JP3124896B2 - Manufacturing method of semiconductor porcelain - Google Patents

Manufacturing method of semiconductor porcelain

Info

Publication number
JP3124896B2
JP3124896B2 JP06228630A JP22863094A JP3124896B2 JP 3124896 B2 JP3124896 B2 JP 3124896B2 JP 06228630 A JP06228630 A JP 06228630A JP 22863094 A JP22863094 A JP 22863094A JP 3124896 B2 JP3124896 B2 JP 3124896B2
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor porcelain
average particle
porcelain
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06228630A
Other languages
Japanese (ja)
Other versions
JPH0867561A (en
Inventor
隆行 狩野
保 斎藤
徳之 真渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP06228630A priority Critical patent/JP3124896B2/en
Publication of JPH0867561A publication Critical patent/JPH0867561A/en
Application granted granted Critical
Publication of JP3124896B2 publication Critical patent/JP3124896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁器コンデンサ、磁器
バリスタ等のための半導体磁器の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing semiconductor porcelain for porcelain capacitors, porcelain varistors and the like.

【0002】[0002]

【従来の技術】BaTiO3 やSrTiO3 を主体とす
る半導体磁器は、コンデンサ、バリスタ、サーミスタ等
の機能部品の素体として広く工業的に使用されている。
一般にこれ等半導体磁器は、半導体化剤の添加と強制還
元法を併用して製造される。具体的には例えば次の工程
により製造される。主体となる原料粉末と半導体化剤、
焼結助剤等の添加剤を所定量秤量した後、水を加えボー
ルミルで混合粉砕し乾燥した後に有機バインダと混練、
造粒する。これを所定形状に成形して、還元性雰囲気中
にて焼成し、半導体磁器を得る。更に必要に応じて再酸
化工程として半導体磁器に絶縁化物質を塗布し900〜
1300℃にて大気中で焼成する。その後磁器の両主面
に一対の電極を形成しコンデンサ等の機能部品とする。
BACKGROUND OF THE INVENTION Semiconductor ceramic mainly made of BaTiO 3 or SrTiO 3, the capacitor, varistor, are widely used industrially as a body of the functional components such as a thermistor.
In general, these semiconductor porcelains are manufactured by using a combination of a semiconducting agent and a forced reduction method. Specifically, for example, it is manufactured by the following steps. Raw material powder and semiconducting agent,
After weighing a predetermined amount of additives such as sintering aids, kneading with an organic binder after adding water, mixing and pulverizing with a ball mill, and drying,
Granulate. This is formed into a predetermined shape and fired in a reducing atmosphere to obtain a semiconductor porcelain. Further, if necessary, an insulating material is applied to the semiconductor porcelain as a re-oxidation step, and 900-
It is fired at 1300 ° C. in the air. Thereafter, a pair of electrodes is formed on both main surfaces of the porcelain to form functional parts such as capacitors.

【0003】[0003]

【発明が解決しようとする課題】コンデンサ等の機能部
品として使用する半導体磁器は、一般にその抵抗率が十
分に低いことが要求される。半導体化剤の添加量を多く
することにより抵抗率をある程度下げることができる
が、従来の製造方法では半導体化剤の主原料中への固溶
量に限界があり十分に低い抵抗率が得られなかった。更
に多量に添加した場合、固溶しない過剰分が粒界部に偏
析し、絶縁化剤を粒界に拡散したときに十分な絶縁抵
抗、耐電圧が得られないという問題があった。
Semiconductor porcelain used as a functional component such as a capacitor is generally required to have a sufficiently low resistivity. Although the resistivity can be reduced to some extent by increasing the amount of the semiconducting agent added, the conventional manufacturing method has a limit to the solid solution amount of the semiconducting agent in the main raw material, and a sufficiently low resistivity can be obtained. Did not. When added in a large amount, there is a problem that an excess that does not form a solid solution segregates at the grain boundaries, and when the insulating agent diffuses into the grain boundaries, sufficient insulation resistance and withstand voltage cannot be obtained.

【0004】そこで、本発明の目的は、半導体磁器の抵
抗率を下げることができる半導体磁器の製造方法を提供
することにある。
Accordingly, an object of the present invention is to provide a method for manufacturing a semiconductor porcelain capable of reducing the resistivity of the semiconductor porcelain.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明は、ABO(但し、AはSr、Ba、C
a、Mgの内のいずれか1種又は複数種の元素、BはT
i、Zrの内のいずれか1種又は複数種の元素、Oは酸
素を示す。)から成る主成分と、半導体化剤(例えばN
b、Ta、W及び希土類元素の化合物のいずれか1種又
は複数種から成る半導体化剤)とを含み、前記主成分の
平均粒径(D1 )に対する前記半導体化剤の平均粒径
(D2 )の比(D2 /D1 )が0.04〜1.00の範
囲の半導体磁器原料粉末を用意し、前記主成分と前記半
導体化剤とを湿式混合する工程と、前記半導体磁器原料
粉末の成形体を形成する工程と、前記成形体を焼成する
工程とを有する半導体磁器の製造方法に係わるものであ
る。なお、請求項2に示すように、粒界絶縁化用の金属
酸化物を含むペーストを塗布して熱処理することが望ま
しい。また、平均粒径の比を0.1〜0.6の範囲とす
ることが望ましい。
In order to achieve the above object, the present invention provides an ABO 3 (where A is Sr, Ba, C
a, one or more of Mg, B is T
O represents one or more of i and Zr, and O represents oxygen. ) And a semiconducting agent (eg, N
b, Ta, W and a compound of one or more of the compounds of the rare earth elements), and the average particle size (D2) of the semiconductor compound with respect to the average particle size (D1) of the main component. Of a semiconductor porcelain having a ratio (D2 / D1) of 0.04 to 1.00 is prepared ,
The present invention relates to a method for manufacturing a semiconductor porcelain, comprising: a step of wet-mixing a conductive agent ; a step of forming a compact of the semiconductor porcelain raw material powder; and a step of firing the compact. It is preferable that a paste containing a metal oxide for grain boundary insulation be applied and heat-treated. In addition, it is desirable that the ratio of the average particle size is in the range of 0.1 to 0.6.

【0006】[0006]

【発明の作用及び効果】本発明の製造方法によれば、主
成分に対する半導体化剤の平均粒径比を0.04〜1.
00としたので、原料粉体混合時に半導体化剤が主成分
中に均一に分散し、焼成過程でほぼ完全に主成分結晶格
子サイトに置換固溶し半導体化に有効に機能する。従っ
て、抵抗率の低い半導体磁器が得られる。更に、半導体
化剤を多量に添加して半導体磁器の抵抗率を下げても、
半導体化剤の粒界部に対する偏析が少ないので、耐電圧
及び絶縁抵抗の低下を防ぐことができる。換言すれば、
本発明において、半導体化剤の添加量が従来と同一の場
合には、耐電圧と絶縁抵抗を従来よりも高めることがで
きる。また、等価直列抵抗(ESR)を低くすることが
できる。更に詳細には本発明をコンデンサに適用した場
合には、コンデンサの静電容量、絶縁抵抗、及び耐電圧
を高め、等価直列抵抗を低くすることができる。また、
本発明をバリスタ適用した場合にはバリスタの非直線係
数及びサージ耐量を高めることができる。また、本発明
をサーミスタに適用した場合には、PTC特性(正抵抗
温度係数特性)の急峻度を高めることができる。請求項
2によれば、特性が更に改善される。
According to the production method of the present invention, the average particle size ratio of the semiconducting agent to the main component is set to 0.04 to 1.
Since it is set to 00, the semiconducting agent is uniformly dispersed in the main component when the raw material powders are mixed, and almost completely displaces and dissolves in the main component crystal lattice sites during the firing process, effectively functioning as a semiconductor. Therefore, a semiconductor ceramic having a low resistivity can be obtained. Furthermore, even if a large amount of a semiconducting agent is added to lower the resistivity of the semiconductor porcelain,
Since segregation of the semiconducting agent to the grain boundary is small, it is possible to prevent a decrease in withstand voltage and insulation resistance. In other words,
In the present invention, when the added amount of the semiconducting agent is the same as that of the related art, the withstand voltage and the insulation resistance can be increased as compared with the related art. Further, the equivalent series resistance (ESR) can be reduced. More specifically, when the present invention is applied to a capacitor, the capacitance, insulation resistance, and withstand voltage of the capacitor can be increased, and the equivalent series resistance can be reduced. Also,
When the present invention is applied to a varistor, the non-linear coefficient and surge withstand capability of the varistor can be increased. Further, when the present invention is applied to a thermistor, the steepness of the PTC characteristic (positive temperature coefficient characteristic) can be increased. According to claim 2, the characteristics are further improved.

【0007】[0007]

【第1の実施例】次に、本発明の実施例に係わるコンデ
ンサ用半導体磁器及びコンデンサの製造方法を説明す
る。
First Embodiment Next, a method for manufacturing a semiconductor ceramic for a capacitor and a capacitor according to an embodiment of the present invention will be described.

【0008】一般式ABO3 のAがSr(ストロンチウ
ム)、BがTi(チタン)のSrTiO3 (主成分)
と、半導体化剤としての希土類元素化合物であるY2
3 (酸化イットリウム)と、焼結助剤としてのSi
2 、Al2 3 とを用意した。この際、主成分として
のSrTiO3 の平均粒径D1 と半導体化剤としてのY
2 3 の平均粒径D2 との平均粒径比(D2 /D1 )が
特性にどのように影響するかを調べるために、粒径の異
なる次の6個の試料を用意した。 試料NO. D1 D2 D2 /D1 1 2.75μm 0.08μm 0.03 2 2.75μm 0.11μm 0.04 3 2.75μm 0.33μm 0.12 4 2.75μm 1.62μm 0.59 5 2.75μm 2.75μm 1.00 6 2.75μm 3.30μm 1.20
In the general formula ABO 3 , S is Sr (strontium) and B is Ti (titanium). SrTiO 3 (main component)
And Y 2 O which is a rare earth element compound as a semiconducting agent
3 (yttrium oxide) and Si as sintering aid
O 2 and Al 2 O 3 were prepared. At this time, the average particle diameter D1 of SrTiO 3 as a main component and Y as a semiconducting agent
For the average particle size ratio of the average particle diameter D2 of the 2 O 3 (D2 / D1) is examined how it affects the characteristics, were prepared having different particle sizes next six samples. Sample No. D1 D2 D2 / D1 1 2.75 μm 0.08 μm 0.03 2 2.75 μm 0.11 μm 0.04 3 2.75 μm 0.33 μm 0.12 4 2.75 μm 1.62 μm 0.59 5 2 0.75 μm 2.75 μm 1.00 6 2.75 μm 3.30 μm 1.20

【0009】次に、上記NO. 1〜NO. 6の各試料につい
て、 SrTiO3 100モル部 Y2 3 0.6モル部 SiO2 0.2モル部 Al2 3 0.1モル部 となるように秤量し、これをボールミルで15時間湿式
混合し、次に乾燥して原料混合物の粉末を得た。
[0009] Next, for each sample of said NO. 1~NO. 6, and SrTiO 3 100 molar parts Y 2 O 3 0.6 mole parts SiO 2 0.2 mole parts Al 2 O 3 0.1 mole part The mixture was wet-mixed with a ball mill for 15 hours, and then dried to obtain a powder of a raw material mixture.

【0010】次に、この原料混合物に有機バインダとし
てのポリビニルアルコールの水溶液を5重量%添加して
混合し、造粒し、この造粒物を1ton /cm2 の圧力で成
形して直径12.5mm、厚さ0.3mmの円板状成形
体を得た。次に、この成形体を炉に入れて容積比で
2 :H2 =97:3のN2 +H2 混合ガス雰囲気(非
酸化性雰囲気又は還元性雰囲気)中で1450℃で3時
間焼成して焼結体から成る図1に示す粒界絶縁型半導体
磁器1を得た。
Next, an aqueous solution of polyvinyl alcohol as an organic binder is added to the raw material mixture at 5% by weight, mixed and granulated, and the granulated product is molded at a pressure of 1 ton / cm 2 to form a material having a diameter of 12. A disk-shaped compact having a thickness of 5 mm and a thickness of 0.3 mm was obtained. Next, the compact is placed in a furnace and fired at 1450 ° C. for 3 hours in an N 2 + H 2 mixed gas atmosphere (non-oxidizing atmosphere or reducing atmosphere) in a volume ratio of N 2 : H 2 = 97: 3. Thus, a grain boundary insulated semiconductor porcelain 1 shown in FIG.

【0011】上述の半導体磁器1の表面にBi2 3
溶剤を加えたものから成るペースト状粒界絶縁化物質2
を図2に示すように塗布し、これを大気中で1150
℃、2時間熱処理して絶縁化物質を半導体磁器1内に拡
散させ、図3に模式的(原理的)に示すように半導体結
晶粒子3の粒界4を絶縁化した。
A paste-like grain boundary insulating material 2 made of a material obtained by adding a solvent to Bi 2 O 3 on the surface of the semiconductor porcelain 1 described above.
Is applied as shown in FIG.
The insulating material was diffused into the semiconductor porcelain 1 by heat treatment at 2 ° C. for 2 hours to insulate the grain boundaries 4 of the semiconductor crystal grains 3 as schematically (in principle) shown in FIG.

【0012】次に、半導体磁器1の両主面に銀ペースト
(導電ペースト)を印刷法で塗布し、大気中で800
℃、1時間の焼付け処理を施して一対の電極5、6を形
成し、コンデンサを完成させた。
Next, a silver paste (conductive paste) is applied to both main surfaces of the semiconductor porcelain 1 by a printing method, and 800
C. for 1 hour to form a pair of electrodes 5 and 6 to complete the capacitor.

【0013】各試料のコンデンサについて一対の電極
5、6間の静電容量C(nF)、絶縁抵抗IR(M
Ω)、耐電圧(ブレークダウン電圧)BD(V)、及び
等価直列抵抗ESR(mΩ)を測定したところ、次の結
果が得られた。 試料NO. C(nF) IR(MΩ) BD(V) ESR(mΩ) 1 43 900 90 35 2 80 1700 130 27 3 85 1900 150 23 4 90 2000 140 19 5 82 1600 130 29 6 53 300 50 30
For each sample capacitor, the capacitance C (nF) between the pair of electrodes 5 and 6 and the insulation resistance IR (M
Ω), breakdown voltage (breakdown voltage) BD (V), and equivalent series resistance ESR (mΩ), the following results were obtained. Sample No. C (nF) IR (MΩ) BD (V) ESR (mΩ) 144 900 90 35 280 1700 130 27 3 85 1900 150 23 4 90 2000 140 140 19 5 82 1600 130 29 6 53 300 50 30

【0014】この結果から明らかなように、試料NO. 6
に示す粒径比D2 /D1 が1.20の場合には、半導体
化剤(Y2 3 )が均一に分散できないために半導体化
に対する寄与度が小さく、結果として静電容量C、絶縁
抵抗IR、耐電圧BDが小さく、等価直列抵抗ESRが
大きい。一方、試料NO. 2〜5に示すように平均粒径比
D2 /D1 を0.04〜1.00の範囲にすると、C、
IR、BDが試料NO.6の従来例よりも大きくなり、E
SRが試料NO. 6よりも小さくなる。なお、試料NO. 1
に示すように平均粒径比D2 /D1 が0.03のように
小さくなり過ぎると半導体化剤(Y2 3 )の凝集が強
く生じて半導体化剤の均一分散ができなくなり、試料N
O. 6と同様に各特性が悪化する。
As is clear from the results, the results of sample No. 6
When the particle diameter ratio D2 / D1 is 1.20, the semiconducting agent (Y 2 O 3 ) cannot be dispersed uniformly, so that its contribution to semiconductor conversion is small. As a result, the capacitance C and the insulation resistance are reduced. IR and withstand voltage BD are small, and equivalent series resistance ESR is large. On the other hand, when the average particle size ratio D2 / D1 is in the range of 0.04 to 1.00 as shown in Sample Nos. 2 to 5, C,
IR and BD are larger than the conventional example of sample No. 6, and E
SR becomes smaller than that of sample No. 6. Sample No. 1
When the average particle size ratio D2 / D1 is too small as 0.03 as shown in FIG. 7, the coagulation of the semiconducting agent (Y 2 O 3 ) occurs so strongly that the semiconducting agent cannot be uniformly dispersed.
As in O.6, each characteristic deteriorates.

【0015】[0015]

【第2の実施例】次に、SrTiO3 を主成分とする磁
器バリスタの製造方法を説明する。主成分としてのSr
TiO3 と、半導体化剤としての希土類元素化合物であ
るLa23 (酸化ランタン)と、焼結助剤としての添
加物としてのSiO2 、Al2 3 とを用意した。この
際、主成分としてのSrTiO3 の平均粒径D1 と半導
体化剤としてのLa2 3 の平均粒径D2 との平均粒径
比(D2 /D1 )が特性にどのように影響するかを調べ
るために、粒径の異なる次の6個の試料を用意した。 試料NO. D1 D2 D2 /D1 7 2.56μm 0.05μm 0.02 8 2.56μm 0.10μm 0.04 9 2.56μm 0.33μm 0.13 10 2.56μm 1.43μm 0.56 11 2.56μm 2.56μm 1.00 12 2.56μm 2.89μm 1.13
Second Embodiment Next, a method of manufacturing a porcelain varistor containing SrTiO 3 as a main component will be described. Sr as main component
TiO 3 , La 2 O 3 (lanthanum oxide) as a rare earth element compound as a semiconducting agent, and SiO 2 and Al 2 O 3 as additives as sintering aids were prepared. At this time, how the average particle diameter ratio (D2 / D1) of the average particle diameter D1 of SrTiO 3 as the main component and the average particle diameter D2 of La 2 O 3 as the semiconducting agent affects the characteristics. The following six samples having different particle sizes were prepared for examination. Sample No. D1 D2 D2 / D1 7 2.56 μm 0.05 μm 0.028 8 2.56 μm 0.10 μm 0.049 9 2.56 μm 0.33 μm 0.13 10 2.56 μm 1.43 μm 0.56 11 2 .56 μm 2.56 μm 1.00 12 2.56 μm 2.89 μm 1.13

【0016】次に、上記のNO. 7〜NO. 12の各試料に
ついて、 SrTiO3 100モル部 La2 3 0.6モル部 SiO2 0.2モル部 Al2 3 0.1モル部 となるように秤量し、これをボールミルで15時間湿式
混合し、次に乾燥して原料混合物の粉末を得た。
Next, the above-mentioned NO. 7~NO. For 12 of each sample, SrTiO 3 100 molar parts La 2 O 3 0.6 mole parts SiO 2 0.2 mole parts Al 2 O 3 0.1 mole part The mixture was wet-mixed with a ball mill for 15 hours, and then dried to obtain a powder of a raw material mixture.

【0017】次に、この原料混合物に有機バインダとし
てのポリビニルアルコールの水溶液を5重量%添加して
混合し、造粒し、この造粒物を1.2ton /cm2 の圧力
で成形して直径12.5mm、厚さ0.3mmの円板状
成形体を得た。次に、この成形体を炉にいれて容積比で
2 :H2 =97:3のN2 +H2 混合ガス雰囲気(非
酸化性雰囲気又は還元性雰囲気)中で1450℃で3時
間焼成して焼結体から成る粒界絶縁型半導体磁器を図1
と同様に得た。
Next, an aqueous solution of polyvinyl alcohol as an organic binder was added to this raw material mixture in an amount of 5% by weight, mixed and granulated, and the granulated product was formed under a pressure of 1.2 ton / cm 2 to form a diameter. A 12.5 mm, 0.3 mm thick disk-shaped compact was obtained. Next, this compact is placed in a furnace and fired at 1450 ° C. for 3 hours in an N 2 + H 2 mixed gas atmosphere (non-oxidizing atmosphere or reducing atmosphere) with a volume ratio of N 2 : H 2 = 97: 3. Fig. 1 shows a grain boundary insulated semiconductor porcelain
Was obtained as well.

【0018】上述の半導体磁器1の表面にNa2 O(酸
化ナトリウム)に溶剤を加えたものから成るペースト状
粒界絶縁化物質を塗布し、これを大気中1120℃、1
時間熱処理して絶縁化物質を半導体磁器内に拡散させ、
半導体結晶粒子の粒界を絶縁化した。
The surface of the above-mentioned semiconductor porcelain 1 is coated with a paste-like grain boundary insulating material composed of Na 2 O (sodium oxide) to which a solvent has been added.
Heat treatment to diffuse the insulating material into the semiconductor porcelain,
The grain boundaries of the semiconductor crystal grains were insulated.

【0019】次に、半導体磁器の両主面に銀ペースト
(導電ペースト)を印刷法で塗布し、大気中で800
℃、1時間の焼付け処理を施して一対の電極を形成し、
バリスタを完成させた。
Next, a silver paste (conductive paste) is applied to both main surfaces of the semiconductor porcelain by a printing method, and 800
℃ 1 hour baking treatment to form a pair of electrodes,
The varistor was completed.

【0020】次に、試料NO. 7〜12のバリスタのバリ
スタ電圧V 1m (V)、電圧非直線係数α、サージ耐量
(A/cm2 )を求めたところ次のようになった。ここ
で、バリスタ電圧V1mは、バリスタ素子の一対の電極の
間に1mAの電流を流した時の一対の電極間の電圧であ
る。電圧非直線係数αはバリスタ素子に1mAの電流を
流した時の一対の端子間電圧V1mと10mAの電流を流
した時の端子間電圧V10m とに基づいて次式で求めた。 α=1/{log (V10m /V1m)} サージ耐量は、バリスタ素子に対して電流サージを1分
間隔で2回印加してその前後におけるバリスタ電圧V1m
の変化率が5%以内となる最大電流値を求め、これをサ
ージ耐量とした。 試料NO. V 1m (V) α サージ耐量(A/cm2 ) 7 214 14.2 2400 8 210 15.1 3000 9 203 16.7 3300 10 209 16.4 3500 11 221 15.8 3100 12 233 14.6 2600
Next, the varistor voltage V 1m (V), the voltage non-linear coefficient α, and the surge withstand capability (A / cm 2 ) of the varistors of Sample Nos. 7 to 12 were determined as follows. Here, the varistor voltage V1m is a voltage between the pair of electrodes when a current of 1 mA flows between the pair of electrodes of the varistor element. The voltage non-linear coefficient α was determined by the following equation based on a pair of terminal voltages V1m when a current of 1 mA flows through the varistor element and a terminal voltage V10m when a current of 10 mA flows. α = 1 / {log (V10m / V1m)} The surge withstand capability is obtained by applying a current surge to the varistor element twice at one-minute intervals and applying a varistor voltage V1m before and after that.
The maximum current value at which the rate of change within was within 5% was determined, and this was defined as surge withstand. Sample No. V 1m (V) α Surge tolerance (A / cm 2 ) 7 214 14.2 2400 8 210 15.1 3000 9 203 16.7 3300 10 209 16.4 3500 11 221 15.8 3100 12 233 14 .6 2600

【0021】この結果から明らかなように、試料NO. 1
2に示す粒径比D2 /D1 が1.13の場合には、半導
体化剤(La2 3 )が均一に分散できないために半導
体化が十分に達成されず半導体結晶粒子の抵抗率が大き
くなりバリスタ電圧V1mが大きくなり、他方、電圧非直
線係数α及びサージ耐量は小さくなる。これに対して試
料NO. 8〜11に示す平均粒径比D2 /D1 が0.04
〜1.00のものにおいては、バリスタ電圧V1mが試料
NO. 12よりも小さくなり、電圧非直線係数α及びサー
ジ耐量は試料NO. 12よりも大きくなる。なお、試料N
O. 7に示すように平均粒径比D2 /D1 が小さくなり
過ぎると、半導体化剤(La2 3 )の凝集が生じ、試
料NO. 12と同様に特性が悪化する。
As is evident from the results, Sample No. 1
In the case where the particle diameter ratio D2 / D1 shown in FIG. 2 is 1.13, the semiconductor material (La 2 O 3 ) cannot be uniformly dispersed, so that semiconductor conversion cannot be sufficiently achieved and the resistivity of the semiconductor crystal particles is large. The varistor voltage V1m increases, while the voltage non-linear coefficient α and the surge withstand capability decrease. On the other hand, the average particle size ratio D2 / D1 shown in Samples Nos. 8 to 11 was 0.04.
-1.00, the varistor voltage V1m
Thus, the voltage nonlinear coefficient α and the surge withstand capability are larger than those of the sample No. 12. Sample N
If too small an average particle size ratio D2 / D1 as shown in O. 7, agglomeration occurs in the semiconductor-forming agent (La 2 O 3), characteristic deteriorates as Sample NO. 12.

【0022】[0022]

【第3の実施例】次に、BaTiO3 を主成分とする磁
器サーミスタの製造方法を説明する。主成分としてのB
aTiO3 (チタン酸バリウム)と、半導体化剤として
の5族の化合物であるNb2 5 (酸化ニオブ)と、焼
結助剤としてのSiO2 、Al23 とを用意した。こ
の際、主成分としてのBaTiO3 の平均粒径D1 と半
導体化剤としてのNb2 5 の平均粒径D2 との平均粒
径比(D2 /D1 )が特性にどのように影響するかを調
べるために、粒径の異なる次の6個の試料を用意した。 試料NO. D1 D2 D2 /D1 13 2.38μm 0.05μm 0.02 14 2.38μm 0.10μm 0.04 15 2.38μm 0.26μm 0.11 16 2.38μm 1.38μm 0.58 17 2.38μm 2.38μm 1.00 18 2.38μm 2.62μm 1.10
Third Embodiment Next, a method of manufacturing a ceramic thermistor containing BaTiO 3 as a main component will be described. B as main component
aTiO 3 (barium titanate), Group 5 compound Nb 2 O 5 (niobium oxide) as a semiconducting agent, and SiO 2 and Al 2 O 3 as sintering aids were prepared. At this time, if the average particle size ratio of the average particle diameter D2 of the Nb 2 O 5 of an average particle diameter D1 and the semiconductor-forming agent BaTiO 3 as the main component (D2 / D1) is how they affect the properties The following six samples having different particle sizes were prepared for examination. Sample No. D1 D2 D2 / D1 13 2.38 μm 0.05 μm 0.02 14 2.38 μm 0.10 μm 0.04 15 2.38 μm 0.26 μm 0.11 16 2.38 μm 1.38 μm 0.58 17 2 .38 μm 2.38 μm 1.00 18 2.38 μm 2.62 μm 1.10

【0023】次に、上記のNO. 13〜NO. 18の各試料
について、 BaTiO3 100モル部 Nb2 5 0.6モル部 SiO2 0.2モル部 Al2 3 0.1モル部 となるように秤量し、これをボールミルで15時間湿式
混合し、次に乾燥して原料混合物の粉末を得た。
Next, for each of the samples of Nos. 13 to 18, 100 mol parts of BaTiO 3 0.6 mol parts of Nb 2 O 5 0.2 mol parts of SiO 2 0.1 mol parts of Al 2 O 3 The mixture was wet-mixed with a ball mill for 15 hours, and then dried to obtain a powder of a raw material mixture.

【0024】次に、この原料混合物に有機バインダとし
てのポリビニールアルコールの水溶液を5重量%添加し
て混合し、造粒し、この造粒物を0.6ton /cm2 の圧
力で成形して直径12.5mm、厚さ0.3mmの円板
状成形体を得た。次に、この成形体を炉にいれて容積比
でN2 :H2 =97:3のN2 +H2 混合ガス雰囲気
(非酸化性雰囲気又は還元性雰囲気)中で1350℃で
3時間焼成して焼結体から成る半導体磁器を得た。
Next, 5% by weight of an aqueous solution of polyvinyl alcohol as an organic binder was added to the raw material mixture, mixed and granulated, and the granulated product was formed at a pressure of 0.6 ton / cm 2. A disk-shaped molded body having a diameter of 12.5 mm and a thickness of 0.3 mm was obtained. Next, this compact is placed in a furnace and fired at 1350 ° C. for 3 hours in an N 2 + H 2 mixed gas atmosphere (non-oxidizing atmosphere or reducing atmosphere) in a volume ratio of N 2 : H 2 = 97: 3. Thus, a semiconductor porcelain made of a sintered body was obtained.

【0025】更に、半導体磁器を大気中で1000℃、
1時間加熱処理(再酸化処理)して粒界絶縁型半導体磁
器を得た。
Further, the semiconductor porcelain is heated at 1000 ° C.
Heat treatment (reoxidation treatment) was performed for 1 hour to obtain a grain boundary insulating semiconductor ceramic.

【0026】次に、半導体磁器の両主面にオーミック性
銀ペースト(導電ペースト)を印刷法で塗布し、大気中
で550℃、1時間の焼付け処理を施して一対の電極を
形成し、サーミスタを完成させた。
Next, an ohmic silver paste (conductive paste) is applied to both main surfaces of the semiconductor porcelain by a printing method, and baked at 550 ° C. for 1 hour in the air to form a pair of electrodes. Was completed.

【0027】各試料のサーミスタについて、キュリ−温
度Tc(℃)と、サーミスタ特性(PTC特性)の急峻
度 log(ρmax /ρmin)をそれぞれ求めたところ、次の
結果が得られた。 試料NO. Tc(℃) 急峻度 log(ρmax /ρmin) 13 116.5 6.2 14 107.1 9.8 15 114.5 10.5 16 121.3 11.5 17 118.0 9.1 18 113.4 5.1
The Curie temperature Tc (° C.) and the steepness log (ρmax / ρmin) of the thermistor characteristics (PTC characteristics) were determined for the thermistors of each sample, and the following results were obtained. Sample No. Tc (° C.) Steepness log (ρmax / ρmin) 13 116.5 6.2 14 107.1 9.8 15 114.5 10.5 16 121.3 11.5 17 118.0 9.1 18 113.4 5.1

【0028】この結果から明らかなように、試料NO. 6
に示す粒径比D2 /D1 が1.10の場合には、半導体
化剤(Nb2 5 )が均一に分散できないために半導体
化が良好に達成せず、結果としてTc及び急峻度が小さ
い。一方、試料NO. 14〜17に示すように平均粒径比
D2 /D1 を0.04〜1.00の範囲にするとTc及
び急峻度が試料NO. 18よりも大きくなる。なお、試料
NO. 13に示すように平均粒径比D2 /D1 が0.02
のように小さくなり過ぎると、半導体化剤(Nb
2 5 )の凝集が強く生じて半導体化剤が均一分散しな
くなり、試料NO. 18と同様にTc及び急峻度は小さく
なる。
As is apparent from the results, the results of sample No. 6
When the particle diameter ratio D2 / D1 is 1.10, the semiconducting agent (Nb 2 O 5 ) cannot be uniformly dispersed, so that semiconductor conversion cannot be achieved satisfactorily. As a result, Tc and steepness are small. . On the other hand, when the average particle size ratio D2 / D1 is in the range of 0.04 to 1.00 as shown in Sample Nos. 14 to 17, Tc and steepness become larger than that of Sample No. 18. The sample
As shown in NO. 13, the average particle size ratio D2 / D1 was 0.02.
If it becomes too small as in
Agglomeration of 2 O 5 ) is strongly generated, and the semiconducting agent is not uniformly dispersed, and Tc and steepness are reduced similarly to Sample No. 18.

【0029】[0029]

【変形例】本発明は上述の実施例に限定されるものでな
く、例えば次の変形が可能なものである。 (1) 主成分はSrTiO3 、BaTiO3 に限るこ
となく、ABO3 (但しAはSr、Ca、Ba、Mgの
内の1種又は複数種の元素、BはTi、Zrの1種又は
複数種の元素)で示すことができるチタンストロンチウ
ム系の成分とすることができる。 (2) 半導体化剤(原子化制御剤)としては、Y2
3 、La2 5 、Nb2 5 の代りに又はこれに加え
て、W(タングステン)、Ta(タンタル)、及び希土
類元素(Ce、Pr、Nd、Sm、Dy、Pm、Eu、
Gd、Tb、Ho、Er、Tm、Yb、Lu等)等の化
合物(例えば、WO3 、Ta2 5 、CeO2 、Nd2
3 、Sm2 5 、Pr6 11、Dy2 3 等)の1種
又は複数種を100モル部のSrTiO3 又は前述のA
BO3 から成る主成分に対して好ましくは0.1〜5.
0モル部の範囲で使用することができる。 (3) 磁器材料に対する焼結助剤としてAl2 3
SiO2 、CuO、MnO2 、Ag2 Oから選択された
1種又は複数種を100モル部のSrTiO3又は前述
のABO3 から成る主成分に対して好ましくは0.05
〜0.50モル部の範囲で添加することができる。 (4) 粒界の絶縁化物質として、Bi2 3 の代りに
Pb3 4 、B2 3を使用すること、更にこれ等とM
nO2 、CuO、Tl2 3 、Sb2 5 、Fe2 3
等の金属酸化物から選択された1種又は複数種を使用し
て金属酸化物ペーストを作り、これを磁器に塗布するこ
とができる。 (5) SrTiO3 の代りに、これが得られる割合に
出発材料としてSrCO3 、TiO2 を使用することが
できる。 (6) 成形体を形成する前に大気雰囲気(酸化性雰囲
気)中の仮焼工程を設け、1000〜1200℃で1〜
5時間仮焼し、仮焼後の原料粉末を使用して成形体を作
ることができる。 (7) 磁器の製造条件を種々変えることができる。例
えば、還元性雰囲気(非酸化性雰囲気)での焼成を13
00〜1500℃、1〜5時間とすることができる。ま
た、前述の金属酸化物ペーストの塗布後の拡散処理を8
00〜1300℃、1〜5時間とすることができる。
[Modifications] The present invention is not limited to the above-described embodiment, and for example, the following modifications are possible. (1) The main component is not limited to SrTiO 3 and BaTiO 3 , but ABO 3 (where A is one or more elements of Sr, Ca, Ba and Mg, B is one or more of Ti and Zr) Strontium-based component which can be represented by (2) As a semiconducting agent (atomization controlling agent), Y 2 O
3 , instead of or in addition to La 2 O 5 and Nb 2 O 5 , W (tungsten), Ta (tantalum), and rare earth elements (Ce, Pr, Nd, Sm, Dy, Pm, Eu,
Compounds such as Gd, Tb, Ho, Er, Tm, Yb, Lu, etc. (eg, WO 3 , Ta 2 O 5 , CeO 2 , Nd 2)
O 3 , Sm 2 O 5 , Pr 6 O 11 , Dy 2 O 3 ) or 100 mol parts of SrTiO 3 or A
Preferably 0.1 to 5 with respect to the main component consisting of BO 3.
It can be used in a range of 0 mol part. (3) Al 2 O 3 as a sintering aid for porcelain materials,
One or more kinds selected from SiO 2 , CuO, MnO 2 , and Ag 2 O are preferably used in an amount of 0.05 mol% based on 100 mol parts of SrTiO 3 or the main component composed of ABO 3 described above.
It can be added in the range of 0.50 mol part. (4) Use of Pb 3 O 4 or B 2 O 3 instead of Bi 2 O 3 as an insulating material at the grain boundary.
nO 2 , CuO, Tl 2 O 3 , Sb 2 O 5 , Fe 2 O 3
A metal oxide paste can be prepared using one or a plurality of metal oxides selected from metal oxides, and can be applied to porcelain. (5) Instead of SrTiO 3 , SrCO 3 and TiO 2 can be used as starting materials in a proportion in which this can be obtained. (6) Before forming a molded body, a calcination step in an air atmosphere (oxidizing atmosphere) is provided.
The molded body can be made by calcining for 5 hours and using the calcined raw material powder. (7) Various manufacturing conditions for porcelain can be changed. For example, firing in a reducing atmosphere (non-oxidizing atmosphere)
The temperature can be set at 00 to 1500 ° C. for 1 to 5 hours. Further, the diffusion treatment after the application of the above-mentioned metal oxide paste is performed by 8 times.
The temperature can be set to 00 to 1300 ° C. for 1 to 5 hours.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例の半導体磁器を示す正面図であ
る。
FIG. 1 is a front view showing a semiconductor porcelain of a first embodiment.

【図2】図1の半導体磁器の表面に絶縁化物質を塗布し
たものを示す正面図である。
FIG. 2 is a front view showing a surface of the semiconductor porcelain of FIG. 1 coated with an insulating material.

【図3】コンデンサを原理的に示す断面図である。FIG. 3 is a sectional view schematically showing a capacitor.

【符号の説明】[Explanation of symbols]

3 結晶粒子 4 粒界層 5,6 電極 3 crystal grain 4 grain boundary layer 5, 6 electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−55152(JP,A) 特開 昭63−55154(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/00 C04B 35/46 - 35/478 H01C 7/10 H01G 4/12 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-55152 (JP, A) JP-A-63-55154 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 35/00 C04B 35/46-35/478 H01C 7/10 H01G 4/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ABO(但し、AはSr、Ba、C
a、Mgの内のいずれか1種又は複数種の元素、BはT
i、Zrの内のいずれか1種又は複数種の元素、Oは酸
素を示す。)から成る主成分と、半導体化剤とを含み、
前記主成分の平均粒径(D1 )に対する前記半導体化剤
の平均粒径(D2 )の比(D2 /D1)が0.04〜
1.00の範囲の半導体磁器原料粉末を用意し、前記主
成分と前記半導体化剤とを湿式混合する工程と、 前記半導体磁器原料粉末の成形体を形成する工程と、 前記成形体を焼成する工程とを有する半導体磁器の製造
方法。
1. ABO 3 (where A is Sr, Ba, C
a, one or more of Mg, B is T
O represents one or more of i and Zr, and O represents oxygen. ) And a semiconducting agent,
The ratio (D2 / D1) of the average particle size (D2) of the semiconducting agent to the average particle size (D1) of the main component is 0.04 to
Prepare a raw material powder of semiconductor porcelain in the range of 1.00,
A method for producing a semiconductor porcelain, comprising: a step of wet-mixing a component and the semiconductor agent ; a step of forming a compact of the semiconductor porcelain raw material powder; and a step of firing the compact.
【請求項2】 前記焼成する工程は、非酸化性雰囲気中
で前記成形体を焼成して焼結体を得る工程であり、 更に、前記焼結体の表面に粒界絶縁化用の金属酸化物を
含むペーストを塗布して熱処理する工程を有することを
特徴とする請求項1の半導体磁器の製造方法。
2. The sintering step is a step of sintering the molded body in a non-oxidizing atmosphere to obtain a sintered body, and further comprising a step of forming a metal oxide for grain boundary insulation on the surface of the sintered body. 2. The method according to claim 1, further comprising the step of applying a paste containing a material and heat-treating the paste.
JP06228630A 1994-08-29 1994-08-29 Manufacturing method of semiconductor porcelain Expired - Fee Related JP3124896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06228630A JP3124896B2 (en) 1994-08-29 1994-08-29 Manufacturing method of semiconductor porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06228630A JP3124896B2 (en) 1994-08-29 1994-08-29 Manufacturing method of semiconductor porcelain

Publications (2)

Publication Number Publication Date
JPH0867561A JPH0867561A (en) 1996-03-12
JP3124896B2 true JP3124896B2 (en) 2001-01-15

Family

ID=16879357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06228630A Expired - Fee Related JP3124896B2 (en) 1994-08-29 1994-08-29 Manufacturing method of semiconductor porcelain

Country Status (1)

Country Link
JP (1) JP3124896B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4182007B2 (en) * 2004-01-30 2008-11-19 Tdk株式会社 Multilayer ceramic capacitor

Also Published As

Publication number Publication date
JPH0867561A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
US6162752A (en) Barium titanate powder, semiconducting ceramic, and semiconducting ceramic electronic element
JPH0524646B2 (en)
KR100340668B1 (en) Laminated Type Semiconductor Ceramic Element and Production Method for the Laminated Type Semiconductor Ceramic Element
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JP3039511B2 (en) Semiconductor ceramic and semiconductor ceramic element
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
KR910001347B1 (en) Ultra-low fire ceramic compositions and method for producing thereof
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
JPS606535B2 (en) porcelain composition
JP2956131B2 (en) Strontium titanate-based semiconductor porcelain and method of manufacturing the same
JP2681981B2 (en) Porcelain composition for reduction-reoxidation type semiconductor capacitor
JPH07220902A (en) Barium titanate semiconductor ceramic
JP2990627B2 (en) Varistor manufacturing method
JP3325114B2 (en) Composition for semiconductor porcelain and method for producing semiconductor porcelain element
JP3198876B2 (en) Semiconductor porcelain, manufacturing method thereof, and positive temperature coefficient thermistor
JP2934388B2 (en) Manufacturing method of semiconductor porcelain
JPS5948521B2 (en) Method for manufacturing positive characteristic semiconductor porcelain
JPH0472368B2 (en)
JPS6248368B2 (en)
JPH04144201A (en) Positive temperature coefficient thermistor and manufacture thereof
JP2646734B2 (en) Ceramic capacitor and method of manufacturing the same
JPS6126207B2 (en)
JPH0514409B2 (en)
JPH0514410B2 (en)
JPH08130105A (en) Ceramic varistor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001012

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees