JPH08124781A - Manufacture of semiconductor ceramic - Google Patents

Manufacture of semiconductor ceramic

Info

Publication number
JPH08124781A
JPH08124781A JP6282956A JP28295694A JPH08124781A JP H08124781 A JPH08124781 A JP H08124781A JP 6282956 A JP6282956 A JP 6282956A JP 28295694 A JP28295694 A JP 28295694A JP H08124781 A JPH08124781 A JP H08124781A
Authority
JP
Japan
Prior art keywords
sample
parts
mol
cuzro
mole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6282956A
Other languages
Japanese (ja)
Other versions
JP2934387B2 (en
Inventor
Takayuki Kano
隆行 狩野
Kiyoshi Tanaka
喜佳 田中
Tokuyuki Mafuchi
徳之 真渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP6282956A priority Critical patent/JP2934387B2/en
Publication of JPH08124781A publication Critical patent/JPH08124781A/en
Application granted granted Critical
Publication of JP2934387B2 publication Critical patent/JP2934387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PURPOSE: To reduce variation of characteristics by adding metal zirconate or titanate or silicate to grain boundary insulating agent easy to evaporate or valence control agent or sintering auxiliary. CONSTITUTION: A molded object is formed which contains the following; main componet composed of ABO3 (A is a one kind of element or a plurality of kinds of elements out of Sr, Ba, Ca and Mg, B is one kind or a plurality of kinds of elements out of Ti and Zr, and O represents oxygen) or material capable of obtaining the main component, valence control agent, and grain boundary insulating agent. The molded object is baked in a reducing atmosphere, and then heat-treated in an oxidizing atmosphere. At least one kind out of the grain boundary insulating agents is zirconate or titanate or silicate. Thereby the method of manufacturing semiconductor porcelain can be obtained which restains the evaporation of additive, and can reduce variation of characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁器コンデンサ、磁器
バリスタ等のための半導体磁器の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing semiconductor porcelain for porcelain capacitors, porcelain varistors and the like.

【0002】[0002]

【従来の技術】SrTiO3 を主成分とする半導体磁器
は、コンデンサ、バリスタ、サーミスタ等の素体として
広く使用されている。これ等の半導体磁器の製造方法の
1つとして、SrTiO3 から成る主成分に、Nb、T
a、希土類元素の化合物等の原子価制御剤(半導体化
剤)と、Cu、Bi、Pb、Mnの酸化物から成る粒界
絶縁化剤と、SiO2 、Al2 3 、MnO2 等の焼結
助剤とを添加した混合物を用意し、この成形体を形成
し、これを還元性雰囲気で1350〜1450℃、2時
間程度焼成し、しかる後、結晶粒界絶縁化のために大気
中で950〜1200℃、2時間程度熱処理する方法が
ある。
2. Description of the Related Art Semiconductor porcelain containing SrTiO 3 as a main component is widely used as a body of capacitors, varistors, thermistors and the like. One which such a method of manufacturing a semiconductor porcelain, the main component consisting of SrTiO 3, Nb, T
a, a valence control agent (semiconductor agent) such as a compound of a rare earth element, a grain boundary insulating agent composed of an oxide of Cu, Bi, Pb, Mn, SiO 2 , Al 2 O 3 , MnO 2 or the like. A mixture to which a sintering aid is added is prepared, this molded body is formed, and this molded body is fired in a reducing atmosphere at 1350 to 1450 ° C. for about 2 hours, and then in the air for insulation of crystal grain boundaries. 950 to 1200 ° C. for about 2 hours.

【0003】[0003]

【発明が解決しようとする課題】ところで、原子価制御
剤又は粒界絶縁化剤又は焼結助剤としてのCu、Bi、
Pb、Mn等の酸化物は還元性雰囲気での焼成時又は酸
化性雰囲気の熱処理時に蒸発する。そして、この蒸発量
は焼成時又は熱処理時の温度及び/又は時間のバラツキ
に応じて変化する。この結果、半導体磁器の見掛上の誘
電率等の特性バラツキが生じる。
By the way, Cu, Bi, as a valence control agent, a grain boundary insulating agent, or a sintering aid,
Oxides such as Pb and Mn evaporate during firing in a reducing atmosphere or heat treatment in an oxidizing atmosphere. Then, this evaporation amount changes according to variations in temperature and / or time during firing or heat treatment. As a result, characteristic variations such as the apparent dielectric constant of the semiconductor porcelain occur.

【0004】そこで、本発明の目的は添加剤の蒸発を抑
制して特性のバラツキを少なくすることができる半導体
磁器の製造方法を提供することにある。
Therefore, an object of the present invention is to provide a method of manufacturing a semiconductor porcelain capable of suppressing evaporation of an additive and reducing variations in characteristics.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明は、ABO3 (但し、AはSr、Ba、Ca、
Mgの内のいずれか1種又は複数種の元素、BはTi、
Zrの内のいずれか1種又は複数種の元素、Oは酸素を
示す。)から成る主成分又は前記主成分を得ることがで
きる原料と原子価制御剤と粒界絶縁化剤とを含む成形体
を形成する工程と、前記成形体を還元性雰囲気で焼成す
る工程と、酸化性雰囲気で熱処理する工程とを有する半
導体磁器の製造方法において、前記粒界絶縁化剤の少な
くとも1種をジルコン酸塩又はチタン酸塩又はケイ酸塩
とする半導体磁器の製造方法に係わるものである。な
お、請求項2に示すように、原子価制御剤(例えばB
i、Mn)をジルコン酸塩又はチタン酸塩又はケイ酸塩
とすることができる。また、請求項3に示すように、焼
結助剤(例えばMn)をジルコン酸塩又はチタン酸塩又
はケイ酸塩とすることができる。本発明における前記主
成分を得ることができる原料とは、例えばSrTiO3
を得るためのSrCO3 とTiO2 、(SrCa)Ti
3 を得るためのSrCO3 とCaCO3 とTiO2
BaTiO3 を得るためのBaCO3 とTiO2等であ
る。前記原子価制御剤(半導体化剤)はNb(ニオ
ブ)、Ta(タンタル)、W(タングステン)及び希土
類元素(Y、La、Ce等)の化合物の1種又は複数種
である。前記粒界絶縁化剤として機能する金属とは、例
えばCu(銅)、Pb(鉛)、Bi(ビスマス)、Mn
(マンガン)、Tl(タリウム)、Sb(アンチモ
ン)、Fe(鉄)である。また、ジルコン酸塩は、例え
ばCuZrO3 、PbZrO3 、Bi4 Zr3 12、M
nZnO3 である。またチタン酸塩は、例えばCuTi
3 、PbTiO3 、Bi4 Ti3 13、MnTiO3
である。またケイ酸塩は、例えばCuSiO3 、PbS
iO3 、Bi4 Si3 12、MnSiO3 である。半導
体磁器の各成分の好ましい割合は、次の通りである。 主成分 100モル部 半導体化剤 0.1〜5.0モル部 粒界絶縁化剤 0.05〜5.0モル部 還元性雰囲気の焼成は好ましくは1300〜1500℃
で1〜5時間なす。また、酸化性雰囲気中での熱処理は
好ましくは700〜1200℃で1〜5時間なす。
The present invention for attaining the above-mentioned object provides ABO 3 (where A is Sr, Ba, Ca,
Any one or more of Mg, B is Ti,
Any one or more elements of Zr, O represents oxygen. A main component consisting of or a raw material capable of obtaining the main component, a valence controller and a grain boundary insulating agent, a step of forming a compact, and a step of firing the compact in a reducing atmosphere, A method for manufacturing a semiconductor ceramic including a step of performing heat treatment in an oxidizing atmosphere, wherein the at least one grain boundary insulating agent is a zirconate, a titanate, or a silicate. is there. As described in claim 2, a valence control agent (for example, B
i, Mn) can be zirconates or titanates or silicates. Further, as described in claim 3, the sintering aid (for example, Mn) can be zirconate, titanate, or silicate. The raw material from which the main component in the present invention can be obtained is, for example, SrTiO 3
To obtain SrCO 3 and TiO 2 , (SrCa) Ti
SrCO 3 , CaCO 3 and TiO 2 to obtain O 3 .
Examples are BaCO 3 and TiO 2 for obtaining BaTiO 3 . The valence control agent (semiconductor agent) is one or more compounds of Nb (niobium), Ta (tantalum), W (tungsten) and rare earth elements (Y, La, Ce, etc.). Examples of the metal functioning as the grain boundary insulating agent include Cu (copper), Pb (lead), Bi (bismuth), and Mn.
(Manganese), Tl (thallium), Sb (antimony), and Fe (iron). The zirconate is, for example, CuZrO 3 , PbZrO 3 , Bi 4 Zr 3 O 12 , M.
It is nZnO 3 . Further, titanate is, for example, CuTi.
O 3 , PbTiO 3 , Bi 4 Ti 3 O 13 , MnTiO 3
Is. The silicate may be CuSiO 3 , PbS, etc.
iO 3 , Bi 4 Si 3 O 12 , and MnSiO 3 . The preferable ratio of each component of the semiconductor porcelain is as follows. Main component 100 mol parts Semiconducting agent 0.1 to 5.0 mol parts Grain boundary insulating agent 0.05 to 5.0 mol parts Firing in a reducing atmosphere is preferably 1300 to 1500 ° C.
It takes 1 to 5 hours. The heat treatment in an oxidizing atmosphere is preferably 700 to 1200 ° C. for 1 to 5 hours.

【0006】[0006]

【発明の作用及び効果】各請求項の発明に従って、蒸発
しやすい粒界絶縁化剤、又は原子価制御剤、又は焼結助
剤を金属のジルコン酸塩又はチタン酸塩又はケイ酸塩で
添加すれば、従来の金属酸化物で添加する場合に比べて
蒸発が少なくなる。即ち、ジルコン酸塩又はチタン酸塩
又はケイ酸塩は粒界に安定的に存在でき且つ主成分に固
溶することもできるジルコン又はチタン又はケイ素を含
んでいるので、これ等と化合している金属も粒界に安定
的に存在し、これ等の蒸発が少なくなる。また、金属は
ジルコン(Zr)、又はチタン(Ti)、又はケイ素
(Si)から分離しにくいため、この蒸発が抑制され
る。従って、焼成条件又は熱処理条件の変動が生じても
添加物の量の変化が少なくなり、特性のバラツキが少な
くなる。また、蒸発が抑えられるために目標とする特性
を得ることができる。
According to the invention of each claim, a grain boundary insulating agent, a valence control agent, or a sintering aid, which easily evaporates, is added as a metal zirconate or titanate or silicate. If so, evaporation is less than that in the case of adding with a conventional metal oxide. That is, since zirconate, titanate, or silicate contains zircon or titanium or silicon that can stably exist at the grain boundaries and can also form a solid solution with the main component, they are combined with them. Metals also exist stably at the grain boundaries, and their evaporation is reduced. Further, since the metal is difficult to separate from zircon (Zr), titanium (Ti), or silicon (Si), this evaporation is suppressed. Therefore, even if the firing condition or the heat treatment condition changes, the change in the amount of the additive is reduced, and the variation in the characteristics is reduced. Further, since the evaporation is suppressed, the target characteristic can be obtained.

【0007】[0007]

【第1の実施例】次に、本発明の実施例に係わるコンデ
ンサ用半導体磁器及びコンデンサの製造方法を説明す
る。
[First Embodiment] Next, a method of manufacturing a semiconductor ceramic for a capacitor and a capacitor according to an embodiment of the present invention will be described.

【0008】一般式ABO3 のAがSr(ストロンチウ
ム)、BがTi(チタン)のSrTiO3 (主成分)
と、原子価制御剤としての希土類元素化合物であるY2
3 (酸化イットリウム)と、主として粒界絶縁化剤と
して機能するCu(銅)のジルコン酸塩であるCuZr
3 と、焼結助剤としてのSiO2 とを、 SrTiO3 100モル部 Y2 3 0.6モル部 CuZrO3 0.05〜3.00モル部 SiO2 0.2モル部 の割合となるように用意し、これ等をボールミルで15
時間湿式混合し、次に乾燥して原料混合物の粉末を得
た。なお、CuZrO3 を0.05モル部、0.50モ
ル部、1.00モル部、3.00モル部の4段階に変え
てNO. 1〜NO. 4の4種類の試料を作った。
In the general formula ABO 3 , A is Sr (strontium) and B is Ti (titanium), SrTiO 3 (main component)
And Y 2 which is a rare earth element compound as a valence control agent
Cu Zr, which is a zirconate of O 3 (yttrium oxide) and Cu (copper) that mainly functions as a grain boundary insulating agent
O 3 and SiO 2 as a sintering aid are mixed with SrTiO 3 100 parts by mole Y 2 O 3 0.6 parts by mole CuZrO 3 0.05 to 3.00 parts by mole SiO 2 0.2 parts by mole. And prepare them with a ball mill.
The mixture was wet-mixed for an hour and then dried to obtain a powder of the raw material mixture. CuZrO 3 was changed to four stages of 0.05 parts by mole, 0.50 parts by mole, 1.00 parts by mole, and 3.00 parts by mole, and four kinds of samples No. 1 to NO. 4 were prepared.

【0009】次に、各試料の原料混合物に有機バインダ
としてのポリビニルアルコールの水溶液を10重量%添
加して混合し、造粒し、この造粒物を1ton /cm2 の圧
力で成形して直径10mm、厚さ0.5mmの円板状成
形体を得た。次に、この成形体を炉にいれて容積比でN
2 :H2 =99:1のN2 +H2 混合ガス雰囲気(非酸
化性雰囲気又は還元性雰囲気)中で1350〜1450
℃で2時間焼成し、その後、大気(酸化性雰囲気)中で
950〜1200℃、2時間の加熱処理を施して結晶粒
界に絶縁層を形成し、各試料の半導体磁器を完成させ
た。焼成後の半導体磁器の直径は約8mm、厚さは約
0.4mmであった。なお、図1に模式的に示すように
半導体磁器1は、半導体結晶粒子2と粒界絶縁層3とで
示すことができる。
Next, 10% by weight of an aqueous solution of polyvinyl alcohol as an organic binder was added to and mixed with the raw material mixture of each sample and granulated, and the granulated product was molded at a pressure of 1 ton / cm 2 A disk-shaped molded body having a thickness of 10 mm and a thickness of 0.5 mm was obtained. Next, this molded body is put into a furnace and the volume ratio thereof is N.
1350 to 1450 in N 2 + H 2 mixed gas atmosphere (non-oxidizing atmosphere or reducing atmosphere) of 2 : H 2 = 99: 1
After firing for 2 hours at 0 ° C., heat treatment was performed in the air (oxidizing atmosphere) at 950 to 1200 ° C. for 2 hours to form an insulating layer at the crystal grain boundary, and the semiconductor porcelain of each sample was completed. The diameter of the sintered semiconductor porcelain was about 8 mm and the thickness was about 0.4 mm. The semiconductor ceramic 1 can be represented by the semiconductor crystal grains 2 and the grain boundary insulating layer 3 as schematically shown in FIG. 1.

【0010】次に、各試料の半導体磁器1の両主面に銀
ペースト(導電ペースト)を印刷法で塗布し、大気中で
800℃、1時間の焼付け処理を施して一対の電極4、
5を形成し、コンデンサを完成させた。なお、特性のバ
ラツキを調べるために各試料について同一構成のコンデ
ンサを100個作った。
Next, a silver paste (conductive paste) is applied to both main surfaces of the semiconductor porcelain 1 of each sample by a printing method, and baked at 800 ° C. for 1 hour in the atmosphere to form a pair of electrodes 4.
5 was formed and the capacitor was completed. In addition, 100 capacitors of the same structure were made for each sample in order to examine the variation in the characteristics.

【0011】次に各試料のコンデンサの見掛誘電率
(ε)、誘電損失(tan δ)、絶縁抵抗(IR)及び見
掛誘電率εの歩留指数(バラツキ)を測定したところ、
次の表1に示す結果が得られた。なお、見掛誘電率ε及
び誘電損失tan δは25℃、周波数1kHz、電圧1V
の条件で測定した。また絶縁抵抗IRは25℃において
DC50Vを1分間印加した後に測定した。また歩留指
数は次式に従って求めた。
Next, the apparent permittivity (ε), the dielectric loss (tan δ), the insulation resistance (IR) and the yield index (variation) of the apparent permittivity ε of the capacitors of the respective samples were measured.
The results shown in Table 1 below were obtained. The apparent permittivity ε and the dielectric loss tan δ are 25 ° C., frequency 1 kHz, voltage 1 V.
It was measured under the conditions. The insulation resistance IR was measured after applying DC 50V for 1 minute at 25 ° C. The yield index was calculated according to the following formula.

【0012】 歩留指数=誘電率εの標準偏差/誘電率εの平均値Yield index = standard deviation of permittivity ε / average value of permittivity ε

【0013】 表1 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 1 41×103 1.1 21×104 0.04 2 49×103 0.5 17×104 0.05 3 52×103 0.7 16×104 0.04 4 48×103 1.1 15×104 0.05Table 1 Sample No. ε tan δ (%) IR (MΩ) Yield index 1 41 × 10 3 1.1 21 × 10 4 0.04 2 49 × 10 3 0.5 17 × 10 4 0. 05 3 52 × 10 3 0.7 16 × 10 4 0.04 4 48 × 10 3 1.1 15 × 10 4 0.05

【0014】比較のために試料NO. 1〜4におけるCu
ZrO3 の変わりに従来の添加物であるCuOを0.0
5モル部、0.50モル部、1.00モル部、3.00
モル部に変えた他は試料NO. 1〜4と同一の組成且つ同
一の方法で試料NO. 5、6、7、8のコンデンサを作
り、同一の方法で特性を測定したところ、次の表2の結
果が得られた。
For comparison, Cu in sample Nos. 1 to 4 was used.
CuO, which is a conventional additive, is replaced with 0.0 instead of ZrO 3.
5 mol parts, 0.50 mol parts, 1.00 mol parts, 3.00
The capacitors of Sample Nos. 5, 6, 7, and 8 were made by the same composition and the same method as those of Sample Nos. 1 to 4 except that the molar parts were changed, and the characteristics were measured by the same method. Two results were obtained.

【0015】 表2 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 5 42×103 1.2 20×104 0.07 6 45×103 0.7 17×104 0.06 7 50×103 0.7 16×104 0.09 8 44×103 0.9 16×104 0.11Table 2 Sample No. ε tan δ (%) IR (MΩ) Yield index 5 42 × 10 3 1.2 20 × 10 4 0.07 6 45 × 10 3 0.7 17 × 10 4 0. 06 7 50 × 10 3 0.7 16 × 10 4 0.09 8 44 × 10 3 0.9 16 × 10 4 0.11

【0016】また、試料NO. 1〜8において焼成前のC
u(銅)の量と焼成及び酸化加熱処理後のCuの量の割
合を求めたところ、本発明に従う試料NO. 1〜4では8
0〜90%であるのに対して比較例の試料NO. 5〜8で
は65〜75%であり、本発明に従う方法によれば焼成
及び酸化加熱処理時におけるCuの飛散即ち蒸発が従来
よりも少なかった。
In Sample Nos. 1 to 8, C before firing was used.
When the ratio of the amount of u (copper) to the amount of Cu after firing and oxidation heat treatment was determined, it was 8 for sample Nos. 1 to 4 according to the present invention.
The sample No. 5 to 8 of the comparative example has a ratio of 0 to 90%, and the ratio is 65 to 75%. According to the method of the present invention, the scattering or evaporation of Cu during firing and oxidation heat treatment is higher than that in the conventional case. There were few.

【0017】表1と表2の対比から明らかなように、本
発明に従う試料NO. 1〜4の歩留指数は比較例を示す試
料NO. 5〜8の歩留指数よりも小さい。このように歩留
指数が小さいことは、εのバラツキが少ないことを意味
する。本発明に従ってεのバラツキが小さくなるのは、
Cuをこの酸化物として添加させないで蒸発しにくいC
uのジルコン酸塩であるCuZrO3 で添加したためで
ある。εのバラツキが小さくなると、コンデンサの良品
率すなわち歩留が向上し、コストの低減を図ることがで
きる。また、試料NO. 1〜4ではCuの蒸発が抑制され
ているので、ε、tan δ、IRが試料NO. 5〜8と同一
又はこれよりも優れている。
As is clear from the comparison between Tables 1 and 2, the yield index of sample Nos. 1 to 4 according to the present invention is smaller than the yield index of sample Nos. 5 to 8 showing the comparative example. Such a small yield index means that there is little variation in ε. According to the present invention, the variation of ε becomes small because
C that is difficult to evaporate without adding Cu as this oxide
This is because CuZrO 3 which is a zirconate of u was added. When the variation of ε is reduced, the yield rate of the capacitors, that is, the yield is improved, and the cost can be reduced. Further, since the evaporation of Cu is suppressed in the sample Nos. 1 to 4, ε, tan δ, and IR are the same as or better than those of the sample Nos. 5 to 8.

【0018】[0018]

【第2の実施例】CuZrO3 の代りに、Pb(鉛)の
ジルコン酸塩であるPbZrO3 を使用してもCuZr
3 と同一の作用効果が得られることを確かめるため
に、第1の実施例におけるCuZrO3 を0.05モル
部、0.50モル部、1.00モル部、3.00モル部
のPbZrO3 に置き換えた他は第1の実施例と同一の
組成且つ同一の方法で試料NO. 9、10、11、12の
コンデンサを作り、第1の実施例と同一の方法で特性を
測定したところ、次の表3に示す結果が得られた。
[Second Embodiment] Even if PbZrO 3 which is a zirconate salt of Pb (lead) is used instead of CuZrO 3 , CuZr
In order to confirm that the same effects as O 3 can be obtained, CuZrO 3 in the first embodiment is added in an amount of 0.05 mol parts, 0.50 mol parts, 1.00 mol parts, and 3.00 mol parts of PbZrO 3. When capacitors Nos. 9, 10, 11 and 12 having the same composition and the same method as those in the first embodiment were prepared and the characteristics were measured by the same method as in the first embodiment, except that the capacitors were replaced by The results shown in Table 3 below were obtained.

【0019】 表3 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 9 43×103 1.1 21×104 0.06 10 41×103 0.7 20×104 0.05 11 45×103 0.6 18×104 0.05 12 47×103 0.9 21×104 0.06Table 3 Sample No. ε tan δ (%) IR (MΩ) Yield index 9 43 × 10 3 1.1 21 × 10 4 0.06 10 41 × 10 3 0.7 20 × 10 4 0. 05 11 45 × 10 3 0.6 18 × 10 4 0.05 12 47 × 10 3 0.9 21 × 10 4 0.06

【0020】また、試料NO. 9〜12と比較するため
に、PbZrO3 の代りにPbOを0.05モル部、
0.50モル部、1.00モル部、3.00モル部添加
した他は試料NO. 9〜12と同一の方法で試料NO. 1
3、14、15、16のコンデンサを作り、試料NO. 9
〜12と同一の方法で特性を測定したところ、次の表4
の結果が得られた。
For comparison with sample Nos. 9 to 12, 0.05 parts by mole of PbO was used instead of PbZrO 3 .
Sample No. 1 was prepared in the same manner as Sample Nos. 9 to 12 except that 0.50 parts by mole, 1.00 parts by mole, and 3.00 parts by mole were added.
Make capacitors Nos. 3, 14, 15 and 16 and sample No. 9
When the characteristics were measured by the same method as that of ~ 12, the following Table 4
Was obtained.

【0021】 表4 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 13 41×103 1.3 20×104 0.06 14 42×103 0.8 21×104 0.08 15 42×103 0.7 19×104 0.10 16 42×103 1.0 19×104 0.11Table 4 Sample NO. Ε tan δ (%) IR (MΩ) Yield index 13 41 × 10 3 1.3 20 × 10 4 0.06 14 42 × 10 3 0.8 21 × 10 4 0. 08 15 42 × 10 3 0.7 19 × 10 4 0.10 16 42 × 10 3 1.0 19 × 10 4 0.11

【0022】表3と表4との比較から明らかなように、
本発明に従う試料NO. 9〜12によれば、Pbの蒸発が
第1の実施例のCuと同様に抑制され、歩留指数が従来
の値以下になり、第1の実施例と同一の作用効果が得ら
れる。
As is clear from the comparison between Tables 3 and 4,
According to the sample Nos. 9 to 12 according to the present invention, the evaporation of Pb was suppressed similarly to the Cu of the first embodiment, and the retention index became equal to or lower than the conventional value, and the same effect as that of the first embodiment was obtained. The effect is obtained.

【0023】[0023]

【第3の実施例】第1の実施例のCuZrO3 の代り
に、Bi(ビスマス)のジルコン酸塩であるBi4 Zr
3 12を使用しても第1の実施例のCuZrO3 と同一
の作用効果が得られることを確かめるために、第1の実
施例におけるCuZrO3 を0.05モル部、0.50
モル部、1.00モル部、3.00モル部のBi4 Zr
3 12に置き換えた他は第1の実施例と同一の組成且つ
同一の方法で試料NO. 17、18、19、20のコンデ
ンサを作り、第1の実施例と同一の方法で特性を測定し
たところ、次の表5に示す結果が得られた。
Third Embodiment Instead of CuZrO 3 in the first embodiment, Bi 4 Zr which is a zirconate salt of Bi (bismuth) is used.
In order to confirm that the same effect as CuZrO 3 of the first embodiment can be obtained by using 3 O 12 , 0.05 mol part of CuZrO 3 in the first embodiment, 0.50
Mol part, 1.00 mol part, 3.00 mol part of Bi 4 Zr
Capacitors of sample Nos. 17, 18, 19, and 20 were made by the same composition and the same method as in the first embodiment except that 3 O 12 was replaced, and the characteristics were measured by the same method as in the first embodiment. As a result, the results shown in Table 5 below were obtained.

【0024】 表5 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 17 42×103 1.3 20×104 0.05 18 45×103 0.5 20×104 0.04 19 41×103 0.4 20×104 0.06 20 42×103 0.9 21×104 0.06Table 5 Sample No. ε tan δ (%) IR (MΩ) Yield index 17 42 × 10 3 1.3 20 × 10 4 0.05 18 45 × 10 3 0.5 20 × 10 4 0. 04 19 41 × 10 3 0.4 20 × 10 4 0.06 20 42 × 10 3 0.9 21 × 10 4 0.06

【0025】また、試料NO. 17〜20と比較するため
に、Bi4 Zr3 12の代りに従来のBi2 3 を0.
05モル部、0.50モル部、1.00モル部、3.0
0モル部添加した他は試料NO. 17〜20と同一の方法
で試料NO. 21、22、23、24のコンデンサを作
り、試料NO. 17〜20と同一の方法で特性を測定した
ところ、次の表6の結果が得られた。
Further, in order to compare with sample Nos. 17 to 20, conventional Bi 2 O 3 was used in place of Bi 4 Zr 3 O 12 .
05 parts by mole, 0.50 parts by mole, 1.00 parts by mole, 3.0
When capacitors of Sample Nos. 21, 22, 23, and 24 were made by the same method as Sample Nos. 17 to 20 except that 0 mol part was added, and the characteristics were measured by the same method as Samples No. 17 to 20, The results shown in Table 6 below were obtained.

【0026】 表6 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 21 40×103 1.1 19×104 0.07 22 45×103 0.8 20×104 0.07 23 43×103 0.8 17×104 0.08 24 41×103 0.9 17×104 0.12Table 6 Sample No. ε tan δ (%) IR (MΩ) Yield index 21 40 × 10 3 1.1 19 × 10 4 0.07 22 45 × 10 3 0.8 20 × 10 4 0. 07 23 43 × 10 3 0.8 17 × 10 4 0.08 24 41 × 10 3 0.9 17 × 10 4 0.12

【0027】表5と表6との比較から明らかなように、
本発明に従う試料NO. 17〜20によれば、Biの蒸発
が第1の実施例のCuと同様に抑制され、歩留指数が従
来の値以下になり、第1の実施例と同一の作用効果が得
られる。
As is clear from the comparison between Table 5 and Table 6,
According to the sample Nos. 17 to 20 according to the present invention, the evaporation of Bi is suppressed as in the case of Cu in the first embodiment, the yield index becomes equal to or lower than the conventional value, and the same effect as in the first embodiment is obtained. The effect is obtained.

【0028】[0028]

【第4の実施例】第1の実施例のCuZrO3 の代り
に、粒界絶縁化剤及び焼結助剤及び原子価制御剤として
機能するMn(マンガン)のジルコン酸塩であるMnZ
rO3 を使用してもCuZrO3 と同一の作用効果が得
られることを確かめるために、第1の実施例におけるC
uZrO3 を0.05モル部、0.50モル部、1.0
0モル部、3.00モル部のMnZrO3 に置き換えた
他は第1の実施例と同一の組成且つ同一の方法で試料N
O. 25、26、27、28のコンデンサを作り、第1
の実施例と同一の方法で特性を測定したところ、次の表
7に示す結果が得られた。
Fourth Embodiment Instead of CuZrO 3 of the first embodiment, MnZ which is a zirconate salt of Mn (manganese) functioning as a grain boundary insulating agent, a sintering aid and a valence control agent.
In order to confirm that the same effect as CuZrO 3 can be obtained by using rO 3 , C in the first embodiment is used.
uZrO 3 0.05 part by mole, 0.50 part by mole, 1.0
Sample N having the same composition and the same method as in the first embodiment except that 0 mol part and 3.00 mol part of MnZrO 3 were used instead.
Make capacitors of O. 25, 26, 27, 28, and
When the characteristics were measured by the same method as in Example 1, the results shown in Table 7 below were obtained.

【0029】 表7 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 25 47×103 0.8 20×104 0.05 26 52×103 0.5 19×104 0.05 27 46×103 0.7 22×104 0.05 28 41×103 0.9 21×104 0.06Table 7 Sample NO. Ε tan δ (%) IR (MΩ) Yield index 25 47 × 10 3 0.8 20 × 10 4 0.05 26 52 × 10 3 0.5 19 × 10 4 0. 05 27 46 × 10 3 0.7 22 × 10 4 0.05 28 41 × 10 3 0.9 21 × 10 4 0.06

【0030】また、試料NO. 25〜28と比較するため
に、MnZrO3 の代りにMnの酸化物であるMnO2
を0.05モル部、0.50モル部、1.00モル部、
3.00モル部添加した他は試料NO. 25〜28と同一
の方法で試料NO. 29、30、31、32のコンデンサ
を作り、試料NO. 25〜28と同一の方法で特性を測定
したところ、次の表8の結果が得られた。
For comparison with sample Nos. 25 to 28, MnO 2 which is an oxide of Mn instead of MnZrO 3 was used.
0.05 part, 0.50 part, 1.00 part,
The capacitors of Sample Nos. 29, 30, 31, and 32 were made in the same manner as Sample Nos. 25 to 28 except that 3.00 parts by mol were added, and the characteristics were measured in the same manner as Samples No. 25 to 28. However, the results shown in Table 8 below were obtained.

【0031】 表8 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 29 48×103 0.9 19×104 0.05 30 50×103 0.8 19×104 0.06 31 43×103 0.9 20×104 0.06 32 45×103 1.0 21×104 0.08Table 8 Sample No. ε tan δ (%) IR (MΩ) Yield index 29 48 × 10 3 0.9 19 × 10 4 0.05 30 50 × 10 3 0.8 19 × 10 4 0. 06 31 43 × 10 3 0.9 20 × 10 4 0.06 32 45 × 10 3 1.0 21 × 10 4 0.08

【0032】表7と表8との比較から明らかなように、
本発明に従う試料NO. 25〜28によれば、Mnの蒸発
が第1の実施例のCuと同様に抑制され、歩留指数が従
来の値以下になり、第1の実施例と同一の作用効果が得
られる。
As is clear from the comparison between Table 7 and Table 8,
According to the sample Nos. 25 to 28 according to the present invention, the evaporation of Mn is suppressed like the Cu of the first embodiment, the yield index becomes equal to or less than the conventional value, and the same action as that of the first embodiment is obtained. The effect is obtained.

【0033】[0033]

【第5の実施例】第1〜第4の実施例のCuZrO3
PbZrO3 、Bi4 Zr3 12、MnZrO3 の代り
に、これ等から選択された複数種類を添加しても第1〜
第4の実施例と同様な作用効果が得られることを確かめ
るために、第1の実施例のCuZrO3 を、0.5モル
部のCuZrO3 と0.5モル部のPbZrO3 との混
合物(試料NO. 33)、0.5モル部のCuZrO3
0.5モル部のBi4 Zr3 12との混合物(試料NO.
34)、0.5モル部のCuZrO3 と0.5モル部の
MnZrO3 との混合物(試料NO. 35)、0.5モル
部のPbZrO3 と0.5モル部のBi4 Zr3 12
の混合物(試料NO. 36)、0.5モル部のPbZrO
3 と0.5モル部のMnZrO3 との混合物(試料NO.
37)、0.5モル部のBi4 Zr3 12と0.5モル
部のMnZrO3 との混合物(試料NO. 38)に置き換
えた他は第1の実施例と同一の組成且つ同一の方法でコ
ンデンサを作り、第1の実施例と同一の方法で特性を測
定したところ、次の表9に示す結果が得られた。
[Fifth Embodiment] CuZrO 3 of the first to fourth embodiments,
In place of PbZrO 3 , Bi 4 Zr 3 O 12 , and MnZrO 3 , a plurality of types selected from these may be added
In order to confirm that the same effect as in the fourth embodiment can be obtained, CuZrO 3 of the first embodiment is mixed with 0.5 mol parts of CuZrO 3 and 0.5 mol parts of PbZrO 3 ( Sample No. 33), a mixture of 0.5 parts by mole of CuZrO 3 and 0.5 parts by mole of Bi 4 Zr 3 O 12 (Sample No. 33).
34), a mixture of 0.5 mol part of CuZrO 3 and 0.5 mol part of MnZrO 3 (Sample No. 35), 0.5 mol part of PbZrO 3 and 0.5 mol part of Bi 4 Zr 3 O. Mixture with 12 (Sample No. 36), 0.5 mol part of PbZrO
3 and 0.5 mol part of MnZrO 3 (Sample NO.
37), having the same composition and the same composition as in the first example, except that it was replaced with a mixture of 0.5 mol part of Bi 4 Zr 3 O 12 and 0.5 mol part of MnZrO 3 (sample No. 38). When a capacitor was produced by the method and the characteristics were measured by the same method as in the first embodiment, the results shown in Table 9 below were obtained.

【0034】 表9 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 33 51×103 0.8 19×104 0.04 34 52×103 0.5 17×104 0.04 35 54×103 0.7 16×104 0.06 36 51×103 0.8 17×104 0.05 37 52×103 0.8 19×104 0.04 38 46×103 0.6 21×104 0.06Table 9 Sample No. ε tan δ (%) IR (MΩ) Yield index 33 51 51 × 10 3 0.8 19 × 10 4 0.04 34 52 × 10 3 0.5 17 × 10 4 0. 04 35 54 × 10 3 0.7 16 × 10 4 0.06 36 51 × 10 3 0.8 17 × 10 4 0.05 37 5 52 × 10 3 0.8 19 × 10 4 0.04 38 46 × 10 3 0.6 21 x 10 4 0.06

【0035】また、試料NO. 33〜38と比較するため
に、試料NO. 33〜38のCu、Pb、Bi、Mnのジ
ルコン酸塩をこれ等の酸化物に置き換えた他は試料NO.
33〜38と同一の方法で試料NO. 39、40、41、
42、43、44のコンデンサを作り、試料NO. 33〜
38と同一の方法で特性を測定したところ、次の表10
の結果が得られた。
Further, in order to compare with sample Nos. 33 to 38, the zirconates of Cu, Pb, Bi, and Mn of sample Nos. 33 to 38 were replaced with these oxides, and sample NO.
In the same manner as 33 to 38, sample Nos. 39, 40, 41,
42, 43, 44 capacitors were made and sample No. 33-
When the characteristics were measured by the same method as in No. 38, the following Table 10
Was obtained.

【0036】 表10 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 39 50×103 0.8 17×104 0.10 40 48×103 0.7 17×104 0.12 41 50×103 0.7 16×104 0.08 42 48×103 0.7 16×104 0.12 43 50×103 0.7 17×104 0.09 44 48×103 0.8 17×104 0.10Table 10 Sample No. ε tan δ (%) IR (MΩ) Yield index 39 50 × 10 3 0.8 17 × 10 4 0.10 40 48 × 10 3 0.7 17 × 10 4 0. 12 41 50 × 10 3 0.7 16 × 10 4 0.08 42 48 × 10 3 0.7 16 × 10 4 0.12 43 50 × 10 3 0.7 17 × 10 4 0.09 44 48 × 10 3 0.8 17 x 10 4 0.10

【0037】表9と表10との比較から明らかなよう
に、本発明に従う試料NO. 33〜38によれば、Cu、
Pb、Bi、Mnの複数種類のジルコン酸塩を添加して
もCu、Pb、Bi、Mnの蒸発が抑制され、歩留指数
が従来の値以下になり、第1〜第4の実施例と同一の作
用効果が得られる。
As is clear from the comparison between Table 9 and Table 10, according to the sample Nos. 33 to 38 according to the present invention, Cu,
Even if a plurality of types of zirconate salts of Pb, Bi, and Mn are added, the evaporation of Cu, Pb, Bi, and Mn is suppressed, and the retention index becomes less than the conventional value. The same effect can be obtained.

【0038】[0038]

【第6の実施例】第1の実施例のCuZrO3 の代り
に、Cuのチタン酸塩であるCuTiO3を使用しても
CuZrO3 と同一の作用効果が得られることを確かめ
るために、第1の実施例におけるCuZrO3 を0.0
5モル部、0.50モル部、1.00モル部、3.00
モル部のCuTiO3 に置き換えた他は第1の実施例と
同一の組成且つ同一の方法で試料NO. 45、46、4
7、48のコンデンサを作り、第1の実施例と同一の方
法で特性を測定したところ、次の表11に示す結果が得
られた。
[Sixth Embodiment] In order to confirm that the same action and effect as CuZrO 3 can be obtained by using CuTiO 3 which is a titanate of Cu in place of CuZrO 3 of the first embodiment, CuZrO 3 in Example 1 was 0.0
5 mol parts, 0.50 mol parts, 1.00 mol parts, 3.00
Sample Nos. 45, 46, 4 having the same composition and the same method as in the first embodiment except that CuTiO 3 in the molar part was replaced.
When capacitors Nos. 7 and 48 were produced and the characteristics were measured by the same method as in the first embodiment, the results shown in the following Table 11 were obtained.

【0039】 表11 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 45 40×103 1.1 20×104 0.04 46 52×103 0.7 17×104 0.05 47 50×103 0.7 17×104 0.06 48 48×103 0.9 16×104 0.06Table 11 Sample No. ε tan δ (%) IR (MΩ) Yield index 45 40 × 10 3 1.1 20 × 10 4 0.04 46 52 × 10 3 0.7 17 × 10 4 0. 05 47 50 × 10 3 0.7 17 × 10 4 0.06 48 48 × 10 3 0.9 16 × 10 4 0.06

【0040】表11と表2との比較から明らかなよう
に、本発明に従う試料NO. 45〜48によれば、試料N
O. 5〜8のCuOを使用する場合に比べてCuの蒸発
が第1の実施例と同様に抑制され、歩留指数が従来の値
以下になり、第1の実施例と同一の作用効果が得られ
る。
As is clear from the comparison between Table 11 and Table 2, according to the sample Nos. 45 to 48 according to the present invention, the sample N
Evaporation of Cu is suppressed similarly to the case of using CuO of O.5 to 8 as in the first embodiment, and the yield index becomes equal to or lower than the conventional value, and the same effect as the first embodiment. Is obtained.

【0041】[0041]

【第7の実施例】第1の実施例のCuZrO3 の代り
に、Pb(鉛)のチタン酸塩であるPbTiO3 を使用
してもCuZrO3 と同一の作用効果が得られることを
確かめるために、第1の実施例におけるCuZrO3
0.05モル部、0.50モル部、1.00モル部、
3.00モル部のPbTiO3 に置き換えた他は第1の
実施例と同一の組成且つ同一の方法で試料NO. 49、5
0、51、52のコンデンサを作り、第1の実施例と同
一の方法で特性を測定したところ、次の表12に示す結
果が得られた。
[Seventh Embodiment] In order to confirm that the same effect as CuZrO 3 can be obtained by using Pb (lead) titanate PbTiO 3 instead of CuZrO 3 in the first embodiment. In addition, 0.05 mol parts, 0.50 mol parts, 1.00 mol parts of CuZrO 3 in the first embodiment,
Sample No. 49, 5 having the same composition and the same method as in the first embodiment except that PbTiO 3 was replaced by 3.00 parts by mol.
When capacitors Nos. 0, 51 and 52 were made and the characteristics were measured by the same method as in the first embodiment, the results shown in Table 12 below were obtained.

【0042】 表12 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 49 41×103 1.2 22×104 0.06 50 45×103 0.7 20×104 0.06 51 42×103 0.7 18×104 0.07 52 42×103 0.9 19×104 0.07Table 12 Sample NO. Ε tan δ (%) IR (MΩ) Yield index 49 41 × 10 3 1.2 22 × 10 4 0.06 50 45 × 10 3 0.7 20 × 10 4 0. 06 51 42 × 10 3 0.7 18 × 10 4 0.07 52 42 × 10 3 0.9 19 × 10 4 0.07

【0043】表12と表4との比較から明らかなよう
に、本発明に従う試料NO. 49〜52によれば、試料N
O. 13〜16のPbOの場合に比べてPbの蒸発が第
1の実施例のCuと同様に抑制され、歩留指数が従来の
値以下になり、第1及び第2の実施例と同一の作用効果
が得られる。
As is clear from the comparison between Table 12 and Table 4, according to the sample Nos. 49 to 52 according to the present invention, the sample N
Compared with the case of PbO of O.13 to 16, the evaporation of Pb is suppressed similarly to Cu of the first embodiment, the retention index becomes less than the conventional value, and it is the same as that of the first and second embodiments. The effect of is obtained.

【0044】[0044]

【第8の実施例】第1の実施例のCuZrO3 の代り
に、粒界絶縁化剤及び原子価制御剤として機能するBi
(ビスマス)のチタン酸塩であるBi4 Zr3 12を使
用してもCuZrO3 と同一の作用効果が得られること
を確かめるために、第1の実施例におけるCuZrO3
を0.05モル部、0.50モル部、1.00モル部、
3.00モル部のBi4 Zr3 12に置き換えた他は第
1の実施例と同一の組成且つ同一の方法で試料NO. 5
3、54、55、56のコンデンサを作り、第1の実施
例と同一の方法で特性を測定したところ、次の表13に
示す結果が得られた。
[Eighth Embodiment] Bi which functions as a grain boundary insulating agent and a valence control agent instead of CuZrO 3 in the first embodiment
To confirm that Bi 4 Zr 3 O 12 which is a titanate of (bismuth) is used, the same effect as CuZrO 3 can be obtained, and CuZrO 3 in the first embodiment is used.
0.05 part, 0.50 part, 1.00 part,
Sample No. 5 having the same composition and the same method as in the first embodiment except that Bi 4 Zr 3 O 12 was replaced with 3.00 parts by mol.
When capacitors Nos. 3, 54, 55 and 56 were made and the characteristics were measured by the same method as in the first embodiment, the results shown in the following Table 13 were obtained.

【0045】 表13 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 53 42×103 1.0 19×104 0.05 54 45×103 0.8 19×104 0.06 55 45×103 0.7 20×104 0.07 56 41×103 0.9 21×104 0.07Table 13 Sample No. ε tan δ (%) IR (MΩ) Yield index 53 42 42 × 10 3 1.0 19 × 10 4 0.05 54 45 × 10 3 0.8 19 × 10 4 0. 06 55 45 × 10 3 0.7 20 × 10 4 0.07 56 41 × 10 3 0.9 21 × 10 4 0.07

【0046】表13と表6との比較から明らかなよう
に、本発明に従う試料NO. 53〜56によれば、表6の
Bi2 3 の場合に比べてBiの蒸発が第1の実施例の
Cuと同様に抑制され、歩留指数が従来の値以下にな
り、第1及び第3の実施例と同一の作用効果が得られ
る。
As is clear from the comparison between Table 13 and Table 6, according to the sample Nos. 53 to 56 according to the present invention, the evaporation of Bi is the first operation as compared with the case of Bi 2 O 3 in Table 6. It is suppressed similarly to Cu of the example, the yield index becomes equal to or less than the conventional value, and the same effects as those of the first and third embodiments can be obtained.

【0047】[0047]

【第9の実施例】第1の実施例のCuZrO3 の代り
に、粒界絶縁化剤及び焼結助剤として機能するMnのチ
タン酸塩であるMnTiO3 を使用してもCuZrO3
と同一の作用効果が得られることを確かめるために、第
1の実施例におけるCuZrO3 を0.05モル部、
0.50モル部、1.00モル部、3.00モル部のM
nTiO3 に置き換えた他は第1の実施例と同一の組成
且つ同一の方法で試料NO. 57、58、59、60のコ
ンデンサを作り、第1の実施例と同一の方法で特性を測
定したところ、次の表14に示す結果が得られた。
[Ninth Embodiment] Even if CuZrO 3 which is a titanate of Mn functioning as a grain boundary insulating agent and a sintering aid is used instead of CuZrO 3 of the first embodiment, CuZrO 3 is used.
In order to confirm that the same action and effect as above can be obtained, 0.05 mol part of CuZrO 3 in the first embodiment,
0.50 parts by mole, 1.00 parts by mole, 3.00 parts by mole of M
Capacitors of sample Nos. 57, 58, 59 and 60 were made by the same composition and the same method as those of the first embodiment except that they were replaced by nTiO 3 , and the characteristics were measured by the same method as that of the first embodiment. However, the results shown in Table 14 below were obtained.

【0048】 表14 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 57 50×103 0.9 19×104 0.04 58 52×103 0.8 18×104 0.05 59 45×103 0.8 20×104 0.05 60 48×103 1.0 21×104 0.06Table 14 Sample No. ε tan δ (%) IR (MΩ) Yield index 57 50 50 × 10 3 0.9 19 × 10 4 0.04 58 52 × 10 3 0.8 18 × 10 4 0. 05 59 45 × 10 3 0.8 20 × 10 4 0.05 60 48 × 10 3 1.0 21 × 10 4 0.06

【0049】表14と表8との比較から明らかなよう
に、本発明に従う試料NO. 57〜60によれば、Mnの
蒸発が第1の実施例のCuと同様に抑制され、歩留指数
が従来の値以下になり、第1及び第4の実施例と同一の
作用効果が得られる。
As is clear from the comparison between Table 14 and Table 8, according to the sample Nos. 57 to 60 according to the present invention, the evaporation of Mn is suppressed similarly to the Cu of the first embodiment, and the yield index. Is less than or equal to the conventional value, and the same effects as those of the first and fourth embodiments can be obtained.

【0050】[0050]

【第10の実施例】第6〜第9の実施例のCuTi
3 、PbTiO3 、Bi4 Ti3 12、MnTiO3
の代りに、これ等から選択された複数種類を添加しても
第6〜第9の実施例と同様な作用効果が得られることを
確かめるために、第1の実施例のCuZrO3 を、0.
5モル部のCuTiO3 と0.5モル部のPbTiO3
との混合物(試料NO. 61)、0.5モル部のCuTi
3 と0.5モル部のBi4 Ti3 12との混合物(試
料NO. 62)、0.5モル部のCuTiO3 と0.5モ
ル部のMnTiO3 との混合物(試料NO. 63)、0.
5モル部のPbTiO3 と0.5モル部のBi4 Ti3
12との混合物(試料NO. 64)、0.5モル部のPb
TiO3 と0.5モル部のMnTiO3 との混合物(試
料NO. 65)、0.5モル部のBi4 Ti3 12と0.
5モル部のMnTiO3 との混合物(試料NO. 66)に
置き換えた他は第1の実施例と同一の組成且つ方法でコ
ンデンサを作り、第1の実施例と同一の方法で特性を測
定したところ、次の表15に示す結果が得られた。
[Tenth Embodiment] CuTi of the sixth to ninth embodiments
O 3 , PbTiO 3 , Bi 4 Ti 3 O 12 , MnTiO 3
In order to confirm that the same effects as those of the sixth to ninth embodiments can be obtained by adding a plurality of kinds selected from these, instead of CuZrO 3 of the first embodiment, .
5 mol parts of CuTiO 3 and 0.5 mol parts of PbTiO 3
With a mixture (Sample No. 61), 0.5 mol part of CuTi
A mixture of O 3 and 0.5 parts by mole of Bi 4 Ti 3 O 12 (sample NO. 62), a mixture of 0.5 parts by mole of CuTiO 3 and 0.5 parts by mole of MnTiO 3 (sample NO. 63). ), 0.
5 mol parts of PbTiO 3 and 0.5 mol parts of Bi 4 Ti 3
Mixture with O 12 (Sample No. 64), 0.5 mol part of Pb
A mixture of TiO 3 and 0.5 part by mole of MnTiO 3 (Sample No. 65), 0.5 part by mole of Bi 4 Ti 3 O 12 and 0.
A capacitor was made with the same composition and method as in Example 1 except that the mixture was replaced with a mixture with 5 mol parts of MnTiO 3 (Sample No. 66), and the characteristics were measured by the same method as in Example 1. However, the results shown in Table 15 below were obtained.

【0051】 表15 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 61 51×103 0.7 17×104 0.04 62 52×103 0.7 17×104 0.05 63 50×103 0.7 17×104 0.06 64 50×103 0.8 16×104 0.06 65 51×103 0.7 18×104 0.06 66 48×103 0.7 17×104 0.06Table 15 Sample No. ε tan δ (%) IR (MΩ) Yield index 61 51 × 10 3 0.7 17 × 10 4 0.04 62 52 × 10 3 0.7 17 × 10 4 0. 05 63 50 × 10 3 0.7 17 × 10 4 0.06 64 50 × 10 3 0.8 16 × 10 4 0.06 65 51 × 10 3 0.7 18 × 10 4 0.06 66 48 × 10 3 0.7 17 x 10 4 0.06

【0052】表5と従来例を示す表10との比較から明
らかなように、Cu、Pb、Bi、Mnのチタン酸塩の
複数種を混合した場合においてもCu、Pb、Bi、M
nの蒸発が抑制され、歩留指数が従来の値以下になり、
第1及び第6〜第9と同一の作用効果が得られる。
As is clear from the comparison between Table 5 and Table 10 showing the conventional example, even when a plurality of titanates of Cu, Pb, Bi and Mn are mixed, Cu, Pb, Bi and M are mixed.
The evaporation of n is suppressed, the yield index becomes below the conventional value,
The same effect as the first and sixth to ninth aspects can be obtained.

【0053】[0053]

【第11の実施例】第1の実施例のCuZrO3 の代り
に、Cuのケイ酸塩であるCuSiO3 を使用してもC
uZrO3 と同一の作用効果が得られることを確かめる
ために、第1の実施例におけるCuZrO3 を0.05
モル部、0.50モル部、1.00モル部、3.00モ
ル部のCuSiO3 に置き換えた他は第1の実施例と同
一の組成且つ同一の方法で試料NO. 67、68、69、
70のコンデンサを作り、第1の実施例と同一の方法で
特性を測定したところ、次の表16に示す結果が得られ
た。
Eleventh Embodiment Even if CuSiO 3 which is a silicate of Cu is used instead of CuZrO 3 of the first embodiment, C
In order to confirm that the same effect as uZrO 3 can be obtained, CuZrO 3 in the first embodiment is adjusted to 0.05%.
Sample Nos. 67, 68 and 69 having the same composition and the same method as those in the first embodiment except that CuSiO 3 was replaced by 1 mol part, 0.50 mol part, 1.00 mol part and 3.00 mol part. ,
70 capacitors were manufactured and the characteristics were measured by the same method as in the first example, and the results shown in Table 16 below were obtained.

【0054】 表16 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 67 41×103 1.2 22×104 0.05 68 51×103 0.8 18×104 0.05 69 50×103 0.8 19×104 0.06 70 46×103 1.1 17×104 0.06Table 16 Sample No. ε tan δ (%) IR (MΩ) Yield index 67 41 × 10 3 1.2 22 × 10 4 0.05 68 51 × 10 3 0.8 18 × 10 4 0. 05 69 50 × 10 3 0.8 19 × 10 4 0.06 70 46 × 10 3 1.1 17 × 10 4 0.06

【0055】表16と従来例の表2との比較から明らか
なように、本発明に従う試料NO. 67〜70によれば、
Cuの蒸発が第1の実施例と同様に抑制され、歩留指数
が従来の値以下になり、第1の実施例と同一の作用効果
が得られる。
As is apparent from the comparison between Table 16 and Table 2 of the conventional example, according to the sample Nos. 67 to 70 according to the present invention,
Evaporation of Cu is suppressed in the same manner as in the first embodiment, and the yield index becomes equal to or lower than the conventional value, and the same effect as the first embodiment can be obtained.

【0056】[0056]

【第12の実施例】第1の実施例のCuZrO3 の代り
に、Pb(鉛)のケイ酸塩であるPbSiO3 を使用し
てもCuZrO3 と同一の作用効果が得られることを確
かめるために、第1の実施例におけるCuZrO3
0.05モル部、0.50モル部、1.00モル部、
3.00モル部のPbSiO3 に置き換えた他は第1の
実施例と同一の組成且つ同一の方法で試料NO. 71、7
2、73、74のコンデンサを作り、第1の実施例と同
一の方法で特性を測定したところ、次の表17に示す結
果が得られた。
Instead of CuZrO 3 of the twelfth embodiment A first embodiment, Pb To confirm that the same effects as CuZrO 3 be used PbSiO 3 is a silicate (Pb) is obtained In addition, 0.05 mol parts, 0.50 mol parts, 1.00 mol parts of CuZrO 3 in the first embodiment,
Sample Nos. 71 and 7 having the same composition and the same method as those in the first embodiment except that PbSiO 3 was replaced with 3.00 parts by mol.
When capacitors Nos. 2, 73 and 74 were made and the characteristics were measured by the same method as in the first embodiment, the results shown in Table 17 below were obtained.

【0057】 表17 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 71 41×103 1.2 24×104 0.06 72 43×103 0.7 22×104 0.06 73 41×103 0.7 19×104 0.06 74 42×103 1.0 20×104 0.07Table 17 Sample NO. Ε tan δ (%) IR (MΩ) Yield index 71 41 41 × 10 3 1.2 24 × 10 4 0.06 72 43 × 10 3 0.7 22 × 10 4 0. 06 73 41 × 10 3 0.7 19 × 10 4 0.06 74 42 × 10 3 1.0 20 × 10 4 0.07

【0058】表17と従来例を示す表4との比較から明
らかなように、本発明に従う試料NO. 71〜74によれ
ば、Pbの蒸発が第1の実施例のCuと同様に抑制さ
れ、歩留指数が従来の値以下になり、第1及び第2の実
施例と同一の作用効果が得られる。
As is clear from the comparison between Table 17 and Table 4 showing the conventional example, according to the sample Nos. 71 to 74 according to the present invention, the evaporation of Pb is suppressed similarly to Cu of the first embodiment. The yield index becomes equal to or lower than the conventional value, and the same effects as those of the first and second embodiments can be obtained.

【0059】[0059]

【第13の実施例】第1の実施例のCuZrO3 の代り
に、Biのケイ酸塩であるBi4 Si3 12を使用して
もCuZrO3 と同一の作用効果が得られることを確か
めるために、第1の実施例におけるCuZrO3 を0.
05モル部、0.50モル部、1.00モル部、3.0
0モル部のBi4 Si3 12に置き換えた他は第1の実
施例と同一の組成且つ同一の方法で試料NO. 75、7
6、77、78のコンデンサを作り、第1の実施例と同
一の方法で特性を測定したところ、次の表18に示す結
果が得られた。
To the thirteenth embodiment of] Instead of CuZrO 3 of the first embodiment, ensure that the same effects as CuZrO 3 be used Bi 4 Si 3 O 12 is a silicate of Bi is obtained Therefore, CuZrO 3 in the first embodiment is added to 0.
05 parts by mole, 0.50 parts by mole, 1.00 parts by mole, 3.0
Sample Nos. 75 and 7 were prepared by the same composition and the same method as in the first embodiment except that 0 mol part of Bi 4 Si 3 O 12 was replaced.
When capacitors Nos. 6, 77 and 78 were made and the characteristics were measured by the same method as in the first embodiment, the results shown in the following Table 18 were obtained.

【0060】 表18 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 75 40×103 1.0 20×104 0.05 76 43×103 0.8 20×104 0.06 77 43×103 0.7 21×104 0.06 78 40×103 1.0 21×104 0.06Table 18 Sample NO. Ε tan δ (%) IR (MΩ) Yield index 75 40 40 × 10 3 1.0 20 × 10 4 0.05 76 43 × 10 3 0.8 20 × 10 4 0. 06 77 43 × 10 3 0.7 21 × 10 4 0.06 78 40 × 10 3 1.0 21 × 10 4 0.06

【0061】表18と表6との比較から明らかなよう
に、本発明に従う試料NO. 75〜78によれば、Biの
蒸発が第1の実施例のCuと同様に抑制され、歩留指数
が従来の値以下になり、第1及び第3の実施例と同一の
作用効果が得られる。
As is clear from the comparison between Table 18 and Table 6, according to the sample Nos. 75 to 78 according to the present invention, the evaporation of Bi was suppressed as in the case of Cu of the first embodiment, and the yield index. Is less than or equal to the conventional value, and the same effects as those of the first and third embodiments can be obtained.

【0062】[0062]

【第14の実施例】第1の実施例のCuZrO3 の代り
に、Mnのケイ酸塩であるMnSiO3 を使用してもC
uZrO3 と同一の作用効果が得られることを確かめる
ために、第1の実施例におけるCuZrO3 を0.05
モル部、0.50モル部、1.00モル部、3.00モ
ル部のMnSiO3 に置き換えた他は第1の実施例と同
一の組成且つ同一の方法で試料NO. 79、80、81、
82のコンデンサを作り、第1の実施例と同一の方法で
特性を測定したところ、次の表19に示す結果が得られ
た。
[Fourteenth Embodiment] Even if MnSiO 3 which is a silicate of Mn is used in place of CuZrO 3 of the first embodiment, C
In order to confirm that the same effect as uZrO 3 can be obtained, CuZrO 3 in the first embodiment is adjusted to 0.05%.
Sample Nos. 79, 80, 81 having the same composition and the same method as those in the first embodiment except that MnSiO 3 of 0.5 parts, 0.50 parts, 1.00 parts and 3.00 parts were used. ,
No. 82 capacitor was manufactured and the characteristics were measured by the same method as in the first example, and the results shown in Table 19 below were obtained.

【0063】 表19 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 79 48×103 0.9 19×104 0.05 80 51×103 0.8 17×104 0.05 81 48×103 0.8 21×104 0.05 82 48×103 1.0 20×104 0.06Table 19 Sample NO. Ε tan δ (%) IR (MΩ) Yield index 79 48 × 10 3 0.9 19 × 10 4 0.05 80 51 × 10 3 0.8 17 × 10 4 0. 05 81 48 × 10 3 0.8 21 × 10 4 0.05 82 48 × 10 3 1.0 20 × 10 4 0.06

【0064】表19と表8との比較から明らかなよう
に、本発明に従う試料NO. 79〜82によれば、Mnの
蒸発が第1の実施例のCuと同様に抑制され、歩留指数
が従来の値以下になり、第1及び第4の実施例と同一の
作用効果が得られる。
As is clear from the comparison between Table 19 and Table 8, according to the sample Nos. 79 to 82 according to the present invention, the evaporation of Mn is suppressed similarly to the Cu of the first embodiment, and the yield index. Is less than or equal to the conventional value, and the same effects as those of the first and fourth embodiments can be obtained.

【0065】[0065]

【第15の実施例】第11〜14の実施例のCuSiO
3 、PbSiO3 、Bi4 Si3 12、MnSiO3
代りに、これ等から選択された複数種類を添加しても第
11〜第14の実施例と同様な作用効果が得られること
を確かめるために、第1の実施例のCuZrO3 を、
0.5モル部のCuSiO3 と0.5モル部のPbSi
3 との混合物(試料NO. 83)、0.5モル部のCu
SiO3 と0.5モル部のBi 4 Si3 12との混合物
(試料NO. 84)、0.5モル部のCuSiO3 と0.
5モル部のMnSiO3 との混合物(試料NO. 85)、
0.5モル部のPbSiO3 と0.5モル部のBi4
3 12との混合物(試料NO. 86)、0.5モル部の
PbSiO3 と0.5モル部のMnSiO3 との混合物
(試料NO. 87)、0.5モル部のBi4 Si3 12
0.5モル部のMnSiO3 との混合物(試料NO. 8
8)に置き換えた他は第1の実施例と同一の組成且つ同
一の方法でコンデンサを作り、第1の実施例と同一の方
法で特性を測定したところ、次の表20の結果が得られ
た。
[15th Embodiment] CuSiO of the 11th to 14th embodiments
3, PbSiO3, BiFourSi3O12, MnSiO3of
Instead, even if you add multiple types selected from these,
The same effects as those of the 11th to 14th embodiments can be obtained.
In order to confirm the above, CuZrO of the first embodiment3To
0.5 mol part of CuSiO3And 0.5 mol part of PbSi
O3With a mixture (sample NO. 83), 0.5 mol part of Cu
SiO3And 0.5 mol part of Bi FourSi3O12Mixture with
(Sample No. 84), 0.5 mol part of CuSiO3And 0.
5 mol part of MnSiO3Mixture with (Sample No. 85),
0.5 mol part of PbSiO3And 0.5 mol part of BiFourS
i3O12With a mixture (Sample No. 86), 0.5 mol part
PbSiO3And 0.5 mol part of MnSiO3Mixture with
(Sample No. 87), 0.5 mol part of BiFourSi3O12When
0.5 mol part of MnSiO3Mixture with (Sample No. 8
8) except that it has the same composition and the same composition as in the first embodiment.
The same method as in the first embodiment
When the characteristics were measured by the method, the results shown in Table 20 below were obtained.
Was.

【0066】 表20 試料NO. ε tan δ(%) IR(MΩ) 歩留指数 83 50×103 0.6 18×104 0.05 84 51×103 0.7 18×104 0.05 85 51×103 0.6 18×104 0.07 86 51×103 0.7 18×104 0.06 87 50×103 0.7 19×104 0.07 88 48×103 0.8 19×104 0.06Table 20 Sample No. ε tan δ (%) IR (MΩ) Yield index 83 50 50 × 10 3 0.6 18 × 10 4 0.05 84 51 × 10 3 0.7 18 × 10 4 0. 05 85 51 × 10 3 0.6 18 × 10 4 0.07 86 51 × 10 3 0.7 18 × 10 4 0.06 87 50 × 10 3 0.7 19 × 10 4 0.07 88 48 × 10 3 0.8 19 x 10 4 0.06

【0067】表20と表9との比較から明らかなよう
に、Cu、Pb、Bi、Mnのケイ酸塩の複数種類を添
加する場合であってもCu、Pb、Bi、Mnの蒸発が
抑制され、歩留指数が従来の値以下になり、第1の実施
例と同一の作用効果が得られる。
As is clear from the comparison between Table 20 and Table 9, the evaporation of Cu, Pb, Bi and Mn is suppressed even when a plurality of silicates of Cu, Pb, Bi and Mn are added. As a result, the yield index becomes equal to or lower than the conventional value, and the same effects as those of the first embodiment can be obtained.

【0068】[0068]

【第16の実施例】本発明をコンデンサ機能とバリスタ
機能との両方を有する磁器バリスタ素子にも適用できる
ことを確かめるために、 SrTiO3 100モル部 CaTiO3 10モル部 Y2 3 0.6モル部 CuTiO3 0.05〜3.00モル部 SiO2 0.2モル部 の組成の混合物を用意した。なお、CuTiO3 を0.
05モル部、0.50モル部、1.00モル部、3.0
0モル部に4段階に変えた試料NO. 89、90、91、
92の試料を用意した。次に、各試料の混合物を第1の
実施例と同一の方法で成形し、焼成して半導体磁器を得
た。次に、各試料の半導体磁器にNa2 Oと有機バイン
ダとから成るペーストを塗布し、これを炉にいれて大気
中で1100℃、2時間加熱拡散処理し、Na2 Oによ
って半導体結晶粒子同志を強固に結合させた。次に、第
1の実施例と同様に一対の電極を形成してバリスタ素子
を完成させた。
[Sixteenth Embodiment] In order to confirm that the present invention can be applied to a porcelain varistor element having both a capacitor function and a varistor function, SrTiO 3 100 mol part CaTiO 3 10 mol part Y 2 O 3 0.6 mol part the parts CuTiO 3 0.05~3.00 molar parts mixture of the composition of SiO 2 0.2 parts by mole was prepared. In addition, CuTiO 3 is less than 0.
05 parts by mole, 0.50 parts by mole, 1.00 parts by mole, 3.0
Sample Nos. 89, 90, 91, which were changed to 0 mol parts in 4 stages
92 samples were prepared. Next, the mixture of each sample was molded by the same method as in the first embodiment and fired to obtain a semiconductor porcelain. Next, a paste consisting of Na 2 O and an organic binder is applied to the semiconductor ceramic of each sample, which are are in the furnace 1100 ° C. in air for 2 hours heat diffusion treatment, the semiconductor crystal grains each other by Na 2 O Was firmly bonded. Next, a pair of electrodes was formed in the same manner as in the first embodiment to complete the varistor element.

【0069】次に、各試料のバリスタ電極V1m、バリス
タ電圧V1mのバラツキを示す歩留指数(V1m標準偏差/
V1mの平均値)、非直線係数α、エネルギー耐量を求め
た。ここで、バリスタ電極V1mはバリスタ素子の一対の
電極間に1mAを流した時の一対の電極間の電圧であ
る。電圧非直線係数αはバリスタ素子に1mAを流した
時の一対の電極間の電圧V1mと10mAを流した時の一
対の電極間の電圧V10m とに基づいて次式で求めた。 α=1/{log (V10m /V1m)} エネルギー耐量Eは、電圧Vのパルスを10秒間隔で2
回バリスタ素子に印加し、バリスタ電圧の変化率が5%
以内に収まる電圧Vを求め、次式で決定した。 E=1/2(CV2 )(joul) 次の表21は試料NO. 89〜92の測定結果を示す。
Next, the yield index (V1m standard deviation / V1m standard deviation / variation of the varistor electrode V1m and varistor voltage V1m of each sample is shown.
The average value of V1m), the non-linear coefficient α, and the energy tolerance were determined. Here, the varistor electrode V1m is the voltage between the pair of electrodes when 1 mA is applied between the pair of electrodes of the varistor element. The voltage non-linearity coefficient α was obtained by the following formula based on the voltage V1m between the pair of electrodes when 1 mA was applied to the varistor element and the voltage V10m between the pair of electrodes when 10 mA was applied. α = 1 / {log (V10m / V1m)} Energy tolerance E is 2 pulses of voltage V at 10 second intervals.
When applied to a rotating varistor element, the rate of change in varistor voltage is 5%
The voltage V that falls within the range was determined and determined by the following formula. E = 1/2 (CV 2 ) (joul) The following Table 21 shows the measurement results of sample Nos. 89 to 92.

【0070】 表21 試料NO. V1m 歩留指数 α E(joul) 89 33.2 0.045 10.78 13.5 90 29.8 0.054 10.85 12.5 91 31.5 0.062 11.22 16.0 92 30.8 0.065 10.89 13.0Table 21 Sample NO. V1m Retention Index α E (joul) 89 33.2 0.045 10.78 13.5 90 29.8 0.054 10.85 12.5 91 31.5 0.062 11.22 16.0 92 30.8 0.065 10.89 13.0

【0071】試料NO. 89〜92との比較のために、試
料NO. 89〜92におけるCuTiO3 の代りに従来技
術に従ってCuOを使用した他は試料NO. 89〜92と
同一の方法で試料NO. 93、94、95、96のバリス
タ素子を形成し、同一の方法で特性を測定したところ、
次の表22の結果が得られた。
For comparison with Sample Nos. 89-92, Sample Nos. 89-92 were prepared in the same manner except that CuO 3 was used in accordance with the prior art instead of CuTiO 3 in Samples Nos. 89-92. . 93, 94, 95, 96 varistor elements were formed and the characteristics were measured by the same method.
The results shown in Table 22 below were obtained.

【0072】 表22 試料NO. V1m 歩留指数 α E(joul) 93 28.3 0.090 10.02 7.2 94 26.5 0.102 10.25 8.0 95 27.2 0.100 10.55 8.3 96 26.9 0.098 10.36 8.0Table 22 Sample NO. V1m Yield Index α E (joul) 93 28.3 0.090 10.02 7.2 7.2 94 26.5 0.102 10.25 8.0 95 27.2 0.100 10.55 8.3 96 26.9 0.098 10.36 8.0

【0073】表21と表22の比較から明らかなように
試料NO. 89〜92によればCuの蒸発が抑制されてバ
リスタ電圧V1m及びエネルギー耐量Eが試料NO. 89〜
92よりも高くなる。また、バリスタ電圧の歩留指数即
ちバラツキが小さくなる。
As is clear from the comparison between Tables 21 and 22, according to the sample Nos. 89 to 92, the evaporation of Cu is suppressed, and the varistor voltage V1m and the energy withstand E are the values of the sample Nos. 89 to 89.
Higher than 92. Further, the yield index of the varistor voltage, that is, the variation becomes small.

【0074】[0074]

【変形例】本発明は上述の実施例に限定されるものでな
く、例えば次の変形が可能なものである。 (1) 主成分はSrTiO3 、SrCaTiO3 に限
ることなく、ABO3(但しAはSr、Ca、Ba、M
gの内の1種又は複数種の元素、BはTi、Zrの1種
又は複数種の元素)で示すことができるチタンストロン
チウム系の成分とすることができる。 (2) 半導体化剤(原子価制御剤)としては、Y2
3 の代りに又はこれに加えてNb(ニオブ)、W(タン
グステン)、Ta(タンタル)及び希土類元素(La、
Ce、Pr、Nd、Sm、Dy、Pm、Eu、Gd、T
b、Ho、Er、Tm、Yb、Lu等)等の化合物(例
えばLa2 5 、WO3 、Ta2 5 、CeO2 、Nd
2 3 、Sm2 5 、Pr6 11、Dy2 3 等)の1
種又は複数種を100モル部のSrTiO3 又は前述の
ABO3 から成る主成分に対して好ましくは0.1〜
5.0モル部の範囲で使用することができる。 (3) 磁器材料に対する焼結助剤としてAl2 3
SiO2 、CuO、MnO2 、Ag2 Oから選択された
1種又は複数種を100モル部のSrTiO3又は前述
のABO3 から成る主成分に対して好ましくは0.05
〜0.50モル部の範囲で添加することができる。 (4) 粒界絶縁化剤をCu、Pb、Bi、Mnのジル
コン酸塩、チタン酸塩、ケイ酸塩の複数種の組合わせと
すること、及びこれ等にBi2 3 、Pb3 4 、B2
3 、MnO2 、CuO、Tl2 3 、Sb2 5 、F
2 3 等の金属酸化物から選択された1種又は複数種
を付加することができる。 (5) Cu、Pb、Bi、Mnのジルコン酸塩、チタ
ン酸塩及びケイ酸塩に限ることなく、原子価制御剤、又
は粒界絶縁化剤、又は焼結助剤の中の焼成で蒸発しやす
い物質をジルコン酸塩、又はチタン酸塩、又はケイ酸塩
として使用することができる。 (6) 原子価制御剤又は焼結助剤を本発明に従ってジ
ルコン酸塩、又はチタン酸塩、又はケイ酸塩とする場合
には、粒界絶縁化剤を磁器材料に添加しないで、焼成後
の半導体磁器の表面に、MnO、CuO、Bi2 3
PbO等の金属酸化物のペーストを塗布し、熱拡散させ
ることができる。 (7) 磁器グリーンシート(生シート)に導電性ペー
ストを印刷したものを積層して焼成して積層コンデンサ
又はバリスタを作る場合にも本発明を適用できる。
[Modifications] The present invention is not limited to the above-described embodiment, and for example, the following modifications are possible. (1) The main component is not limited to SrTiO 3 and SrCaTiO 3 , but ABO 3 (where A is Sr, Ca, Ba, M
One or more elements of g, B is one or more elements of Ti and Zr), and may be a titanium strontium-based component. (2) As a semiconducting agent (valence control agent), Y 2 O
Instead of or in addition to 3 , Nb (niobium), W (tungsten), Ta (tantalum) and rare earth elements (La,
Ce, Pr, Nd, Sm, Dy, Pm, Eu, Gd, T
b, Ho, Er, Tm, Yb, Lu, etc.) (eg, La 2 O 5 , WO 3 , Ta 2 O 5 , CeO 2 , Nd)
2 O 3 , Sm 2 O 5 , Pr 6 O 11 , Dy 2 O 3 etc.) 1
One or more species is preferably 0.1 to 100 parts by mole of SrTiO 3 or the above-mentioned ABO 3 as a main component.
It can be used in the range of 5.0 parts by mole. (3) Al 2 O 3 as a sintering aid for porcelain materials,
One or more selected from SiO 2 , CuO, MnO 2 and Ag 2 O is preferably added to the main component consisting of 100 parts by mole of SrTiO 3 or ABO 3 mentioned above.
It can be added in the range of 0.50 mol part. (4) The grain boundary insulating agent is a combination of plural kinds of zirconates, titanates and silicates of Cu, Pb, Bi and Mn, and Bi 2 O 3 and Pb 3 O. 4 , B 2
O 3 , MnO 2 , CuO, Tl 2 O 3 , Sb 2 O 5 , F
One or more selected from metal oxides such as e 2 O 3 can be added. (5) Not limited to zirconates, titanates, and silicates of Cu, Pb, Bi, and Mn, evaporating by firing in a valence control agent, a grain boundary insulating agent, or a sintering aid. Easy substances can be used as zirconates or titanates or silicates. (6) When the valence control agent or the sintering aid is zirconate, titanate, or silicate according to the present invention, the grain boundary insulating agent is not added to the porcelain material, and after firing. On the surface of the semiconductor porcelain of MnO, CuO, Bi 2 O 3 ,
A metal oxide paste such as PbO can be applied and thermally diffused. (7) The present invention can be applied to a case where a porcelain green sheet (green sheet) on which a conductive paste is printed is laminated and fired to form a laminated capacitor or a varistor.

【図面の簡単な説明】[Brief description of drawings]

【図1】コンデンサを原理的に示す断面図である。FIG. 1 is a sectional view showing a capacitor in principle.

【符号の説明】[Explanation of symbols]

2 結晶粒子 3 粒界層 4、5 電極 2 Crystal grain 3 Grain boundary layer 4, 5 Electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ABO3 (但し、AはSr、Ba、C
a、Mgの内のいずれか1種又は複数種の元素、BはT
i、Zrの内のいずれか1種又は複数種の元素、Oは酸
素を示す。)から成る主成分又は前記主成分を得ること
ができる原料と原子価制御剤と粒界絶縁化剤とを含む成
形体を形成する工程と、 前記成形体を還元性雰囲気で焼成する工程と、 酸化性雰囲気で熱処理する工程とを有する半導体磁器の
製造方法において、 前記粒界絶縁化剤の少なくとも1種をジルコン酸塩又は
チタン酸塩又はケイ酸塩とすることを特徴とする半導体
磁器の製造方法。
1. ABO 3 (where A is Sr, Ba, C
a, element of one or more of Mg, B is T
Any one or more of i and Zr, O represents oxygen. A main component consisting of or a raw material capable of obtaining the main component, a valence control agent and a grain boundary insulating agent, a step of forming a compact, a step of firing the compact in a reducing atmosphere, A method of manufacturing a semiconductor porcelain having a step of performing heat treatment in an oxidizing atmosphere, wherein at least one of the grain boundary insulating agents is zirconate, titanate, or silicate. Method.
【請求項2】 ABO3 (但し、AはSr、Ba、C
a、Mgの内のいずれか1種又は複数種の元素、BはT
i、Zrの内のいずれか1種又は複数種の元素、Oは酸
素を示す。)から成る主成分又は前記主成分を得ること
ができる原料と原子価制御剤とを含む成形体を形成する
工程と、 前記成形体を焼成する工程とを有する半導体磁器の製造
方法において、 前記原子価制御剤の少なくとも1種をジルコン酸塩又は
チタン酸塩又はケイ酸塩とすることを特徴とする半導体
磁器の製造方法。
2. ABO 3 (where A is Sr, Ba, C
a, element of one or more of Mg, B is T
Any one or more of i and Zr, O represents oxygen. In the method for manufacturing a semiconductor porcelain, the method further comprises the step of forming a molded body containing a valence control agent and a main component consisting of (4) or a raw material capable of obtaining the main component, and a step of firing the molded body. A method for producing a semiconductor porcelain, wherein at least one of the valency control agents is zirconate, titanate or silicate.
【請求項3】 ABO3 (但し、AはSr、Ba、C
a、Mgの内のいずれか1種又は複数種の元素、BはT
i、Zrの内のいずれか1種又は複数種の元素、Oは酸
素を示す。)から成る主成分又は前記主成分を得ること
ができる原料と原子価制御剤と、焼結助剤とを含む成形
体を形成する工程と、 前記成形体を焼成する工程とを有する半導体磁器の製造
方法において、 前記焼結助剤の少なくとも1種をジルコン酸塩又はチタ
ン酸塩又はケイ酸塩とすることを特徴とする半導体磁器
の製造方法。
3. ABO 3 (where A is Sr, Ba, C
a, element of one or more of Mg, B is T
Any one or more of i and Zr, O represents oxygen. Of a semiconductor porcelain having a step of forming a molded body containing a main component consisting of a) or a raw material capable of obtaining the main component, a valence control agent, and a sintering aid, and a step of firing the molded body. In the manufacturing method, at least one of the sintering aids is zirconate, titanate, or silicate, and the method for manufacturing a semiconductor porcelain.
JP6282956A 1994-10-20 1994-10-20 Manufacturing method of semiconductor porcelain Expired - Fee Related JP2934387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6282956A JP2934387B2 (en) 1994-10-20 1994-10-20 Manufacturing method of semiconductor porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6282956A JP2934387B2 (en) 1994-10-20 1994-10-20 Manufacturing method of semiconductor porcelain

Publications (2)

Publication Number Publication Date
JPH08124781A true JPH08124781A (en) 1996-05-17
JP2934387B2 JP2934387B2 (en) 1999-08-16

Family

ID=17659305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6282956A Expired - Fee Related JP2934387B2 (en) 1994-10-20 1994-10-20 Manufacturing method of semiconductor porcelain

Country Status (1)

Country Link
JP (1) JP2934387B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057864A1 (en) * 2012-10-10 2014-04-17 日本碍子株式会社 Voltage nonlinear resistance element
WO2014083977A1 (en) * 2012-11-29 2014-06-05 日本碍子株式会社 Voltage non-linear resistance element
JP2019520695A (en) * 2016-04-18 2019-07-18 イー−コンヴァート ゲーエムベーハーE−Convert Gmbh Generator
CN111210992A (en) * 2018-11-22 2020-05-29 三星电机株式会社 Capacitor assembly and method for manufacturing capacitor assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057864A1 (en) * 2012-10-10 2014-04-17 日本碍子株式会社 Voltage nonlinear resistance element
WO2014083977A1 (en) * 2012-11-29 2014-06-05 日本碍子株式会社 Voltage non-linear resistance element
JP2019520695A (en) * 2016-04-18 2019-07-18 イー−コンヴァート ゲーエムベーハーE−Convert Gmbh Generator
CN111210992A (en) * 2018-11-22 2020-05-29 三星电机株式会社 Capacitor assembly and method for manufacturing capacitor assembly

Also Published As

Publication number Publication date
JP2934387B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
JPS637012B2 (en)
JP2001506425A (en) Ceramic multilayer capacitors
KR100354646B1 (en) Piezoelectric ceramic composition and piezoelectric ceramic device using the same
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
KR100340668B1 (en) Laminated Type Semiconductor Ceramic Element and Production Method for the Laminated Type Semiconductor Ceramic Element
JPWO2005075377A1 (en) Dielectric porcelain composition and electronic component using the same
JP3325051B2 (en) Dielectric porcelain composition
JPH07309661A (en) Ceramic composition, sintering method, sintering ceramic body and multilayer capacitor
JPS623569B2 (en)
JP2000178068A (en) Piezoelectric porcelain composition
JPH0652718A (en) Dielectric porcelain and porcelain capacitor
JP2934388B2 (en) Manufacturing method of semiconductor porcelain
JPH0785459B2 (en) Grain boundary insulation type semiconductor ceramic capacitor
JP2681981B2 (en) Porcelain composition for reduction-reoxidation type semiconductor capacitor
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JP2972052B2 (en) Semiconductor porcelain and method of manufacturing the same
JPH0684691A (en) Dielectric ceramic and ceramic capacitor
JP2002338332A (en) Sintering assistant
JP2694975B2 (en) Method for producing high dielectric constant porcelain composition
JP5206673B2 (en) Piezoelectric ceramic composition and piezoelectric component
JPH027166B2 (en)
JP4367803B2 (en) Semiconductor porcelain and thermistor using the same
JPH0761897B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPS6328491B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990511

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees