JP3361531B2 - Dielectric ceramic composition for Ni internal electrode - Google Patents

Dielectric ceramic composition for Ni internal electrode

Info

Publication number
JP3361531B2
JP3361531B2 JP02398391A JP2398391A JP3361531B2 JP 3361531 B2 JP3361531 B2 JP 3361531B2 JP 02398391 A JP02398391 A JP 02398391A JP 2398391 A JP2398391 A JP 2398391A JP 3361531 B2 JP3361531 B2 JP 3361531B2
Authority
JP
Japan
Prior art keywords
dielectric
ceramic composition
internal electrode
dielectric ceramic
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02398391A
Other languages
Japanese (ja)
Other versions
JPH04367559A (en
Inventor
松巳 渡辺
恭治 佐藤
均 増村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP02398391A priority Critical patent/JP3361531B2/en
Publication of JPH04367559A publication Critical patent/JPH04367559A/en
Application granted granted Critical
Publication of JP3361531B2 publication Critical patent/JP3361531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はNi内部電極用誘電体磁
器組成物に係り、特に高誘電率で、かつ誘電体損失が小
さく高温での電圧印加に対する寿命(高温負荷寿命)の
良好な高信頼性の誘電体磁器組成物に関する。 【0002】 【従来の技術】通信機、電子計算機、テレビ受像機等の
電子機器に用いられるIC回路素子等に広く使用されて
いる積層セラミック・コンデンサは小型で大容量のもの
が好ましい。 【0003】このような小型で大容量の積層セラミック
・コンデンサは、例えばBaTiO3 の如き、チタン酸
塩を主成分とした誘電体材料を使用することにより製造
することができる。 【0004】従来、積層セラミック・コンデンサを製造
する方法は大別して印刷法及びシート法がある。 【0005】前者は、誘電体のスラリーを作った後これ
を例えば、スクリーン印刷により所定形状に印刷し、乾
燥後その上に電極ペーストを印刷し、この電極ペースト
が乾燥した後に次の誘電体スラリーを印刷するという方
法を繰返すことにより、誘電体層と内部電極層を積層す
るものである。 【0006】後者は、誘電体シートを例えばドクターブ
レード法で作成し、その上に電極ペーストを印刷し、こ
れを複数枚積み重ねて熱圧着し積層化する。 【0007】このように適当な方法により積層化したも
のを空気中1250℃〜1400℃で焼成して焼結体を
作り、内部電極と導通する外部引出し電極をこれに焼付
けることにより積層セラミック・コンデンサを得てい
た。 【0008】これらの方法ではコンデンサの電極となる
内部電極層と誘電体層を同時に焼成するため、内部電極
の材料としては誘電体が焼結する温度内で金属電極が形
成できること、空気中で上記の温度に加熱しても酸化し
たり、誘電体と反応しないことが必要である。 【0009】このため、これらの条件を満たすものとし
て白金やパラジウムまたはその合金などの貴金属が主に
使用されていた。 【0010】しかしながらこれらの貴金属は非常に安定
ではあるが、高価であって積層セラミック・コンデンサ
のコストに占める割合が20〜50%程度と非常に大き
く、静電容量の大きいもの程積層数が増加する為、その
コストアップの最大の原因になっていた。 【0011】この問題に対処するためにNi、Cu、F
e合金等の安価な卑金属を電極として使用する試みが従
来から行われている。 【0012】 【発明が解決しようとする課題】ところが、卑金属の電
極材料として例えばNiを使用すると、Niは空気中で
誘電体層と同時に焼成された時に酸化し、誘電体層内に
Niが拡散して、金属電極層が形成されず絶縁化してし
まう。このため電極としての機能を果さなくなる。 【0013】それ故Niの酸化を防止するために、中性
あるいは還元性雰囲気中で焼成することになるが、この
場合には誘電体材料が還元され、誘電体層の比抵抗が非
常に低いものとなってしまい、特に高温での電圧印加に
対する寿命が短かくなる。このためコンデンサ用誘電体
材料として使用できないという問題点を有する。 【0014】従って本発明の目的は、積層セラミック・
コンデンサに用いる誘電体材料として、Niと同時に中
性あるいは還元性雰囲気中で焼成しても還元されない非
還元性でありかつ誘電率が高く、誘電体損失が小さく、
絶縁抵抗が高く、高温での電圧印加に対する寿命が長い
誘電体磁器組成物を提供するものである。 【0015】 【課題を解決するための手段】前記の目的を達成するた
め、本発明者は鋭意研究の結果、チタン酸バリウムを主
成分とする誘電体磁器組成物からなり、該誘電体磁器組
成物の組成式が{Ba (100-x) Ca x }A・{Ti (100-y) Zr y
・O3 aMnObSiO 2 cY 2 3 で示される
組成物において、x、y、A、B、a、b、cが 0 ≦x≦24(モル%) 8 ≦y≦22(モル%) 1.000 ≦A/B ≦1.040 0.05≦a≦1.0 0.05≦b≦1.0 0.05≦c≦1.0 (ただしa、b、cは前記{Ba (100-x) Ca x }A・
{Ti (100-y) Zr y }B・O 3 に対する酸化物換算で
の重量%である)の範囲にした誘電体磁器組成物が前記
の問題点を解決することを見出した。 【0016】 【実施例】出発原料として、BaCO3 、TiO2 、Z
rO2 、CaCO3 MnOまたはCr2 3 、SiO
2 、Y2 5 を用い、焼成後の組成がそれぞれ表1、表
2の如くになるように秤量し混合する。 【0017】その後脱水乾燥させ1050℃〜1240
℃で2時間仮焼成する。この仮焼成体を微粉砕し、脱水
・乾燥して粉末とする。 【0018】得られた粉末に適当量の有機バインダを加
え、厚さ20μmと厚さ100μmのシートを得る。 【0019】次にまず厚さ20μmのシートの両面に、
Ni粉末をビヒクル中に分散させた電極ペーストをスク
リーン印刷により塗布し電極とする。さらにこの上下両
面に厚さ100μmのシートを熱圧着により圧着する。
この100μmのシートは焼成後のハンドリングを考慮
し、素体強度を上げるためのものであり、電気的特性に
は何等影響を及ぼさない。 【0020】熱圧着したシートを3.9 ×1.9mm の寸法に
切断しこれをジルコニア板の上にのせ、匣鉢の中に入れ
て500℃まで空気中で加熱し有機バインダを燃焼さ
せ、その後N2 中またはN2 +H2 中で1300℃〜1
400℃で2時間焼成する。 【0021】焼成後の素地寸法は約3.2 ×1.6mm とな
る。 【0022】その後空気+N2 中で800℃〜1100
℃で2時間アニーリングしてサンプルを得る。 【0023】このサンプルの端部にIn−Gaを塗布し
外部引出し電極として、電気的特性を測定した。 【0024】電気的特性は、比誘電率(ε)、誘電体損
失(tanδ、%)、絶縁抵抗(IR、Ω、25VD
C、60秒値)、高温負荷寿命(200℃で100VD
Cを印加し、6mA以上電流が流れるまでの時間HR)
を測定する。 【0025】その結果を表1、表2に示す。なお、表
1、表2において*印の付与されているものは、本発明
の範囲外のものであり、本発明の実施例のものと比較の
ために提示する。 【0026】 【表1】 【0027】 【表2】【0028】表1、表2より明らかなように、本発明の
ものは比誘電率が7000以上と特に高く、tanδは
0.8 %〜4.8 %と小さな値を示しており、かつ高温での
負荷寿命が50時間〜185時間と長いものである。ま
た常温における絶縁抵抗IRも高い値を示している。 【0029】次に本発明の各組織範囲の数値限定の理由
について説明する。 【0030】まず、xが24より大きくなると、比誘電
率εs が低下し、高温負荷寿命も非常に短かくなる(例
えば表2の試料No. 21参照)。 【0031】yが8より小さくなると、比誘電率εs が
低下し、誘電体損失tanδも大きくなる(例えば表2
の試料No. 29参照)。 【0032】yが22より大きくなると、比誘電率εs
が低下する(例えば表2の試料No.25参照)。 【0033】また、A/B が1.000 より小さくなると、誘
電体が還元し、絶縁抵抗IRが低くなり、高温負荷寿命
が短くなる(例えば表1の試料No. 16参照)。 【0034】A/B が1.040 より大きくなると、焼結不足
となり、比誘電率εs が低下し、誘電体損失tanδが
大きく絶縁抵抗IRが低下し高温負荷寿命も短くなる
(例えば表2の試料No. 20参照)。 【0035】さらにaが0.05より小さくなると、誘電体
損失tanδが大きく高温負荷寿命が短かくなる(例え
ば表1の試料No. 6参照)。 【0036】aが1.0 より大きくなると、比誘電率εs
が低下し、高温負荷寿命も短かくなる(例えば表1の試
料No. 10参照)。 【0037】bが0.05より小さくなると、比誘電率εs
が低下し、高温負荷寿命も短くなる(例えば表1の試料
No. 1参照)。 【0038】bが1.0 より大きくなると、比誘電率εs
が低下し、高温負荷寿命も短かくなる(例えば表1の試
料No. 5参照)。 【0039】cが0.05より小さくなると、高温負荷寿命
が短かくなる(例えば表1の試料No. 11参照)。 【0040】cが1.0 より大きくなると、誘電体が還元
し、絶縁抵抗IRが低くなり、高温負荷寿命が短くなる
(例えば表1の試料No. 15参照)。 【0041】要約すれば、a、b、cを前記の如く選択
することにより高温負荷寿命を改善することができる。 【0042】またxが前記の値より多すぎると比誘電率
εs が低下し、またyが前記の値より少ないとキュリー
点が高温側にあり常温での比誘電率εs が低下し、誘電
体損失tanδも大きい。yが前記の値より多すぎると
キュリー点が低温側に移動するため比誘電率εsが低下
する。 【0043】そしてA/B が1.000 より少ないと、つまり
Tirichになると還元に弱くなり、絶縁抵抗IRの
低下を招くことになる、またA/B が1.040 より多いと焼
結不足となる。 【0044】 【発明の効果】本発明によれば、中性または還元性雰囲
気中で焼成しても比誘電率が高く、誘電体損失が小さく
かつ高温負荷寿命も長く、絶縁抵抗の高い高信頼性の
i内部電極用誘電体磁器組成物を得ることができる。 【0045】これにより、Niを内部電極とする積層セ
ラミック・コンデンサを製造することができるようにな
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric porcelain composition for Ni internal electrodes , and more particularly to a high dielectric constant, low dielectric loss, high voltage application at a high temperature. The present invention relates to a highly reliable dielectric ceramic composition having a good life (high temperature load life). 2. Description of the Related Art A multilayer ceramic capacitor widely used for an IC circuit element or the like used for an electronic device such as a communication device, an electronic computer, and a television receiver preferably has a small size and a large capacity. [0003] Multilayer ceramic capacitor having a large capacity such a small, for example such as BaTiO 3, can be produced by using a dielectric material mainly composed of titanium salt. Heretofore, methods for manufacturing a multilayer ceramic capacitor are roughly classified into a printing method and a sheet method. [0005] In the former method, after a dielectric slurry is prepared, it is printed in a predetermined shape by, for example, screen printing, dried, and then an electrode paste is printed thereon. Is repeated to laminate the dielectric layer and the internal electrode layer. In the latter case, a dielectric sheet is formed by, for example, a doctor blade method, an electrode paste is printed thereon, and a plurality of the sheets are stacked and thermocompression bonded. [0007] The laminated body is fired at a temperature of 1250 ° C to 1400 ° C in air to form a sintered body, and an external lead-out electrode, which is electrically connected to the internal electrode, is baked on the sintered body. I was getting a capacitor. In these methods, since the internal electrode layer serving as the electrode of the capacitor and the dielectric layer are simultaneously fired, the material of the internal electrode is that a metal electrode can be formed within the temperature at which the dielectric sinters. It is necessary that the material does not oxidize or react with the dielectric even when heated to the above temperature. For this reason, precious metals such as platinum, palladium and alloys thereof have been mainly used to satisfy these conditions. However, although these noble metals are very stable, they are expensive and their share in the cost of the multilayer ceramic capacitor is very large, about 20 to 50%, and the number of layers increases as the capacitance increases. Therefore, it was the biggest cause of the cost increase. To address this problem, Ni, Cu, F
Attempts have been made to use inexpensive base metals such as e-alloys as electrodes. However, when, for example, Ni is used as a base metal electrode material, Ni oxidizes when fired in air at the same time as the dielectric layer, and Ni diffuses into the dielectric layer. As a result, the metal electrode layer is not formed, and becomes insulated. For this reason, the function as an electrode cannot be performed. Therefore, in order to prevent the oxidation of Ni, firing is performed in a neutral or reducing atmosphere. In this case, however, the dielectric material is reduced and the specific resistance of the dielectric layer is very low. In particular, the service life for applying a voltage at a high temperature is shortened. Therefore, it has a problem that it cannot be used as a dielectric material for capacitors. Accordingly, an object of the present invention is to provide a laminated ceramic
As a dielectric material used for capacitors, a non-reducing not be reduced by firing in a neutral or reducing atmosphere to Ni and simultaneously and high dielectric constant, the dielectric loss is small,
An object of the present invention is to provide a dielectric porcelain composition having a high insulation resistance and a long life for applying a voltage at a high temperature. [0015] To achieve the above object Means for Solving the Problems] The present inventors as a result of intensive study, a dielectric ceramic composition composed mainly of barium titanate, the dielectric ceramic sets
Composition formula Narubutsu is {Ba (100-x) Ca x} A · {Ti (100-y) Zr y} B
· Indicated by O 3 + aMnO + bSiO 2 + cY 2 O 3
In the composition , x, y, A, B, a, b, and c are each 0 ≤ x ≤ 24 (mol%) 8 ≤ y ≤ 22 (mol%) 1.000 ≤ A / B ≤ 1.040 0.05 ≤ a ≤ 1.0 0.05 ≤ b ≦ 1.0 0.05 ≦ c ≦ 1.0 (where a, b, and c are the above-mentioned {Ba (100-x) Ca x } A ·
{Ti (100-y) Zr y} dielectric ceramic composition in the range of percentages by weight) in terms of oxide with respect to B · O 3 was found to solve the problems described above. EXAMPLES As starting materials, BaCO 3 , TiO 2 , Z
rO 2 , CaCO 3 , MnO or Cr 2 O 3 , SiO
2 and Y 2 O 5 are weighed and mixed such that the compositions after firing are as shown in Tables 1 and 2, respectively. After that, it is dehydrated and dried at 1050 ° C. to 1240
Temporarily bake at 2 ° C. for 2 hours. The calcined body is finely pulverized, dehydrated and dried to obtain a powder. An appropriate amount of an organic binder is added to the obtained powder to obtain a sheet having a thickness of 20 μm and a thickness of 100 μm. Next, first, on both sides of a sheet having a thickness of 20 μm,
An electrode paste in which Ni powder is dispersed in a vehicle is applied by screen printing to form an electrode. Further, a sheet having a thickness of 100 μm is pressed on both upper and lower surfaces by thermocompression.
The sheet having a thickness of 100 μm is provided to increase the strength of the element body in consideration of handling after firing, and does not affect the electrical characteristics at all. [0020] The thermocompression bonding sheets cut to dimensions of 3.9 × 1.9 mm it put on zirconia plate, to burn an organic binder was heated in air up to put 500 ° C. in a sagger, then N 2 1300 ° C to 1 in water or N 2 + H 2
Bake at 400 ° C. for 2 hours. The size of the green body after firing is about 3.2 × 1.6 mm. After that, 800 ° C. to 1100 in air + N 2
Anneal at 2 ° C for 2 hours to obtain a sample. In-Ga was applied to the end of the sample, and its electrical characteristics were measured as an external lead electrode. Electrical characteristics include relative permittivity (ε), dielectric loss (tan δ,%), insulation resistance (IR, Ω, 25 VD
C, 60 seconds value), high temperature load life (100VD at 200 ° C)
Time HR until C is applied and a current of 6 mA or more flows.
Is measured. The results are shown in Tables 1 and 2. In Tables 1 and 2, those marked with * are out of the scope of the present invention and are presented for comparison with those of Examples of the present invention. [Table 1] [Table 2] As is clear from Tables 1 and 2, the material of the present invention has a particularly high relative dielectric constant of 7000 or more, and the tan δ is
It shows a small value of 0.8% to 4.8%, and has a long load life at a high temperature of 50 hours to 185 hours. Further, the insulation resistance IR at room temperature also shows a high value. Next, the reason for limiting the numerical value of each tissue range according to the present invention will be described. First, when x is larger than 24, the relative dielectric constant εs decreases, and the high-temperature load life also becomes very short (for example, see Sample No. 21 in Table 2). When y is smaller than 8, the relative permittivity εs decreases and the dielectric loss tan δ also increases (for example, see Table 2).
Sample No. 29). When y exceeds 22, the relative dielectric constant εs
(See, for example, Sample No. 25 in Table 2). When A / B is smaller than 1.000, the dielectric material is reduced, the insulation resistance IR is reduced, and the high temperature load life is shortened (for example, see Sample No. 16 in Table 1). When A / B is larger than 1.040, sintering becomes insufficient, the relative dielectric constant εs decreases, the dielectric loss tanδ increases, the insulation resistance IR decreases, and the high-temperature load life decreases (for example, sample No. 2 in Table 2). 20). Further, when a is smaller than 0.05, the dielectric loss tan δ is large and the high-temperature load life is short (for example, see Sample No. 6 in Table 1). When a is larger than 1.0, the relative dielectric constant εs
And the high-temperature load life is shortened (for example, see Sample No. 10 in Table 1). When b is smaller than 0.05, the relative dielectric constant εs
And the high temperature load life is shortened (for example, the sample in Table 1)
No. 1). When b exceeds 1.0, the relative dielectric constant εs
And the high-temperature load life is shortened (for example, see Sample No. 5 in Table 1). When c is smaller than 0.05, the high temperature load life is shortened (for example, see Sample No. 11 in Table 1). When c exceeds 1.0, the dielectric material is reduced, the insulation resistance IR is reduced, and the high-temperature load life is shortened (for example, see Sample No. 15 in Table 1). In summary, by selecting a, b, and c as described above, the high temperature load life can be improved. If x is more than the above value, the relative permittivity εs decreases. If y is less than the above value, the Curie point is on the high temperature side, and the relative permittivity εs at room temperature decreases. The loss tan δ is also large. If y is more than the above value, the Curie point moves to the low temperature side, so that the relative dielectric constant εs decreases. When A / B is less than 1.000, that is, when Tirich is reached, reduction becomes weak, resulting in a decrease in insulation resistance IR. When A / B is more than 1.040, sintering becomes insufficient. According to the present invention, even when fired in a neutral or reducing atmosphere, the dielectric constant is high, the dielectric loss is small, the high temperature load life is long, and the insulation resistance is high and the reliability is high. Sexual N
i A dielectric ceramic composition for an internal electrode can be obtained. As a result, a multilayer ceramic capacitor using Ni as an internal electrode can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増村 均 東京都中央区日本橋一丁目13番1号 テ ィ−ディ−ケイ株式会社内 (56)参考文献 特開 平2−106811(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Hitoshi Masumura               1-13-1 Nihonbashi, Chuo-ku, Tokyo               IDK Corporation                (56) References JP-A-2-106681 (JP, A)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 チタン酸バリウムを主成分とする誘電体
磁器組成物からなり、該誘電体磁器組成物の組成式が{Ba (100-x) Ca x }A・{Ti (100-y) Zr y
・O3 aMnObSiO 2 cY 2 3 で示される
組成物において、 x、y、A、B、a、b、cが 0 ≦x≦24(モル%) 8 ≦y≦22(モル%) 1.000 ≦A/B ≦1.040 0.05≦a≦1.0 0.05≦b≦1.0 0.05≦c≦1.0 (ただしa、b、cは前記{Ba (100-x) Ca x }A・
{Ti (100-y) Zr y }B・O 3 に対する酸化物換算で
の重量%である)の範囲にしたことを特徴とするNi内
部電極用誘電体磁器組成物
(57) [Claims] [Claim 1] A dielectric mainly composed of barium titanate
Consists ceramic composition, the composition formula of the dielectric ceramic composition {Ba (100-x) Ca x} A · {Ti (100-y) Zr y} B
· Indicated by O 3 + aMnO + bSiO 2 + cY 2 O 3
In the composition , x, y, A, B, a, b, and c are 0 ≦ x ≦ 24 (mol%) 8 ≦ y ≦ 22 (mol%) 1.000 ≦ A / B ≦ 1.040 0.05 ≦ a ≦ 1.0 0.05 ≦ b ≦ 1.0 0.05 ≦ c ≦ 1.0 (where a, b, and c are the above-mentioned {Ba (100-x) Ca x } A ·
{Ti (100-y) Zr y} B · O 3 Ni in, characterized in that it has a range of percentages by weight) in terms of oxide with respect to
Dielectric ceramic composition for external electrodes .
JP02398391A 1991-01-24 1991-01-24 Dielectric ceramic composition for Ni internal electrode Expired - Lifetime JP3361531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02398391A JP3361531B2 (en) 1991-01-24 1991-01-24 Dielectric ceramic composition for Ni internal electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02398391A JP3361531B2 (en) 1991-01-24 1991-01-24 Dielectric ceramic composition for Ni internal electrode

Publications (2)

Publication Number Publication Date
JPH04367559A JPH04367559A (en) 1992-12-18
JP3361531B2 true JP3361531B2 (en) 2003-01-07

Family

ID=12125805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02398391A Expired - Lifetime JP3361531B2 (en) 1991-01-24 1991-01-24 Dielectric ceramic composition for Ni internal electrode

Country Status (1)

Country Link
JP (1) JP3361531B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291380B1 (en) 1999-03-15 2001-09-18 Rohm Co., Ltd. Dielectric ceramic and capacitor using the same
JP2003104774A (en) * 2001-09-27 2003-04-09 Murata Mfg Co Ltd Dielectric porcelain composition and capacitor using the same

Also Published As

Publication number Publication date
JPH04367559A (en) 1992-12-18

Similar Documents

Publication Publication Date Title
JP2998639B2 (en) Multilayer ceramic capacitors
JP3918372B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP3567759B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
KR100438517B1 (en) Reduction-Resistant Dielectric Ceramic Compact and Laminated Ceramic Capacitor
JP3282520B2 (en) Multilayer ceramic capacitors
JP3346293B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
KR101380132B1 (en) Dielectric ceramic and laminated ceramic capacitor
JP2000143341A (en) Dielectric ceramic composition and multilayer ceramic part
JP3039409B2 (en) Multilayer ceramic capacitors
JP2004323315A (en) Dielectric ceramic composition, its production method, and multilayer ceramic capacitor obtained by using the same
JP4029204B2 (en) Dielectric ceramic composition and multilayer ceramic electronic component
JP3323801B2 (en) Porcelain capacitors
JP3796771B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
JP4048808B2 (en) Dielectric ceramic composition and multilayer ceramic electronic component
JP4496639B2 (en) Electronic component and manufacturing method thereof
JP3678072B2 (en) Dielectric ceramic composition and multilayer ceramic component
JP2952062B2 (en) Non-reducing dielectric porcelain composition
JP3361531B2 (en) Dielectric ceramic composition for Ni internal electrode
JP4114434B2 (en) Dielectric ceramic and multilayer ceramic capacitor using the same
JP3634930B2 (en) Dielectric porcelain composition
JP4506090B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP4691790B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP3678073B2 (en) Dielectric ceramic composition and multilayer ceramic component
JP2969007B2 (en) Non-reducing dielectric porcelain composition
JP2952061B2 (en) Non-reducing dielectric porcelain composition

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071018

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9