JPH04144201A - Positive temperature coefficient thermistor and manufacture thereof - Google Patents

Positive temperature coefficient thermistor and manufacture thereof

Info

Publication number
JPH04144201A
JPH04144201A JP2268108A JP26810890A JPH04144201A JP H04144201 A JPH04144201 A JP H04144201A JP 2268108 A JP2268108 A JP 2268108A JP 26810890 A JP26810890 A JP 26810890A JP H04144201 A JPH04144201 A JP H04144201A
Authority
JP
Japan
Prior art keywords
metal element
added
rare earth
trivalent
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2268108A
Other languages
Japanese (ja)
Inventor
Hiroshi Kuroshima
黒島 浩
Susumu Nakayama
享 中山
Terumitsu Ichimori
一森 照光
Masanaga Kikuzawa
菊沢 將長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2268108A priority Critical patent/JPH04144201A/en
Publication of JPH04144201A publication Critical patent/JPH04144201A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize the decrease of normal temperature resistance, and improve characteristics, by adding a specified amount of specified rare earth metal elements to raw material to which a specified amount of specified metal element as semiconductor agent is added for 1mol of composition of barium titanate wherein a part of barium is replaced by strontium. CONSTITUTION:Trivalent rare earth metal element of 0.001mol or less is added to raw material of 1mol to which trivalent or pentavalent transition metal element of 0.003mol or less is added as semiconductor agent. As the semiconductor agent to be added to composition, the following are used; trivalent rare earth metal element such as yttrium, cerium and lanthanum, or trivalent metal element such as antimony and bismuth, or pentavalent metal element such as niobium, tantalum and tungsten. As trivalent rare earth metal element for reducing normal temperature resistance, praseodymium, samarium, gadolinum, erbium, etc., are used. After the above elements are added, mixed and calcined, the molded object is sintered at a temperature higher than or equal to 1200 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、温度変化により抵抗が大幅に変化する素子に
関し、特に正の抵抗温度特性(以下PTC特性と称す)
を有するサーミスタにおいて常温抵抗の小さい素子に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an element whose resistance changes significantly due to temperature change, and particularly relates to a positive resistance temperature characteristic (hereinafter referred to as PTC characteristic).
The present invention relates to a thermistor having a low resistance at room temperature.

[従来の技術] 温度変化によって素子の電気抵抗が大きく変化する半導
体感温素子であるサーミスタが温度センサ等として広く
使用されている。
[Prior Art] A thermistor, which is a semiconductor temperature-sensitive element whose electrical resistance changes greatly depending on temperature changes, is widely used as a temperature sensor or the like.

サーミスタには、温度が上昇するにつれて電気抵抗が指
数関数的に減少する負の温度特性を有するNTCに対し
て、逆に非直線的に抵抗が著しく増加するPTC特性を
有する正特性サーミスタが知られている。
NTC has negative temperature characteristics in which electrical resistance decreases exponentially as temperature rises, while positive thermistors have PTC characteristics in which resistance significantly increases non-linearly. ing.

負の温度特性を有するNTCサーミスタは温度センサを
中心に広く利用されているが、正の温度特性を有するP
TCサーミスタを、発熱させた場合には温度の上昇にと
もなって電気抵抗が増加すると通電電流が減少し、その
結果発熱量が減少するという自己温度制御機能を有して
いるために、温度ヤンサとして利用されるよりも、テレ
ビのブラウン管の消磁回路用やモータの起動回路用の無
接点電流制御素子として、ヘヤードライヤ、ふとん乾燥
詠 炊飯保温器 電気蚊取り器 複写機の温度保持用等
の自己温度制御発熱体として利用されている。
NTC thermistors, which have negative temperature characteristics, are widely used mainly in temperature sensors, but NTC thermistors, which have positive temperature characteristics,
TC thermistors have a self-temperature control function in which when the electrical resistance increases as the temperature rises, the current flowing through them decreases, and as a result, the amount of heat generated decreases. Rather than being used, it is used as a non-contact current control element for the degaussing circuit of television cathode ray tubes and the starting circuit of motors, and for self-temperature control of hair dryers, futon dryers, rice cookers, electric mosquito repellents, copying machines, etc. It is used as a heating element.

PTCサーミスタはチタン酸バリウム又はチタン酸スト
ロンチウムなどの導電性を有しない酸化物に、これらの
酸化物を半導体化させるドープ剤としてイツトリウム、
ランタンなどの3価の希土類金属元素あるいはニオブ、
タンタルなどの5価の遷移金属元素を添加し大気中で1
,200〜1゜400℃で焼成することによって製造し
ているセラミックスであるが、強誘電体相から常誘電体
相へ変わるキュリー点温度付近で数十Ω・amないし数
百Ω・cmであった抵抗値が107Ω・amないし10
1@Ω・Cmへと急激に増加するいわゆるPTC特性を
示すが、抵抗の変化するキュリー点温度、抵抗増加の幅
等に関して使用目的に応じて各種の改良がなされている
PTC thermistors are made by adding yttrium or yttrium to non-conductive oxides such as barium titanate or strontium titanate as dopants to convert these oxides into semiconductors.
Trivalent rare earth metal elements such as lanthanum or niobium,
1 in the atmosphere by adding pentavalent transition metal elements such as tantalum.
,200~1°C Ceramics are manufactured by firing at 400°C, but the resistance is several tens of Ω・am to several hundred Ω・cm near the Curie point temperature where the ferroelectric phase changes to the paraelectric phase. The resistance value is 107Ω・am or 10
It exhibits a so-called PTC characteristic that rapidly increases to 1@Ω·Cm, but various improvements have been made in terms of the Curie point temperature at which the resistance changes, the range of increase in resistance, etc. depending on the purpose of use.

[発明が解決しようとする課題] 現在、 PTCサーミスタは数多くの場所で使用されて
おり使用目的に応じて要求されるPTCサーミスタの各
種の特性のうち、常温抵抗は、公称ゼロ負荷抵抗値とし
て電子材料工業会標準規格で定められている。公称ゼロ
負荷抵抗値は、PTCサーミスタの常温での1つの電気
特性を示す指標であって、発熱および印加電圧による抵
抗値変化が無視できるような十分低い電力および電圧で
測定した直流電気抵抗値である。
[Problem to be solved by the invention] Currently, PTC thermistors are used in many places, and among the various characteristics of PTC thermistors required depending on the purpose of use, room temperature resistance is It is stipulated by the Materials Industry Association standards. The nominal zero-load resistance value is an index indicating one of the electrical characteristics of a PTC thermistor at room temperature, and is the DC electrical resistance value measured at sufficiently low power and voltage that resistance changes due to heat generation and applied voltage can be ignored. be.

また、公称ゼロ負荷抵抗値はその素子の半導体化の程度
を示すものであり、利用分野によっては低い値のものが
必要である。
Further, the nominal zero-load resistance value indicates the degree of semiconductorization of the element, and a low value is required depending on the field of use.

PTCサーミスタで大電流を制御したり、発熱量の大き
な大型のヒータを製造するためには、大電流を流すこと
ができる常温抵抗の低い素子が必要とさね また、素子
の小型化のためにも同様に低抵抗化が望まれている。一
方、信頼性の向上のためには、低抵抗化に伴う耐電圧値
の低下も極力押える必要がある。
In order to control large currents with PTC thermistors or to manufacture large heaters that generate a large amount of heat, an element with low room temperature resistance that can flow a large current is required.Also, in order to miniaturize the element Similarly, lower resistance is desired. On the other hand, in order to improve reliability, it is necessary to suppress the decrease in withstand voltage value as much as possible due to lower resistance.

耐電圧値はPTCサーミスタの素子に電圧をかけてゆき
、素子が破壊するところの電圧値であるが、PTCサー
ミスタは通常電源電圧値で直接使用するために、日本で
は100V以上の値が必要であり、欧米では200Vの
以上の耐電圧値が必要となる。また、耐電圧値は、通常
公称ゼロ負荷抵抗値が低下するにつれて低くなる。
The withstand voltage value is the voltage value at which the element breaks down when a voltage is applied to the element of the PTC thermistor, but since PTC thermistors are usually used directly at the power supply voltage value, a value of 100V or more is required in Japan. In Europe and America, a withstand voltage value of 200V or higher is required. Further, the withstand voltage value usually decreases as the nominal zero-load resistance value decreases.

本発明は、上記のような課題を解決するためにPTCサ
ーミスタの基本的な特性に影響を及ぼす材料の基本成分
比を変えることなく、さらに微量の成分を添加すること
によって常温抵抗の低下を実現し、特性を向上させたも
のである。
In order to solve the above problems, the present invention realizes a reduction in room temperature resistance by adding a small amount of ingredients without changing the basic component ratio of the material that affects the basic characteristics of the PTC thermistor. However, it has improved characteristics.

[課題を解決するための手段] 上記問題点を解決するために本発明のPTCサーミスタ
は、バリウムの一部をストロンチウムで置換したチタン
酸バリウムの(Ba、5r)Ti03組成物1モルに対
して半導体化剤として0゜003モル以下の3価又は5
価の金属元素が添加されているPTCサーミスタ原料に
更に0.001モル以下の3価の希土類金属元素を添加
し混合、仮焼した後、その成形体を大気中1200℃な
いし1400℃で焼成することにより製造したものであ
る。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the PTC thermistor of the present invention has a composition of barium titanate (Ba, 5r) in which a part of barium is replaced with strontium per mole of (Ba, 5r) Ti03 composition. Trivalent or pentavalent 0°003 mol or less as a semiconducting agent
0.001 mol or less of a trivalent rare earth metal element is further added to the PTC thermistor raw material to which a valent metal element is added, mixed and calcined, and then the molded body is fired at 1200°C to 1400°C in the atmosphere. It was manufactured by

チタン酸バリウム系の組成物に添加する半導体化剤には
、イツトリウム(Y)、セリウム(Ce)ランタン(L
a)などの3価の希土類金属元素、アンチモン(sb)
、ビスマス(Bi)などの3価の金属元素、あるいはニ
オブ(Nb)、タンタル(Ta)、タングステン(W)
などの5価の金属元素が用いられる。
Semiconducting agents added to barium titanate-based compositions include yttrium (Y), cerium (Ce), and lanthanum (L).
Trivalent rare earth metal elements such as a), antimony (sb)
, trivalent metal elements such as bismuth (Bi), or niobium (Nb), tantalum (Ta), and tungsten (W).
Pentavalent metal elements such as are used.

また、 PTCサーミスタの常温抵抗の低下に使用する
3価の希土類金属元素にはブラヤオジム(Pr)、サマ
リウム(Sm)、ガドリニウム(Gd)、エルビウム(
Er)などがあるが、他の希土類元素もイオン半径の違
いのみで同様の挙動を示すので、他の希土類元素も同様
に利用することが可能である。
In addition, trivalent rare earth metal elements used to lower the room temperature resistance of PTC thermistors include Brayaozym (Pr), samarium (Sm), gadolinium (Gd), and erbium (
However, since other rare earth elements exhibit similar behavior only with a difference in ionic radius, other rare earth elements can also be used in the same way.

[作用コ 本発明によるPTCサーミスタは、PTCサーミスタ材
料の基本成分比を変えることなくその公称ゼロ負荷抵抗
値を0〜5%の範囲で自由に下げることができる。更に
抵抗値が減少することに伴う耐電圧の低下を極力押える
ことができる。
[Function] The PTC thermistor according to the present invention can freely lower its nominal zero-load resistance value within the range of 0 to 5% without changing the basic component ratio of the PTC thermistor material. Furthermore, a decrease in withstand voltage due to a decrease in resistance value can be suppressed as much as possible.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

実施例 (B a s、a*s r s、2@) T i 01
,1+03 + 0. 0015 D 120sの組成
になるように基本成分を配合した後、3価の希土類金属
元素プラセオジム(Pr)、サマリウム(Sm)、ガド
リニウム(Gd)又はエルビウム(Er)を第1表に示
す量を基本成分1モに対して添加する。添加する希土類
金属元素は酸化物M2O3の形のものを使用した。
Example (B a s, a*s r s, 2@) T i 01
,1+03+0. 0015 D After blending the basic ingredients to have a composition of 120s, add the trivalent rare earth metal elements praseodymium (Pr), samarium (Sm), gadolinium (Gd), or erbium (Er) in the amounts shown in Table 1. Add to 1 mo of ingredients. The rare earth metal element added was in the form of oxide M2O3.

添加の後に湿式混練し、乾燥後1050〜1150℃で
仮焼を行う。次に、この仮焼粉1モルに対し二酸化マン
ガン(M n O2)を0.0007モル、二酸化ケイ
素(Sin2)を0.0150モル、酸化7’ンチモン
(S bzos) ’r”o、  0005モ#を添加
した後ボールミルにより混合粉砕を行う。
After addition, wet kneading is performed, and after drying, calcining is performed at 1050 to 1150°C. Next, for 1 mol of this calcined powder, 0.0007 mol of manganese dioxide (MnO2), 0.0150 mol of silicon dioxide (Sin2), and 0.005 mol of manganese dioxide (Sbzos) were added. After adding #, mixed and pulverized using a ball mill.

更に、 15 w t%のポリビニルアルコールを原料
に対して10wt%添加して造粒し直径20mm、厚さ
3.0mmの円板状に1,000kg/Cm2の圧力で
成形した後ニ1. 300〜1. 350℃で2時間焼
成する。得られた焼結体にはオーミック性銀電極の端子
を接合して、PTCサーミスタを製造した 得られたPTCサーミスタを25℃に保たれた恒温槽中
で素・子にI■の電圧を印加して直流抵抗値を測定した
ところところ、第1表に示すような結果が得られ旭 [以下余白コ 第1表 比較例 常温抵抗を減少させるための希土類金属元素を添加しな
い点を除いては、実施例と同様の条件でPTCサーミス
タを製造し、実施例において使用シタ方法と同一の方法
で電気抵抗を測定したところ、 20Ω・cmであっ旭 第1表に、希土類金属外元素の添加量と抵抗値の減少率
を示すように、いずれの希土類金属元素の添加量が基本
成分1モルに対して0.0015モル以上となると半導
体化が認められなくなることが示されており、それ以下
の添加量であれば抵抗値の減少率は0〜5%程度認めら
れる。
Furthermore, 15 wt% of polyvinyl alcohol was added to the raw material in an amount of 10 wt%, granulated, and molded into a disk shape with a diameter of 20 mm and a thickness of 3.0 mm at a pressure of 1,000 kg/cm2. 300-1. Bake at 350°C for 2 hours. A PTC thermistor was manufactured by bonding an ohmic silver electrode terminal to the obtained sintered body. A voltage of I was applied to the obtained PTC thermistor in a constant temperature oven kept at 25°C. When we measured the DC resistance value, we obtained the results shown in Table 1. When a PTC thermistor was manufactured under the same conditions as in the example and the electrical resistance was measured using the same method as used in the example, it was found to be 20Ω・cm. As shown by the rate of decrease in resistance value, it has been shown that when the amount of any rare earth metal element added is 0.0015 mol or more per 1 mol of the basic component, no semiconductor formation is observed; If the amount is added, a reduction rate of resistance value of about 0 to 5% can be observed.

一方、抵抗値の減少に伴うPTC特性への影響について
は、抵抗温度係数、抵抗変化率には変化は認められなか
っ旭 まだ、耐電圧については最大3%程度の低下が認
められた程度で特性に悪影響を及ぼすような顕著な変化
は認められなかった。
On the other hand, regarding the effect on PTC characteristics due to a decrease in resistance value, no change was observed in the temperature coefficient of resistance or rate of change in resistance. No significant changes were observed that would adversely affect the results.

[発明の効果コ 本発明の、正特性サーミスタは、半導体化剤の添加され
た(Ba、5r)Ti03に更に少量の3価の希土類の
金属元素を添加し焼結することにより、正特性サーミス
タの基本的な特性に影響を及ぼす基本成分を変更するこ
となく、常温電気抵抗を減少させることができる。
[Effects of the Invention] The positive temperature thermistor of the present invention is produced by adding a small amount of trivalent rare earth metal element to (Ba, 5r)Ti03 to which a semiconducting agent has been added and sintering it. The room-temperature electrical resistance can be reduced without changing the basic components that affect the basic properties of the material.

Claims (3)

【特許請求の範囲】[Claims] (1)バリウムの一部をストロンチウムで置換したチタ
ン酸バリウムの組成物1モルに対し、半導体化剤として
0.003モル以下の3価又は5価の遷移金属元素を添
加した正特性サーミスタ原料の1モルに対して0.00
1モル以下の3価の希土類金属元素を添加したことを特
徴とする正特性サーミスタ。
(1) A positive temperature coefficient thermistor raw material in which 0.003 mol or less of a trivalent or pentavalent transition metal element is added as a semiconductor agent to 1 mol of a barium titanate composition in which a part of barium is replaced with strontium. 0.00 per mole
A positive characteristic thermistor characterized in that 1 mole or less of a trivalent rare earth metal element is added.
(2)3価の希土類金属元素がプラセオジム(Pr)、
サマリウム(Sm)、ガドリニウム(Gd)、エルビウ
ム(Er)から選ばれることを特徴とする請求項1記載
の正特性サーミスタ。
(2) The trivalent rare earth metal element is praseodymium (Pr),
The positive temperature coefficient thermistor according to claim 1, characterized in that the positive temperature coefficient thermistor is selected from samarium (Sm), gadolinium (Gd), and erbium (Er).
(3)バリウムの一部をストロンチウムで置換したチタ
ン酸バリウムの組成物1モルに対し、半導体化剤として
0.003モル以下の3価又は5価の遷移金属元素を添
加した正特性サーミスタ原料の1モルに対して0.00
1モル以下の3価の希土類金属元素を添加して1200
℃以上の温度で焼結することを特徴とする正特性サーミ
スタの製造方法。
(3) A positive temperature coefficient thermistor raw material in which 0.003 mol or less of a trivalent or pentavalent transition metal element is added as a semiconductor agent to 1 mol of a barium titanate composition in which a part of barium is replaced with strontium. 0.00 per mole
1200 by adding 1 mol or less of a trivalent rare earth metal element
A method for manufacturing a positive characteristic thermistor characterized by sintering at a temperature of ℃ or higher.
JP2268108A 1990-10-05 1990-10-05 Positive temperature coefficient thermistor and manufacture thereof Pending JPH04144201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2268108A JPH04144201A (en) 1990-10-05 1990-10-05 Positive temperature coefficient thermistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2268108A JPH04144201A (en) 1990-10-05 1990-10-05 Positive temperature coefficient thermistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04144201A true JPH04144201A (en) 1992-05-18

Family

ID=17454009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2268108A Pending JPH04144201A (en) 1990-10-05 1990-10-05 Positive temperature coefficient thermistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04144201A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655752A2 (en) * 1993-11-25 1995-05-31 NGK Spark Plug Co. Ltd. Ceramic composition and thermistor comprising such ceramic composition
JP2010254536A (en) * 2009-04-28 2010-11-11 Nichicon Corp Positive characteristic thermistor ceramic composition
JP2016027839A (en) * 2014-07-11 2016-02-25 サンメディカル株式会社 Medical heating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655752A2 (en) * 1993-11-25 1995-05-31 NGK Spark Plug Co. Ltd. Ceramic composition and thermistor comprising such ceramic composition
EP0655752A3 (en) * 1993-11-25 1996-05-01 Ngk Spark Plug Co Ceramic composition and thermistor comprising such ceramic compositon.
JP2010254536A (en) * 2009-04-28 2010-11-11 Nichicon Corp Positive characteristic thermistor ceramic composition
JP2016027839A (en) * 2014-07-11 2016-02-25 サンメディカル株式会社 Medical heating device

Similar Documents

Publication Publication Date Title
JP5805648B2 (en) Ceramic material, method for producing ceramic material, and resistance element having ceramic material
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
JPH04144201A (en) Positive temperature coefficient thermistor and manufacture thereof
JP2014072374A (en) Barium titanate-based semiconductor porcelain composition and ptc thermistor using the same
JPH08162302A (en) Thermistor and its manufacture
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH1179833A (en) Barium titanate-based semiconductor ceramic
WO2004110952A1 (en) Barium titanate based semiconductor porcelain composition
JP3178083B2 (en) Barium titanate-based ceramic semiconductor and method for producing the same
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP2012209292A (en) Positive thermistor
JPH11102802A (en) Positive temperature coefficient thermistor and its manufacture
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JPH04177803A (en) Positive characteristic thermistor and manufacture thereof
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JPH04177804A (en) Positive characteristic thermistor and manufacture thereof
JPH01238101A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JPH08151261A (en) Semiconductor porcelain having positive resistance temperature characteristic
JP2000247734A (en) Semiconductive ceramic
JPH0248465A (en) Barium titanate-based semiconductor porcelain
JP2013079160A (en) Ceramic composition for ptc thermistor, and ptc thermistor
JP2015086104A (en) Semiconductor ceramic composition and manufacturing method thereof
JPH11139870A (en) Barium titanate-base semiconductor porcelain
JPH0912355A (en) Semiconducting porcelain and its production