302B2 (en) Dielectric porcelain composition and electronic component
KR100651019B1 (en) dielectric ceramic compositions and electronic devices
JP4576807B2 (en) Dielectric porcelain composition and electronic component
JP6769337B2 (en) Dielectric composition and electronic components
JP4661203B2 (en) Ceramic electronic component and manufacturing method thereof
JP3323801B2 (en) Porcelain capacitors
JPH0785460B2 (en) Multilayer porcelain capacitor
JP2952062B2 (en) Non-reducing dielectric porcelain composition
JP4547945B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP4496639B2 (en) Electronic component and manufacturing method thereof
JP3389220B2 (en) Dielectric porcelain composition, electronic component and method for producing electronic component
JP4098206B2 (en) Dielectric porcelain composition and electronic component
JPH06342735A (en) Laminated type ceramic chip capacitor
JP2952061B2 (en) Non-reducing dielectric porcelain composition
JP3361531B2 (en) Dielectric ceramic composition for Ni internal electrode

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12