JP2948933B2 - Composition for thermistor - Google Patents
Composition for thermistorInfo
- Publication number
- JP2948933B2 JP2948933B2 JP3073926A JP7392691A JP2948933B2 JP 2948933 B2 JP2948933 B2 JP 2948933B2 JP 3073926 A JP3073926 A JP 3073926A JP 7392691 A JP7392691 A JP 7392691A JP 2948933 B2 JP2948933 B2 JP 2948933B2
- Authority
- JP
- Japan
- Prior art keywords
- thermistor
- composition
- resistance
- change
- variation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Thermistors And Varistors (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は温度検知用NTCサーミ
スタ用組成物に係り、特に抵抗値の経時変化が小さい高
信頼性サーミスタを実現化するためのサーミスタ用組成
物に関する。
【0002】
【従来の技術】従来の温度検知用NTCサーミスタは、
マンガン、ニッケル、コバルト等の2〜3種の遷移金属
元素の混合モル比合計が100%になるように選ばれた
金属酸化物から成る組成物を用いたり、マンガン、ニッ
ケル、銅、鉄、クロム等の酸化物から成る組成物を用い
たり(例えば、特公昭58−26803号公報参照)、
マンガン、ニッケル、アルミニウムの3種類の金属を含
む酸化物から成る組成物を用いたりしている(例えば特
公昭63−35085号公報)。
【0003】
【発明が解決しようとする課題】ところが、これらの組
成物は特性の汎用性はあるが、高比抵抗、高B定数のも
のが得られなかったり、経時変化である抵抗値変化率が
大きいという欠点を有していた。
【0004】特に使用温度領域の拡大化に伴ない、高比
抵抗・高B定数特性を具備した上、抵抗値の経時変化、
即ち抵抗値変化率の小さい高信頼性サーミスタ組成物が
要求されるようになり、従来の組成物ではそれらを満足
することは出来なかった。
【0005】特に抵抗値の経時変化である抵抗値変化率
において、従来のマンガン、ニッケル、銅、鉄、クロム
等の酸化物から成る組成物ではその抵抗値変化率は、1
50℃の恒温中での経時変化は実用的であるが、300
℃という高温では経時変化が大きい。
【0006】さらに、マンガン、ニッケル、アルミニウ
ムの酸化物から成る組成物は高温用として使用できるも
のであるが、しかしながら−50℃という低温度範囲で
は実用的でなく、しかも高温の場合に3000時間とい
う長い時間における経時変化特性が満足出来るものでは
なかった。
【0007】従って、本発明の目的は広い使用温度領域
において、抵抗値変化率の小さい安定した特性を有し、
高比抵抗、高B定数特性を具備するサーミスタ用組成物
を提供するものである。
【0008】
【課題を解決するための手段】前記目的を達成するた
め、本発明者等は鋭意研究の結果、マンガン:10〜9
0モル%、ニッケル:0.01〜80モル%、アルミニウ
ム:0.01〜50モル%を含む三種の金属元素を混合し
て、その混合モル比合計が100%となる金属酸化物
に、
酸化クロム:0.01〜30.0重量%
酸化鉄 :0.01〜60.0重量%
をそれぞれ添加した組成物が、高比抵抗・高B定数特性
を具備し、抵抗値変化率の小さい高信頼性のサーミスタ
を得ることが出来ることを見出した。
【0009】
【作用】本発明の組成のサーミスタ用組成物を用いるこ
とにより、サーミスタ使用温度領域(−50〜+500
℃)で必要とされるサーミスタ特性、即ち、比抵抗値と
して103 〜107 Ω・cm程度の値およびB定数として
4000〜6000Kの値が得られた。
【0010】さらに、本発明の組成のサーミスタ用組成
物はセラミック焼成が可能で素地抵抗バラツキが、変動
係数3%以下と大変小さい上、形成したサーミスタの抵
抗値の経時変化である300℃で3000時間経過後の
抵抗値変化率が大変小さい。
【0011】
【実施例】本発明の実施例の説明に先立ち、主成分の金
属元素の組成について説明する。
【0012】一般にマンガン、ニッケル、アルミニウム
系サーミスタは各々の元素比率を変えることにより、比
抵抗及びB定数を広範囲にコントロールすることができ
る。
【0013】しかし、サーミスタの使用温度領域(例え
ば−50℃〜+500℃)でのサーミスタの特性値及び
使用回路との適合性を考えると、使用可能な組成範囲は
限定される。
【0014】即ち、サーミスタ使用温度領域での比抵抗
として103〜107 Ω・cm、B定数として4000〜
6000Kが得られること、セラミック焼成が可能で素
地抵抗バラツキが小さく変動係数が3%以下であるこ
と、サーミスタの抵抗値の経時変化が小さく、高信頼性
であることが要求される。
【0015】表1にマンガン、ニッケル、アルミニウム
の組成とその組成物から成るサーミスタの電気的特性と
して、25℃の比抵抗、B定数および変動係数を示す。
変動係数=(標準偏差値/平均値)×100(%)
【0016】
【表1】【0017】次に本発明の実施例を説明する。出発原料
として、高純度の四三酸化マンガン、酸化ニッケル、酸
化アルミニウム、酸化クロム、酸化鉄を焼成後の組成が
表2に示す組成となるように各々秤量する。
【0018】
【表2】【0019】前記秤量した出発原料をボールミル中によ
って20時間湿式混合する。湿式混合した出発原料を1
00〜200℃で乾燥させた後、900〜1100℃で
2時間仮焼成し、この焼成物を粉砕機により微粉末とす
る。
【0020】この微粉末に、純水またはPVA(ポリビ
ニルアルコール)等の適当なバインダーを加えて混合造
粒し、顆粒を作製する。その顆粒を直径55mm、厚さ2
0mm前後のディスク状に成型機にて加圧成形した成形体
を1200〜1500℃の温度で本焼成する。
【0021】本焼成したインゴット焼結体をスライス加
工し、ウェハー状に切り出す。ウェハーをラップ研磨
し、例えば0.25mmの厚みに仕上げる。
【0022】このウェハーにAu,Ag,Pd−Ag等
の貴金属ペーストなどで電極を形成した後、ダイシング
ソーによって切断し、例えば□0.40mmのチップにする。
【0023】このサーミスタチップをガラスチューブ内
に収め、両側からスラグリードで挟持しガラス封止機に
より封着し、ガラス封止型のNTCサーミスタを得る。
【0024】このようにして得られた各サーミスタ素子
の電気的特性を測定する。即ち、25℃における比抵抗
(ρ25)と25℃、85℃における抵抗値から算出し
たこれらの温度間のB定数である。
【0025】さらにサーミスタ素子の経時変化を調べる
ために、高温保管条件:300℃で3000時間保持し
た後の抵抗値変化率も測定する。
【0026】その結果を表2に示す。表2において試料
No. は表1のものと共通であり、同一の番号は同一の組
成である。
【0027】また×印を付した試料No. は本発明の実施
例以外の組成範囲のものであり、本発明との比較のため
に示している。
【0028】なお、表2において、酸化鉄Fe2 O3 、
酸化クロムCr2 O3 の純度は4Nである。
抵抗値変化率=(Rt−Ro)/Ro×100(%)
ただし、Rt:t時間後の抵抗値
Ro:初期抵抗値
【0029】表2から明らかな如く、本発明のサーミス
タ素子は比抵抗値が103 〜107 Ω・cm、B定数が4
000〜6000Kと高比抵抗、高B定数のものが得ら
れる上、サーミスタ抵抗値の経時変化も4%以下と小さ
い。
【0030】次に本発明の組成の限定理由について説明
する。
【0031】マンガンが10モル%未満、ニッケルが0.
01モル%未満、アルミニウムが0.01モル%未満である
と、抵抗値の経時変化が大きくなる。
【0032】マンガンが90モル%を越えると、必要と
するサーミスタ特性を満足せず、素地抵抗バラツキが大
きくなり、変動係数が3%を越える。
【0033】ニッケルが80モル%を越えると、必要と
するサーミスタ特性を満足せず、素地抵抗バラツキが大
きくなり、変動係数が3%をこえる。
【0034】アルミニウムが50モル%を越えると、必
要とするサーミスタ特性を満足せず、素地抵抗バラツキ
が大きくなり、変動係数が3%をこえる。
【0035】また、酸化鉄の添加量が0.01重量%未満で
あると抵抗値変化率が著しく悪化する(例えば表2の試
料No. 3,7,8,9,10参照)。
【0036】酸化鉄の添加量が60.0重量%を越えると、
形成した素子の特性、即ち、25℃における比抵抗、B
定数、抵抗値変化率は本発明の範囲内の組成のものと変
わらないが、素地の焼結性が悪化し、素地抵抗バラツキ
が大きくなり、変動係数が大きくなるため、製造した素
子の歩留りが悪くなる(例えば表2の試料No. 3−6,
7−6,8−6,9−6,10−6参照)。
【0037】酸化クロムの添加量が0.01重量%未満であ
ると、サーミスタの抵抗値の経時変化が悪化し、抵抗値
変化率が大きくなる(例えば表2の試料No. 3,7,
8,9,10参照)。
【0038】酸化クロムの添加量が30.0重量%を越える
と、形成した素子の特性、即ち、25℃における比抵
抗、B定数、抵抗値変化率は本発明の範囲内の組成のも
のと変わらないが、素地の焼結性が悪化し、素地抵抗バ
ラツキが大きくなり、変動係数が大きくなるため、製造
した素子の歩留りが悪くなる(例えば表2の試料No. 3
−6,7−6,8−6,9−6,10−6参照)。
【0039】
【発明の効果】本発明によるサーミスタ用組成物は、高
比抵抗・高B定数のサーミスタを−50℃〜+500℃
という広い使用温度領域で容易に得ることができる。ま
たサーミスタの抵抗値の経時変化が小さく、300℃で
3000時間経過してもその抵抗値の変化率は4%未満
におさえられている。
【0040】従って、高信頼性サーミスタを実現化する
ことが出来、特に家庭電化製品、自動車分野に使用され
る温度検知用NTCサーミスタ等に利用出来るのみなら
ず、各方面に広く使用されるものを提供することができ
る。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composition for an NTC thermistor for detecting temperature, and more particularly to a thermistor for realizing a highly reliable thermistor having a small change in resistance with time. To a composition for use. 2. Description of the Related Art A conventional NTC thermistor for temperature detection is:
A composition composed of a metal oxide selected such that the total molar ratio of two or three transition metal elements such as manganese, nickel, cobalt and the like becomes 100%, manganese, nickel, copper, iron, chromium Or a composition comprising an oxide such as (for example, see Japanese Patent Publication No. 58-26803),
For example, a composition comprising an oxide containing three kinds of metals, manganese, nickel and aluminum, is used (for example, Japanese Patent Publication No. 63-35085). However, although these compositions have versatility in characteristics, they cannot provide a material having a high specific resistance and a high B constant, or have a rate of change in the resistance value which changes with time. Had the disadvantage of being large. [0004] In particular, as the operating temperature range is expanded, high specific resistance and high B constant characteristics are provided, and the resistance value changes with time.
That is, a highly reliable thermistor composition having a small resistance value change rate has been required, and the conventional composition cannot satisfy them. [0005] In particular, with respect to the rate of change in resistance, which is a change with time in resistance, the rate of change in resistance of a conventional composition comprising an oxide of manganese, nickel, copper, iron, chromium, etc. is 1%.
The change with time in a constant temperature of 50 ° C. is practical,
At a high temperature of ℃, the change with time is large. Further, compositions comprising oxides of manganese, nickel and aluminum can be used for high temperatures, however, they are not practical in the low temperature range of -50.degree. C. and 3000 hours at high temperatures. The aging characteristics over a long period of time were not satisfactory. Accordingly, an object of the present invention is to have a stable characteristic with a small rate of change in resistance in a wide operating temperature range,
An object of the present invention is to provide a thermistor composition having high specific resistance and high B constant characteristics. Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies and found that manganese: 10 to 9
Three kinds of metal elements containing 0 mol%, nickel: 0.01 to 80 mol%, and aluminum: 0.01 to 50 mol% are mixed to form a metal oxide having a total mixing molar ratio of 100%, and chromium oxide: 0.01 to It has been found that a composition to which 30.0% by weight of iron oxide: 0.01 to 60.0% by weight is added can obtain a highly reliable thermistor having high specific resistance and high B constant characteristics and a small rate of change in resistance value. Was. By using the thermistor composition of the present invention, the thermistor operating temperature range (-50 to +500)
Thermistor characteristics required in ° C.), i.e., the value of 4000~6000K was obtained as a value and B constant of about 10 3 ~10 7 Ω · cm as a specific resistance value. Furthermore, the composition for a thermistor of the present invention can be fired by a ceramic, and has a very small variation in the substrate resistance of 3% or less, and a variation of the resistance of the formed thermistor at 300.degree. The rate of change in resistance after the passage of time is very small. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to the description of the embodiments of the present invention, the composition of the main metal element will be described. In general, the specific resistance and the B constant of a manganese, nickel and aluminum thermistor can be controlled over a wide range by changing the ratio of each element. However, the composition range that can be used is limited in consideration of the characteristic value of the thermistor in the operating temperature range of the thermistor (for example, −50 ° C. to + 500 ° C.) and the compatibility with the used circuit. That is, the specific resistance in the thermistor operating temperature range is 10 3 to 10 7 Ω · cm, and the B constant is 4000 to 1000.
It is required that 6000 K be obtained, that ceramic firing be possible, that the base resistance variation is small and that the coefficient of variation be 3% or less, that the resistance value of the thermistor change over time be small, and that it be highly reliable. Table 1 shows the composition of manganese, nickel, and aluminum and the electrical characteristics of the thermistor made of the composition, the specific resistance at 25 ° C., the B constant, and the coefficient of variation. Coefficient of variation = (standard deviation value / mean value) × 100 (%) Next, an embodiment of the present invention will be described. As starting materials, high-purity manganese tetroxide, nickel oxide, aluminum oxide, chromium oxide, and iron oxide are each weighed so that the composition after firing becomes the composition shown in Table 2. [Table 2] The weighed starting materials are wet-mixed in a ball mill for 20 hours. 1 parts of wet mixed starting material
After being dried at 00 to 200 ° C., it is temporarily calcined at 900 to 1100 ° C. for 2 hours, and this calcined material is turned into fine powder by a pulverizer. An appropriate binder such as pure water or PVA (polyvinyl alcohol) is added to the fine powder and mixed and granulated to prepare granules. The granules are 55 mm in diameter and 2 in thickness.
A molded body formed by pressure molding with a molding machine into a disk shape of about 0 mm is finally fired at a temperature of 1200 to 1500 ° C. The fired ingot sintered body is sliced and cut into a wafer. The wafer is lapped and polished to a thickness of, for example, 0.25 mm. After the electrodes are formed on the wafer with a noble metal paste such as Au, Ag, Pd-Ag or the like, the wafer is cut with a dicing saw to obtain chips of, for example, □ 0.40 mm. This thermistor chip is housed in a glass tube, sandwiched with slag leads from both sides, and sealed with a glass sealing machine to obtain a glass-sealed NTC thermistor. The electrical characteristics of each thermistor element thus obtained are measured. That is, it is a B constant between these temperatures calculated from the specific resistance (ρ25) at 25 ° C. and the resistance values at 25 ° C. and 85 ° C. Further, in order to examine the change with time of the thermistor element, the rate of change in resistance value after holding at high temperature storage condition: 300 ° C. for 3000 hours is also measured. Table 2 shows the results. Samples in Table 2
No. is the same as that of Table 1, and the same number is the same composition. The sample Nos. Marked with x are in the composition range other than the examples of the present invention, and are shown for comparison with the present invention. In Table 2, iron oxide Fe 2 O 3 ,
The purity of chromium oxide Cr 2 O 3 is 4N. Resistance change rate = (Rt−Ro) / Ro × 100 (%) where, Rt: resistance value after t time Ro: initial resistance value As is clear from Table 2, the thermistor element of the present invention has a specific resistance. Value is 10 3 to 10 7 Ω · cm, B constant is 4
A high specific resistance of 000 to 6000K and a high B constant can be obtained, and the change with time of the thermistor resistance value is as small as 4% or less. Next, the reasons for limiting the composition of the present invention will be described. The manganese content is less than 10 mol% and the nickel content is less than 0.1%.
When the content is less than 01 mol% and the content of aluminum is less than 0.01 mol%, the change over time in the resistance value becomes large. If the manganese content exceeds 90 mol%, the required thermistor characteristics are not satisfied, the base resistance variation increases, and the variation coefficient exceeds 3%. When the content of nickel exceeds 80 mol%, the required thermistor characteristics are not satisfied, the variation in the base resistance increases, and the coefficient of variation exceeds 3%. When the content of aluminum exceeds 50 mol%, the required thermistor characteristics are not satisfied, the variation in the base resistance increases, and the coefficient of variation exceeds 3%. If the addition amount of iron oxide is less than 0.01% by weight, the rate of change of the resistance value is remarkably deteriorated (for example, see Sample Nos. 3, 7, 8, 9, and 10 in Table 2). When the amount of iron oxide exceeds 60.0% by weight,
Characteristics of the formed element, that is, specific resistance at 25 ° C., B
The constant and the rate of change of the resistance value are not different from those of the composition within the range of the present invention, but the sinterability of the substrate is deteriorated, the variation of the substrate resistance is increased, and the coefficient of variation is increased. (For example, sample No. 3-6 in Table 2)
7-6, 8-6, 9-6, and 10-6). If the addition amount of chromium oxide is less than 0.01% by weight, the change of the resistance value of the thermistor with time deteriorates, and the rate of change of the resistance value increases (for example, sample Nos. 3, 7, and
8, 9, 10). If the amount of chromium oxide exceeds 30.0% by weight, the characteristics of the formed device, that is, the specific resistance at 25 ° C., the B constant, and the rate of change of the resistance value are not different from those of the composition within the range of the present invention. However, the sinterability of the substrate deteriorates, the variation in the substrate resistance increases, and the coefficient of variation increases, so that the yield of the manufactured device deteriorates (for example, sample No.
-6, 7-6, 8-6, 9-6, and 10-6). The composition for a thermistor according to the present invention provides a thermistor having a high specific resistance and a high B constant at a temperature of -50 ° C. to + 500 ° C.
In a wide operating temperature range. Further, the change of the resistance value of the thermistor with time is small, and even after 3000 hours at 300 ° C., the change rate of the resistance value is less than 4%. Therefore, a highly reliable thermistor can be realized. In particular, not only can it be used for home electric appliances and NTC thermistors for temperature detection used in the field of automobiles, but also widely used in various fields. Can be provided.
Claims (1)
ル%、アルミニウム:0.01〜50モル%を含む三種の金
属元素を混合して、その混合モル比合計が100%の金
属酸化物に、 酸化クロム:0.01〜30.0重量% 酸化鉄 :0.01〜60.0重量% をそれぞれ添加したことを特徴とするサーミスタ用組成
物。(57) [Claims] Three kinds of metal elements including manganese: 10 to 90 mol%, nickel: 0.01 to 80 mol%, and aluminum: 0.01 to 50 mol% are mixed, and the total mixing molar ratio is 100. %. A composition for a thermistor, characterized in that chromium oxide: 0.01 to 30.0% by weight and iron oxide: 0.01 to 60.0% by weight, respectively, are added to the metal oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3073926A JP2948933B2 (en) | 1991-03-13 | 1991-03-13 | Composition for thermistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3073926A JP2948933B2 (en) | 1991-03-13 | 1991-03-13 | Composition for thermistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04285047A JPH04285047A (en) | 1992-10-09 |
JP2948933B2 true JP2948933B2 (en) | 1999-09-13 |
Family
ID=13532237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3073926A Expired - Lifetime JP2948933B2 (en) | 1991-03-13 | 1991-03-13 | Composition for thermistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2948933B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011086850A1 (en) * | 2010-01-12 | 2011-07-21 | 株式会社村田製作所 | Semiconductor ceramic composition for ntc thermistor and ntc thermistor |
-
1991
- 1991-03-13 JP JP3073926A patent/JP2948933B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04285047A (en) | 1992-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3430023B2 (en) | Composition for thermistor | |
US5955937A (en) | Rare earth metal-containing high-temperature thermistor | |
JPS6022302A (en) | Oxide semiconductor for thermistor | |
JP3201477B2 (en) | Composition for thermistor | |
JP2948933B2 (en) | Composition for thermistor | |
JP2841395B2 (en) | Method for manufacturing NTC thermistor | |
WO2020090489A1 (en) | Thermistor sintered body and temperature sensor element | |
JP2948934B2 (en) | Composition for thermistor | |
JP6675050B1 (en) | Thermistor sintered body and temperature sensor element | |
JP3202273B2 (en) | Composition for thermistor | |
JP3559911B2 (en) | Thermistor | |
JPH08162302A (en) | Thermistor and its manufacture | |
JPS63315560A (en) | Thermistor porcelain composition | |
JP3202275B2 (en) | Composition for thermistor | |
JP3569810B2 (en) | High temperature thermistor | |
JP3202278B2 (en) | Composition for thermistor | |
JP3202276B2 (en) | Composition for thermistor | |
JP3551269B2 (en) | High temperature measurement thermistor | |
JPH0543161B2 (en) | ||
JPS62108505A (en) | Oxide semiconductor for thermistor | |
JP3202274B2 (en) | Composition for thermistor | |
JP3202277B2 (en) | Composition for thermistor | |
JP3650560B2 (en) | Composition for chip thermistor | |
JP3334264B2 (en) | Semiconductor ceramic element | |
JPH03271154A (en) | Composition for thermistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990622 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080702 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090702 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090702 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100702 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110702 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110702 Year of fee payment: 12 |