JPH08162302A - Thermistor and its manufacture - Google Patents

Thermistor and its manufacture

Info

Publication number
JPH08162302A
JPH08162302A JP6301071A JP30107194A JPH08162302A JP H08162302 A JPH08162302 A JP H08162302A JP 6301071 A JP6301071 A JP 6301071A JP 30107194 A JP30107194 A JP 30107194A JP H08162302 A JPH08162302 A JP H08162302A
Authority
JP
Japan
Prior art keywords
thermistor
equation
resistance value
oxide
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6301071A
Other languages
Japanese (ja)
Inventor
Yoko Sakota
洋子 迫田
Takuoki Hata
拓興 畑
Shuichi Kubota
修一 久保田
Masahiko Ajiyama
雅彦 味山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6301071A priority Critical patent/JPH08162302A/en
Publication of JPH08162302A publication Critical patent/JPH08162302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE: To provide an excellent thermistor wherein the change of resistance value with the passage of time is small. CONSTITUTION: An element substance 1 for a thermistor is formed by adding 0.01-10 atomic % of an oxide of Zr, to 100 atomic % of a mixture of one, or at least two kinds out of oxides of Mn, Ni, Co, Cr, Fe, and Al, and electrodes 2a, 2b are formed on this thermistor element substance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばガラス封入サー
ミスタに用いるサーミスタとその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermistor used for a glass-enclosed thermistor and a method for manufacturing the thermistor.

【0002】[0002]

【従来の技術】従来、NTCサーミスタは、サーミスタ
素体を、マンガン−ニッケル系、マンガン−ニッケル−
コバルト系などの酸化物を用いて形成し、このサーミス
タ素体に電極を形成していた。
2. Description of the Related Art Conventionally, NTC thermistors have a thermistor element body of manganese-nickel type, manganese-nickel-type.
The electrodes were formed on this thermistor element body by using an oxide such as cobalt type.

【0003】[0003]

【発明が解決しようとする課題】上記従来の構成では、
高温使用下において、サーミスタ素体の結晶構造の変化
等のために抵抗値の経時変化が大きくなるという問題点
を有していた。本発明は上記問題点を解決するもので、
高温使用下における抵抗値の経時変化の小さい安定した
特性を有するサーミスタを提供することを目的とするも
のである。
SUMMARY OF THE INVENTION In the above conventional configuration,
There has been a problem that the resistance value changes greatly with time due to a change in the crystal structure of the thermistor element under high temperature use. The present invention solves the above problems,
An object of the present invention is to provide a thermistor having stable characteristics with a small change in resistance value over time when used at high temperatures.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
に、本発明のサーミスタは、サーミスタ素体をMn,N
i,Co,Cr,Fe,Alの酸化物の中から1種ある
いは2種以上混合したもの100原子%に対し、Zrの
酸化物を0.01原子%以上、10原子%未満添加した
ものを用いて形成し、これに電極を形成したものであ
る。
In order to achieve this object, the thermistor of the present invention has a thermistor body of Mn, N.
The oxides of Zr are added in an amount of 0.01 atom% or more and less than 10 atom% with respect to 100 atom% of a mixture of one or two or more oxides of i, Co, Cr, Fe and Al. It is formed by using it, and an electrode is formed on it.

【0005】[0005]

【作用】上記構成によるとZrは4価を取るためスピネ
ル相やNaCl相に固溶せず、単独で析出する。このた
めスピネル単相領域における正方晶−立方晶の変態や、
スピネルとNaCl相の混晶領域におけるスピネル相−
NaCl相の相変態を抑制し、高温使用下における抵抗
値の経時変化を小さくすることができ、また、素体強度
が向上する。
According to the above structure, Zr has a valence of 4, so that Zr does not form a solid solution in the spinel phase or the NaCl phase but precipitates alone. Therefore, tetragonal-cubic transformation in the spinel single-phase region,
Spinel phase in mixed crystal region of spinel and NaCl phase-
It is possible to suppress the phase transformation of the NaCl phase, reduce the change with time of the resistance value under high temperature use, and improve the strength of the element body.

【0006】[0006]

【実施例】【Example】

(実施例1)以下、本発明の第1の実施例について説明
する。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described.

【0007】酸化マンガン、酸化ニッケル、酸化コバル
ト、酸化クロム、酸化アルミニウム、酸化鉄、ジルコニ
ウムの酸化物を焼結後の金属原子組成が(表1)、(表
2)、(表3)の組成比になるように配合し、ボールミ
ルで16時間湿式混合した。
Compositions having metal atom compositions (Table 1), (Table 2) and (Table 3) after sintering oxides of manganese oxide, nickel oxide, cobalt oxide, chromium oxide, aluminum oxide, iron oxide and zirconium The ingredients were blended in a ratio and wet-mixed in a ball mill for 16 hours.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【表2】 [Table 2]

【0010】[0010]

【表3】 [Table 3]

【0011】その後、100℃〜200℃で脱水乾燥
し、乳鉢、乳棒を用いて粉体にした。次に、この粉体を
600℃〜1000℃で2時間仮焼し、これら仮焼物を
ボールミルで20時間湿式粉砕後、100℃〜200℃
で脱水乾燥し、純水とポリビニールアルコール(PV
A)をバインダーとして8wt%添加し、乳鉢、乳棒で
顆粒状に造粒した後、所要量採取して、例えば直径30
mm、熱さ15mmのブロック型に成形圧1t/cm2
で加圧成形し成形品を得た。これらを空気中1000℃
〜1450℃の温度で2時間焼結させた。焼成後、この
ブロックを厚さ500μmのウェハにスライスし、10
00℃以上で熱処理を行い、歪を除去した。次に、この
ウェハの両面にPtペーストをスクリーン印刷し、98
0℃で焼き付けを行い電極を形成した。電極焼付け後、
ウェハを例えば700μm角に分断して、図1に示すよ
うな両面に電極2a,2bが形成されたサーミスタ素体
1を得た。
Then, it was dehydrated and dried at 100 ° C. to 200 ° C., and powdered using a mortar and pestle. Next, this powder is calcined at 600 ° C. to 1000 ° C. for 2 hours, and the calcined product is wet pulverized in a ball mill for 20 hours, and then 100 ° C. to 200 ° C.
Dehydrated and dried in pure water and polyvinyl alcohol (PV
8% by weight of A) is added as a binder, granulated into granules with a mortar and pestle, and the required amount is sampled, for example, a diameter of 30
mm, heat of 15 mm, block pressure 1t / cm 2
Then, pressure molding was performed to obtain a molded product. 1000 ° C in air
Sintered at a temperature of ~ 1450 ° C for 2 hours. After firing, this block was sliced into 500 μm thick wafers,
Heat treatment was performed at a temperature of 00 ° C. or higher to remove strain. Next, screen print Pt paste on both sides of this wafer,
An electrode was formed by baking at 0 ° C. After baking the electrodes,
The wafer was cut into, for example, 700 μm squares to obtain a thermistor element body 1 having electrodes 2a and 2b formed on both surfaces as shown in FIG.

【0012】次に、サーミスタ素体1の電極2a,2b
上にジュメット線などのリード線4a,4bを耐熱導電
性塗料3a,3bで接合後、700℃から900℃で焼
き付けた。このリード線4a,4b付きサーミスタ素体
1をケイ酸鉛系ガラスチューブ内に収め、トンネル炉に
よりガラス被膜5で封着し、ガラス封止型のNTCサー
ミスタ(以降サーミスタ素子という)を得た。
Next, the electrodes 2a and 2b of the thermistor body 1
The lead wires 4a and 4b such as Dumet wires were bonded on the top with the heat resistant conductive paints 3a and 3b, and then baked at 700 to 900 ° C. The thermistor element body 1 with the lead wires 4a and 4b was housed in a lead silicate glass tube and sealed with a glass coating 5 in a tunnel furnace to obtain a glass-sealed NTC thermistor (hereinafter referred to as a thermistor element).

【0013】このようにして完成した各サーミスタ素子
を直流4端子法を用いて25℃の抵抗値(R25)、8
5℃の抵抗値(R85)を測定し、(数3)を用いて、
25℃での比抵抗(ρ25)を、また(数4)を用いて
25℃と85℃間のB定数(B25/85)を算出し
た。
Each of the thermistor elements thus completed was subjected to a DC 4-terminal method to obtain a resistance value (R25) of 8 at 25.degree.
The resistance value (R85) at 5 ° C. is measured, and using (Equation 3),
The specific resistance (ρ25) at 25 ° C. and the B constant (B25 / 85) between 25 ° C. and 85 ° C. were calculated using (Equation 4).

【0014】[0014]

【数3】 (Equation 3)

【0015】[0015]

【数4】 [Equation 4]

【0016】また、抵抗変化率は、25℃で抵抗値(R
25A)を測定した試料を、300℃に維持した高温槽
中に3000時間放置した後、試料の抵抗値(R25
B)を25℃で再度測定した。放置前後の抵抗値の変化
率を(数5)により求めた。
The rate of change in resistance is the resistance value (R
25A) was left for 3000 hours in a high temperature bath maintained at 300 ° C., and then the resistance value (R25
B) was measured again at 25 ° C. The rate of change in resistance value before and after leaving was determined by (Equation 5).

【0017】[0017]

【数5】 (Equation 5)

【0018】(表1)、(表2)、(表3)において、
*印は本発明の範囲外のものである。
In (Table 1), (Table 2) and (Table 3),
The * marks are outside the scope of the present invention.

【0019】また、表を見てもわかるように、本発明の
特許請求の範囲に示した組成では、抵抗変化率が±5%
以内であるが、本発明の請求の範囲外のものはいずれも
抵抗変化率が大きい。
As can be seen from the table, the composition shown in the claims of the present invention has a resistance change rate of ± 5%.
Within the range, the rate of change in resistance is large in all cases outside the scope of claims of the present invention.

【0020】(実施例2)以下、本発明の第2の実施例
について説明する。
(Second Embodiment) The second embodiment of the present invention will be described below.

【0021】酸化マンガン、酸化ニッケル、酸化コバル
ト、酸化クロム、酸化アルミニウム、酸化鉄、水酸化ジ
ルコニウムを焼結後の金属原子組成が(表4)の組成比
になるように配合し、第1の実施例と同様にサーミスタ
素子を作成した。
Manganese oxide, nickel oxide, cobalt oxide, chromium oxide, aluminum oxide, iron oxide, and zirconium hydroxide were mixed so that the composition of metal atoms after sintering would be the composition ratio of (Table 4). A thermistor element was prepared in the same manner as in the example.

【0022】[0022]

【表4】 [Table 4]

【0023】まず、ボールミルで16時間湿式混合した
後、100℃〜200℃で脱水乾燥し、乳鉢、乳棒を用
いて粉体にした。次にこの粉体を600℃〜1000℃
で2時間仮焼し、これら仮焼物をボールミルで20時間
湿式粉砕後、100℃〜200℃で脱水乾燥し、純水と
ポリビニールアルコール(PVA)をバインダーとして
8wt%添加し、乳鉢、乳棒で顆粒状に造粒した後、所
要量採取して例えば直径30mm、厚さ15mmのブロ
ック型に成形圧1t/cm2で加圧成形し成形品を得
た。これらを空気中1000℃〜1450℃の温度で2
時間焼結させた。焼成後、このブロックを厚さ500μ
mのウェハにスライスし、1000℃以上で熱処理を行
い、歪を除去した。次にこのウェハの両面にPtペース
トをスクリーン印刷し、980℃で焼き付けを行い電極
を形成した。電極焼付け後、ウェハを例えば700μm
角に分断して図1に示すような両面に電極2a,2bが
形成されたサーミスタ素体1を得た。
First, after wet mixing for 16 hours in a ball mill, it was dehydrated and dried at 100 ° C. to 200 ° C., and powdered using a mortar and pestle. Next, this powder is heated to 600 ° C to 1000 ° C.
Calcined for 2 hours, wet pulverize the calcined product for 20 hours in a ball mill, dehydrate and dry at 100 ° C to 200 ° C, add 8 wt% of pure water and polyvinyl alcohol (PVA) as a binder, and use a mortar and pestle. After granulating into granules, a required amount was sampled and pressure-molded into a block mold having a diameter of 30 mm and a thickness of 15 mm at a molding pressure of 1 t / cm 2 to obtain a molded product. 2 in air at a temperature of 1000 ° C to 1450 ° C
Sintered for hours. After firing, this block is 500μ thick
The wafer was sliced into a wafer of m and heat-treated at 1000 ° C. or higher to remove strain. Next, Pt paste was screen-printed on both surfaces of this wafer and baked at 980 ° C. to form electrodes. After electrode baking, the wafer is, for example, 700 μm
The thermistor element body 1 having electrodes 2a and 2b formed on both surfaces as shown in FIG.

【0024】次に、サーミスタ素体1の電極2a,2b
状にジュメット線などのリード線4a,4bを耐熱導電
性塗料3a,3bで接合後、700℃から900℃で焼
き付けた。このリード線付きサーミスタ素体をホウケイ
酸鉛系ガラスチューブ内に収め、トンネル炉によりガラ
ス被膜5で封着し、ガラス封止型のNTCサーミスタ
(以降サーミスタ素子という)を得た。
Next, the electrodes 2a and 2b of the thermistor body 1
The lead wires 4a and 4b such as dumet wires were joined together with the heat-resistant conductive coatings 3a and 3b, and then baked at 700 to 900 ° C. This thermistor element with lead wire was placed in a lead borosilicate glass tube and sealed with a glass coating 5 in a tunnel furnace to obtain a glass-sealed NTC thermistor (hereinafter referred to as a thermistor element).

【0025】このようにして完成した各サーミスタ素子
を直流4端子法を用いて25℃の抵抗値(R25)、8
5℃の抵抗値(R85)を測定し、(数3)を用いて、
25℃での比抵抗(ρ25)を、(数4)を用いて25
℃と85℃間のB定数(B25/85)を、また(数
6)を用いて25℃の抵抗値の変動係数を算出した。
Each of the thermistor elements thus completed was subjected to a DC 4-terminal method to obtain a resistance value (R25) of 8 at 25.degree.
The resistance value (R85) at 5 ° C. is measured, and using (Equation 3),
The specific resistance (ρ25) at 25 ° C is calculated using (Equation 4) as 25
The coefficient of variation of the resistance value at 25 ° C. was calculated using the B constant (B25 / 85) between ° C and 85 ° C and (Equation 6).

【0026】[0026]

【数6】 (Equation 6)

【0027】その結果を(表4)に示す。比較のために
ジルコニアの出発原料を水酸化ジルコニウムの代わり
に、酸化ジルコニウムを使用した結果を(表5)に示
す。
The results are shown in (Table 4). For comparison, the result of using zirconium oxide instead of zirconium hydroxide as a starting material for zirconia is shown in (Table 5).

【0028】[0028]

【表5】 [Table 5]

【0029】(表4)、(表5)において*印の試料は
本発明の請求の範囲外のものである。表を見てもわかる
ように、サーミスタ素体1の組成が同じならば、ジルコ
ニアの原材料に水酸化ジルコニウムを使用した方が、酸
化ジルコニウムを使用した物より変動係数は小さい。
The samples marked with * in (Table 4) and (Table 5) are outside the scope of the claims of the present invention. As can be seen from the table, if the thermistor element body 1 has the same composition, zirconium hydroxide used as a zirconia raw material has a smaller coefficient of variation than zirconium oxide.

【0030】また、本発明の特許請求の範囲外の組成の
サーミスタ素体1の試料は、原材料に水酸化ジルコニウ
ムを使用しても、抵抗値の変動係数は3%以上と大き
く、酸化ジルコニウムを使用した物と差はなかった。
Further, in the sample of the thermistor body 1 having a composition outside the scope of the claims of the present invention, even if zirconium hydroxide is used as the raw material, the coefficient of variation of the resistance value is as large as 3% or more, and zirconium oxide is not contained. There was no difference from the one used.

【0031】これは、酸化ジルコニウムより、水酸化ジ
ルコニウムの方が、活性化が高いため、上記サーミスタ
素体1の原材料に水酸化ジルコニウムを使用することに
より、反応性が、促進され、サーミスタ素体1が、均質
化されるためである。
This is because zirconium hydroxide has higher activation than zirconium oxide, and therefore the use of zirconium hydroxide as the raw material of the thermistor body 1 promotes the reactivity and thermistor body. This is because 1 is homogenized.

【0032】(実施例3)以下、本発明の第3の実施例
について説明する。
(Embodiment 3) The third embodiment of the present invention will be described below.

【0033】サーミスタ素体1が(表6)、(表7)、
(表8)に示す組成のサーミスタにリード線4a,4b
を耐熱導電性塗料3a,3bで接合後、ガラス被膜5で
封止した試料を作成し、直流4端子法を用いて25℃の
抵抗値(R25)、85℃の抵抗値(R85)を測定
し、(数3)を用いて、25℃での比抵抗(ρ25)
を、(数4)を用いて25℃と85℃間のB定数(B2
5/85)を算出した。
The thermistor body 1 (Table 6), (Table 7),
The thermistor having the composition shown in (Table 8) has lead wires 4a and 4b.
After bonding with the heat-resistant conductive coatings 3a and 3b, a sample sealed with the glass film 5 is prepared, and the resistance value at 25 ° C (R25) and the resistance value at 85 ° C (R85) are measured by using the DC 4-terminal method. Then, using (Equation 3), the specific resistance at 25 ° C (ρ25)
By using (Equation 4), the B constant (B2
5/85) was calculated.

【0034】[0034]

【表6】 [Table 6]

【0035】[0035]

【表7】 [Table 7]

【0036】[0036]

【表8】 [Table 8]

【0037】そして、サーミスタ素子を実使用条件(電
圧12V、電流130mA)で100時間エージングし
た後、300℃に維持した高温槽中に3000時間放置
した後、試料の抵抗値(R25B)を25℃で再度測定
した。放置前後の抵抗値の変化率を(数5)により求め
た。
Then, after aging the thermistor element under actual use conditions (voltage 12 V, current 130 mA) for 100 hours, the sample was allowed to stand in a high temperature bath maintained at 300 ° C. for 3000 hours, and then the resistance value (R25B) of the sample was 25 ° C. Was measured again. The rate of change in resistance value before and after leaving was determined by (Equation 5).

【0038】(表6)、(表7)、(表8)に結果を示
す。(表1)〜(表6)を見ると、本発明のサーミスタ
に実使用条件でエージングを行った試料は、抵抗値の経
時変化率が5%以下と低い。そしてサーミスタ素体1の
組成が同じならば、エージングを行った試料の方が、エ
ージングを行っていない試料の方より抵抗値の経時変化
は小さい。
The results are shown in (Table 6), (Table 7) and (Table 8). From (Table 1) to (Table 6), the samples obtained by aging the thermistor of the present invention under actual use conditions have a low rate of change in resistance with time of 5% or less. If the thermistor body 1 has the same composition, the sample that has been aged has a smaller change with time in the resistance value than the sample that has not been aged.

【0039】また、本発明の特許請求の範囲外の組成の
サーミスタ素体1の試料は、実使用条件でエージングを
行っても、抵抗値の経時変化は±5%以上と大きく、エ
ージング無しのものと差はなかった。
Further, the sample of the thermistor element 1 having a composition outside the scope of the claims of the present invention shows a large change in resistance value with time of ± 5% or more even if it is aged under actual use conditions, and there is no aging. It was no different from the one.

【0040】これは、上記サーミスタを実使用温度でエ
ージングすることにより、結晶構造、気孔濃度やモビリ
ティーがその温度で平衡状態となり経時変化である抵抗
変化率が小さくなるからである。
This is because, by aging the thermistor at an actual operating temperature, the crystal structure, the pore concentration, and the mobility are in an equilibrium state at that temperature, and the rate of change in resistance, which is a change over time, becomes small.

【0041】(実施例4)以下、本発明の第4の実施例
について説明する。
(Fourth Embodiment) The fourth embodiment of the present invention will be described below.

【0042】図1は本発明の実施例に適用されるサーミ
スタの構造である。サーミスタ素体1の両面には電極2
a,2bが形成されている。この電極2a,2bはP
t,Ag,Ag−Pd等の金属粉末とガラスフリットを
所定の割合で含有した電極ペーストがサーミスタ素体1
上に塗布、焼き付けされ形成されている。
FIG. 1 shows the structure of a thermistor applied to the embodiment of the present invention. Electrodes 2 on both sides of thermistor body 1
a and 2b are formed. The electrodes 2a and 2b are P
The thermistor element body 1 is an electrode paste containing a metal frit such as t, Ag and Ag-Pd and a glass frit in a predetermined ratio.
It is formed by coating and baking on top.

【0043】こうして形成された電極2a,2bには、
Au等の、耐熱導電性塗料3a,3bによりリード線4
a,4bが接続されている。このようにして形成された
リード線4a,4b付きサーミスタ素子をガラス管の中
に通したのち、800〜1000℃まで加熱溶着し、ガ
ラス被膜5を形成する。
The electrodes 2a and 2b thus formed are
Lead wire 4 made of heat resistant conductive paint 3a, 3b such as Au
a and 4b are connected. The thermistor element with the lead wires 4a and 4b thus formed is passed through a glass tube and then heat-welded to 800 to 1000 ° C. to form a glass coating 5.

【0044】このような構造のサーミスタ素子を、(表
9)(表10)に示すような構成で本発明に従い作成
し、25℃における抵抗値を測定した。
A thermistor element having such a structure was prepared according to the present invention with the constitutions shown in (Table 9) and (Table 10), and the resistance value at 25 ° C. was measured.

【0045】[0045]

【表9】 [Table 9]

【0046】[0046]

【表10】 [Table 10]

【0047】そして、これらについて、高温放置試験、
及びヒートサイクル試験を行い、試験後の抵抗値(R2
5B)を25℃で再度測定し、試験前後の抵抗値の変化
率を(数5)により求めた。
Then, for these, a high temperature storage test,
And a heat cycle test was performed, and the resistance value (R2
5B) was measured again at 25 ° C., and the rate of change in resistance value before and after the test was determined by (Equation 5).

【0048】なお、高温放置試験は、300℃において
3000時間放置後に測定を実施した。
In the high temperature storage test, the measurement was performed after standing at 300 ° C. for 3000 hours.

【0049】またヒートサイクル試験は300℃に30
分間放置後、直ちに常温で10分間風冷を行うのを1サ
イクルとして1000サイクル後に測定を実施した。
The heat cycle test was conducted at 300 ° C. for 30 hours.
The measurement was carried out after 1000 cycles, with one cycle of immediately cooling at room temperature for 10 minutes after leaving for 1 minute.

【0050】その結果を(表9)、(表10)に示す。
(表9)、(表10)から明らかなように、本発明の構
成のサーミスタ素子は、高温放置試験の抵抗値変化率が
5%以下と低く、ヒートサイクル試験後の抵抗値変化率
も3%以下と低く、優れた耐熱性及び高温安定性を有す
ることがわかる。本発明の請求の範囲外の構成のサーミ
スタ素子は、高温放置試験、及びヒートサイクル試験中
に破損したり、使用に耐えられないほどの抵抗値変化を
示している。
The results are shown in (Table 9) and (Table 10).
As is clear from (Table 9) and (Table 10), the thermistor element having the constitution of the present invention has a low resistance change rate of 5% or less in the high temperature storage test and a resistance change rate of 3 after the heat cycle test. It can be seen that it has low heat resistance and high temperature stability. The thermistor element having a constitution outside the scope of the claims of the present invention shows a change in resistance value which is damaged during the high temperature storage test and the heat cycle test and cannot be used.

【0051】[0051]

【発明の効果】以上のように本発明のサーミスタは、サ
ーミスタ素体を、Mn,Ni,Co,Cr,Fe,Al
の酸化物の中から1種あるいは2種以上混合したもの1
00原子%に対し、Zrの酸化物を0.01原子%以
上、10原子%未満添加して形成したものである。
As described above, in the thermistor of the present invention, the thermistor element body is composed of Mn, Ni, Co, Cr, Fe and Al.
One or a mixture of two or more of the above oxides 1
It is formed by adding 0.01 atomic% or more and less than 10 atomic% of Zr oxide to 00 atomic%.

【0052】その結果、Zrは4価を取るためスピネル
相やNaCl相に固溶せず、単独で析出する。
As a result, since Zr has a tetravalent value, it does not form a solid solution in the spinel phase or the NaCl phase but precipitates alone.

【0053】このためスピネル単相領域における正方晶
−立方晶の変態や、スピネルとNaCl相の混晶領域に
おけるスピネル相−NaCl相の相変態を疎外し、高温
使用下における抵抗値の経時変化を小さくすることがで
きる。
Therefore, the tetragonal-cubic transformation in the spinel single-phase region and the spinel-NaCl phase transformation in the mixed crystal region of the spinel and the NaCl phase are excluded, and the change with time of the resistance value under high temperature use is eliminated. Can be made smaller.

【0054】そして、サーミスタを実使用温度でエージ
ングすることにより、結晶構造、気孔濃度やモビリティ
ーがその温度で平衡状態となり、さらに抵抗値の経時変
化を小さくすることができる。
Then, by aging the thermistor at an actual operating temperature, the crystal structure, the pore concentration, and the mobility are in an equilibrium state at that temperature, and the change in resistance with time can be further reduced.

【0055】また、実施例で示したように、サーミスタ
素体の熱膨張係数、リード線の熱膨張係数、及びガラス
の熱膨張係数が(数7)、(数8)の関係式で表される
サーミスタをガラス封入サーミスタ用に用いることによ
り、サーミスタの抵抗値不良やオープン不良を確実に防
止することができる。
Further, as shown in the examples, the coefficient of thermal expansion of the thermistor element body, the coefficient of thermal expansion of the lead wire, and the coefficient of thermal expansion of glass are expressed by the relational expressions of (Equation 7) and (Equation 8). By using the thermistor for a glass-filled thermistor, it is possible to reliably prevent the resistance value defect and the open defect of the thermistor.

【0056】[0056]

【数7】 (Equation 7)

【0057】[0057]

【数8】 (Equation 8)

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるサーミスタの断面図FIG. 1 is a sectional view of a thermistor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 サーミスタ素体 2a 電極 2b 電極 4a リード線 4b リード線 5 ガラス被膜 1 thermistor body 2a electrode 2b electrode 4a lead wire 4b lead wire 5 glass coating

───────────────────────────────────────────────────── フロントページの続き (72)発明者 味山 雅彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiko Miyama 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 サーミスタ素体と、このサーミスタ素体
に設けた電極とを備え、前記サーミスタ素体は、Mn,
Ni,Co,Cr,Fe,Alの酸化物の中から1種あ
るいは2種以上混合したもの100原子%に対し、Zr
の酸化物を0.01原子%以上、10原子%未満添加し
たもので形成したサーミスタ。
1. A thermistor body and an electrode provided on the thermistor body, wherein the thermistor body is Mn,
One of the oxides of Ni, Co, Cr, Fe, and Al or a mixture of two or more of them is 100 atom% and Zr is
A thermistor formed by adding 0.01 to 10 atomic% of the above oxide.
【請求項2】 サーミスタ素体と、このサーミスタ素体
の表面に設けた電極と、この電極に接続固定したリード
線と、前記サーミスタ素体と前記リード線の一部を被覆
したガラスとを備え、前記サーミスタ素体の熱膨張係数
αs、前記リード線の熱膨張係数αr、及び前記ガラス
の熱膨張係数αgの関係が(数1)、(数2)で表され
るサーミスタ。 【数1】 【数2】
2. A thermistor body, an electrode provided on the surface of the thermistor body, a lead wire connected and fixed to the electrode, and a glass that covers the thermistor body and a part of the lead wire. A thermistor in which the relationship between the coefficient of thermal expansion αs of the thermistor body, the coefficient of thermal expansion αr of the lead wire, and the coefficient of thermal expansion αg of the glass is represented by (Equation 1) and (Equation 2). [Equation 1] [Equation 2]
【請求項3】 Mn,Ni,Co,Cr,Fe,Alの
酸化物の中から1種あるいは2種以上混合したもの10
0原子%に対し、水酸化ジルコニウムを0.01原子%
以上、10原子%未満添加してサーミスタ素体を形成
し、次に、このサーミスタ素体に電極を形成するサーミ
スタの製造方法。
3. A mixture of one or more of Mn, Ni, Co, Cr, Fe and Al oxides 10
0.01 atom% of zirconium hydroxide to 0 atom%
As described above, a method of manufacturing a thermistor in which less than 10 atomic% is added to form a thermistor body, and then an electrode is formed on the thermistor body.
【請求項4】 Mn,Ni,Co,Cr,Fe,Alの
酸化物の中から1種あるいは2種以上混合したもの10
0原子%に対し、Zrの酸化物を0.01原子%以上、
10原子%未満添加してサーミスタ素体を形成し、次
に、このサーミスタ素体に電極を形成した後、実使用温
度においてエージングするサーミスタの製造方法。
4. A mixture of Mn, Ni, Co, Cr, Fe and Al oxides, or a mixture of two or more thereof.
0.01 atom% or more of Zr oxide with respect to 0 atom%,
A method for producing a thermistor, in which less than 10 atomic% is added to form a thermistor element body, and then an electrode is formed on the thermistor element body, and then aging is performed at an actual use temperature.
JP6301071A 1994-12-05 1994-12-05 Thermistor and its manufacture Pending JPH08162302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6301071A JPH08162302A (en) 1994-12-05 1994-12-05 Thermistor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6301071A JPH08162302A (en) 1994-12-05 1994-12-05 Thermistor and its manufacture

Publications (1)

Publication Number Publication Date
JPH08162302A true JPH08162302A (en) 1996-06-21

Family

ID=17892526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6301071A Pending JPH08162302A (en) 1994-12-05 1994-12-05 Thermistor and its manufacture

Country Status (1)

Country Link
JP (1) JPH08162302A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032856A (en) * 2004-07-21 2006-02-02 Tdk Corp Thermistor composite and thermistor element
JP2009115789A (en) * 2007-10-15 2009-05-28 Denso Corp Temperature sensor and its manufacturing method
JP2009188179A (en) * 2008-02-06 2009-08-20 Tdk Corp Composition for thermistor
JP2009288023A (en) * 2008-05-28 2009-12-10 Denso Corp Temperature sensor
WO2011136193A1 (en) * 2010-04-28 2011-11-03 株式会社デンソー Temperature sensor comprising temperature sensing element
EP2779178A1 (en) * 2013-03-12 2014-09-17 NGK Spark Plug Co., Ltd. Thermistor Element, Temperature Sensor, and Method for Manufacturing the Thermistor Element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032856A (en) * 2004-07-21 2006-02-02 Tdk Corp Thermistor composite and thermistor element
JP4492235B2 (en) * 2004-07-21 2010-06-30 Tdk株式会社 Thermistor composition and thermistor element
JP2009115789A (en) * 2007-10-15 2009-05-28 Denso Corp Temperature sensor and its manufacturing method
JP2009188179A (en) * 2008-02-06 2009-08-20 Tdk Corp Composition for thermistor
JP2009288023A (en) * 2008-05-28 2009-12-10 Denso Corp Temperature sensor
JP2011247876A (en) * 2010-04-28 2011-12-08 Denso Corp Temperature sensor
WO2011136193A1 (en) * 2010-04-28 2011-11-03 株式会社デンソー Temperature sensor comprising temperature sensing element
CN102869966A (en) * 2010-04-28 2013-01-09 株式会社电装 Temperature sensor comprising temperature sensing element
US9714869B2 (en) 2010-04-28 2017-07-25 Denso Corporation Temperature sensor including thermosensitive element
DE112011101480B4 (en) * 2010-04-28 2018-11-15 Denso Corporation Temperature sensor with a heat-sensitive component
EP2779178A1 (en) * 2013-03-12 2014-09-17 NGK Spark Plug Co., Ltd. Thermistor Element, Temperature Sensor, and Method for Manufacturing the Thermistor Element
EP2985767A1 (en) * 2013-03-12 2016-02-17 NGK Spark Plug Co., Ltd. Thermistor element and temperature sensor comprising the thermistor element
US9312054B2 (en) 2013-03-12 2016-04-12 Ngk Spark Plug Co., Ltd. Thermistor element, temperature sensor, and method for manufacturing the thermistor element

Similar Documents

Publication Publication Date Title
CN107056279B (en) Single donor doping positive temperature coefficient thermal sensitive ceramic and preparation method thereof
US3950273A (en) Medium temperature thermistor
US20190348201A1 (en) Thermistor sintered body and thermistor element
JPH08162302A (en) Thermistor and its manufacture
JPS6022302A (en) Oxide semiconductor for thermistor
JP2841395B2 (en) Method for manufacturing NTC thermistor
JP6675050B1 (en) Thermistor sintered body and temperature sensor element
JP3569810B2 (en) High temperature thermistor
JPH02248002A (en) Glass seal type positive temperature coefficient thermistor
JPS6143841B2 (en)
CN115894026B (en) NTC thermistor material with low resistivity and high B value and preparation method thereof
JP7473753B1 (en) Temperature sensor element and temperature sensor
JPH11292622A (en) Semiconductor ceramic and semiconductor ceramic element
JP3559911B2 (en) Thermistor
JPH04144201A (en) Positive temperature coefficient thermistor and manufacture thereof
JP3956676B2 (en) Method for manufacturing voltage-dependent non-linear resistor porcelain
JP2948933B2 (en) Composition for thermistor
JP3551269B2 (en) High temperature measurement thermistor
JP2948934B2 (en) Composition for thermistor
CN116655367A (en) Negative temperature coefficient thermosensitive ceramic material and preparation method thereof
JPH0133921B2 (en)
JPH03271154A (en) Composition for thermistor
JPH06163206A (en) Thermistor for high temperature and manufacturings method thereof
CN104129993B (en) A kind of reduction KNbO 3the method of base PTCR material sintering temperature
JPH11335163A (en) Composition for thermistor