JP2841395B2 - Method for manufacturing NTC thermistor - Google Patents

Method for manufacturing NTC thermistor

Info

Publication number
JP2841395B2
JP2841395B2 JP63297911A JP29791188A JP2841395B2 JP 2841395 B2 JP2841395 B2 JP 2841395B2 JP 63297911 A JP63297911 A JP 63297911A JP 29791188 A JP29791188 A JP 29791188A JP 2841395 B2 JP2841395 B2 JP 2841395B2
Authority
JP
Japan
Prior art keywords
ntc thermistor
present
resistance
metal electrode
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63297911A
Other languages
Japanese (ja)
Other versions
JPH02143502A (en
Inventor
宏 山岡
茂 坂野
正忠 淀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP63297911A priority Critical patent/JP2841395B2/en
Publication of JPH02143502A publication Critical patent/JPH02143502A/en
Application granted granted Critical
Publication of JP2841395B2 publication Critical patent/JP2841395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はNTC(Negative Temperature Coefficient)
サーミスタに係り、特に高温使用下の抵抗変化率が小さ
いNTCサーミスタの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to NTC (Negative Temperature Coefficient).
The present invention relates to a thermistor, and more particularly, to a method for manufacturing an NTC thermistor having a small resistance change rate under high temperature use.

〔従来の技術〕[Conventional technology]

NTCサーミスタは温度上昇にともなってその抵抗値が
減少するため、例えば感温素子等に使用されている。
NTC thermistors are used, for example, as temperature-sensitive elements, because their resistance decreases as the temperature rises.

一般にNTCサーミスタ組成物に、例えばAgなどの貴金
属電極を形成し、酸化性雰囲気で焼付けを行ってNTCサ
ーミスタ素子を製造している。
Generally, an NTC thermistor element is manufactured by forming a noble metal electrode such as Ag on the NTC thermistor composition and baking it in an oxidizing atmosphere.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで、前記のような、NTCサーミスタ組成物にAg
などの貴金属電極を形成して酸化性雰囲気中で焼付けを
行うと、得られたNTCサーミスタ素子は120℃以上の高温
使用下における抵抗変化率が大きいという問題があっ
た。
By the way, as described above, Ag is added to the NTC thermistor composition.
When a noble metal electrode is formed and baked in an oxidizing atmosphere, there is a problem that the obtained NTC thermistor element has a large resistance change rate when used at a high temperature of 120 ° C. or higher.

特にCuOを含有したNTCサーミスタ組成物はこの抵抗変
化率が非常に大きく、80℃以上での使用は不可能であっ
た。
Particularly, the resistance change rate of the NTC thermistor composition containing CuO was extremely large, and it was impossible to use the composition at 80 ° C. or higher.

従って本発明の目的は前記の問題点を解決した、高温
の使用下における抵抗変化率の小さなNTCサーミスタを
提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an NTC thermistor which solves the above-mentioned problem and has a small resistance change rate under high temperature use.

〔課題を解決するための手段及びその作用〕[Means for solving the problem and its operation]

このために本発明者等は鋭意研究の結果、Mn、Ni、C
o、Fe、Cu、Cr等の遷移金属酸化物の複数種類あるいは
これらにAl、Zrなどの金属酸化物を加えたものを主成分
とするNTCサーミスタ組成物に卑金属電極を塗布形成し
た後に、還元または中性雰囲気で、この塗布形成した卑
金属電極の焼付けを行ってNTCサーミスタを製造するこ
とにより、前記目的を達成したNTCサーミスタを提供で
きることを見出した。
To this end, the present inventors have conducted intensive studies and found that Mn, Ni, C
o, Fe, Cu, a plurality of types of transition metal oxides such as Cr or Al, Zr and other metal oxides are added to the NTC thermistor composition as a main component, and a base metal electrode is coated and formed. Alternatively, the present inventor has found that an NTC thermistor that achieves the above object can be provided by producing an NTC thermistor by baking the base metal electrode coated and formed in a neutral atmosphere.

これにより120℃においても抵抗変化率が1%以下と
非常に低いものを得る。しかもCuOを含有するNTCサーミ
スタについても120℃における抵抗変化率を同様に非常
に低いものとすることができる。
Thus, a very low resistance change rate of 1% or less even at 120 ° C. is obtained. Moreover, the resistance change rate at 120 ° C. of the NTC thermistor containing CuO can be similarly made extremely low.

〔実施例〕〔Example〕

本発明を実施例に基づいて詳細に説明する。 The present invention will be described in detail based on examples.

出発材料としてMnCO3、NiO、Co2O3、CuO、Fe2O3、Cr
O、ZrO2、Al2O3のように焼成後に各金属の酸化物になる
ものを、その焼成後に第1表の組成比になるように化学
天秤で選択的に秤量配合し、メディアとともにポットミ
ル中に入れて純水を加えて16時間湿式混合する。その後
脱水、乾燥し、乳鉢、乳棒で粉体にする。
MnCO 3 , NiO, Co 2 O 3 , CuO, Fe 2 O 3 , Cr as starting materials
O, ZrO 2 , and Al 2 O 3 , which become oxides of each metal after firing, are selectively weighed and blended with an analytical balance so as to have the composition ratios shown in Table 1 after firing, and pot milled together with media. Add pure water and mix wet for 16 hours. After that, it is dehydrated, dried and made into powder with a mortar and pestle.

それからAl2O3厘鉢にこの原料を入れて800℃〜1000℃
で2時間仮焼する。次いでこれを粉砕し、ボールミルで
微粉砕後、脱水、乾燥し、この材料にバインダーとして
ポリビニールアルコール(PVA)を加え、乳鉢、乳棒で
顆粒に造粒した後、直径16mm、厚さ2.5mmの円板状に加
圧成型する。この加圧成型に際し2t/cm2の圧力を加え
る。
Then put this raw material in Al 2 O 3 bowl, 800 ℃ ~ 1000 ℃
And calcine for 2 hours. Then, this is pulverized, finely pulverized by a ball mill, dehydrated and dried, polyvinyl alcohol (PVA) is added as a binder to the material, and the mixture is granulated into granules with a mortar and pestle. Press molding into a disk shape. During this pressure molding, a pressure of 2 t / cm 2 is applied.

そして大気中で600℃で2時間加熱してバインダーを
除脱した後に、大気中で1000℃〜1400℃の範囲で2時間
本焼成する。
Then, after the binder is removed by heating at 600 ° C. for 2 hours in the air, the main baking is performed at 1000 ° C. to 1400 ° C. for 2 hours in the air.

このようにして得られた試料に、第1表に示す如く、
AgまたはCu、Niのペーストをスクリーン印刷で塗布して
電極を形成し、Agについては大気中で、Cu及びNiについ
てはN2雰囲気中で、500℃以上で10分間以上電極焼付け
を行った。
As shown in Table 1, the sample thus obtained was
An electrode was formed by applying a paste of Ag, Cu, or Ni by screen printing, and the electrode was baked at 500 ° C. or more for 10 minutes or more in the air for Ag and in the N 2 atmosphere for Cu and Ni.

このようにして得られた、NTCサーミスタの各試料を
直流四端子法を用いて、ヒューレット・パッカー社製の
HP 3456Aという番号の測定器を使用して抵抗値を測定
した結果、第1表に示す通りのものが得られた。
Each sample of the NTC thermistor obtained in this manner was manufactured by Hewlett-Packer Company using the DC four-terminal method.
As a result of measuring the resistance value using a measuring instrument of HP 3456A, the one shown in Table 1 was obtained.

なお、この第1表に示す如く、各試料をそれぞれ125
℃で100時間、500時間、1000時間の高温保管試験後に抵
抗値を測定して25℃での抵抗値との抵抗変化率(%)も
測定した結果、第1表の通りのものが得られた。
In addition, as shown in Table 1, each sample was
After 100 hours, 500 hours, and 1000 hours of high-temperature storage test at 100 ° C, the resistance was measured and the rate of change in resistance (%) from the resistance at 25 ° C was measured. Was.

また25℃での比抵抗換算は、25℃での抵抗値をR25
したとき次式で算出する。
The specific resistance Conversion at 25 ° C. calculates the resistance value at 25 ° C. the following equation when the R 25.

B定数は、25℃及び85℃の抵抗値をそれぞれR25、R85
とするとき、次式により換算算出する。
The B constant is obtained by connecting the resistance values at 25 ° C and 85 ° C to R 25 and R 85 , respectively.
Is calculated by the following equation.

第1表において○印が本発明によるものであり、×印
は本発明によらないものである。
In Table 1, ○ indicates that the present invention was applied, and X indicates that the present invention was not applied.

この第1表により明らかな如く、試料No.1、2、7、
8、13、14、19、20、25、28、31、34に示すように、本
発明によらないものは、125℃において1000時間保持後
の抵抗変化率がいずれも1%を大きくあるいは相当越え
ているが、本発明によるものは1%以下と小さいもので
あることがわかる。
As is clear from Table 1, Sample Nos. 1, 2, 7,
As shown in 8, 13, 14, 19, 20, 25, 28, 31, and 34, those not according to the present invention have a resistance change rate after holding at 125 ° C. for 1000 hours larger or equivalent to 1% in all cases. It can be seen that the value according to the present invention is as small as 1% or less.

しかも試料No.9〜12、21〜24に示す如く、比抵抗の低
いCuの酸化物を含有する場合でも1000時間保管後の抵抗
変化率が1%以下となり120℃以上での使用が十分可能
である。
In addition, as shown in Sample Nos. 9 to 12, 21 to 24, even when Cu oxide with low specific resistance is contained, the resistance change rate after storage for 1000 hours is 1% or less, and it can be used at 120 ° C or more. It is.

勿論、本発明のNTCサーミスタ素子の製造に際して
は、Mn、Ni、Co、Fe、Cu、Crといった遷移金属酸化物あ
るいはこれらにAl、Zrなどの金属酸化物のうち、必要な
特性を満たすように2〜4成分を主成分となるように選
択配合されるものであり、仮焼、粉砕、本焼成して得ら
れた粉末を加圧成型して卑金属電極を形成し、500℃以
上の還元性または中性雰囲気中で焼付けるものである。
Of course, in the production of the NTC thermistor element of the present invention, Mn, Ni, Co, Fe, Cu, a transition metal oxide such as Cr or a metal oxide such as Al, Zr, to satisfy the required properties. 2 to 4 components are selected and blended to be the main component. The powder obtained by calcination, pulverization, and main calcination is pressure-formed to form a base metal electrode, which is reduced at 500 ° C or higher. Alternatively, baking is performed in a neutral atmosphere.

第1表のデータは、これらの一部を示すものにすぎな
い。
The data in Table 1 shows only some of these.

〔発明の効果〕〔The invention's effect〕

本発明によれば120℃以上の高温下で使用しても、そ
の抵抗変化率の非常に小さいNTCサーミスタ素子を簡単
な方法により提供することができる。
According to the present invention, even when used at a high temperature of 120 ° C. or more, an NTC thermistor element having a very small resistance change rate can be provided by a simple method.

しかも、CuOを含有するものに対しても、このような
高温で使用可能なNTCサーミスタ素子を簡単な方法によ
り提供することができる。
Moreover, it is possible to provide an NTC thermistor element that can be used at such a high temperature by using a simple method even for those containing CuO.

また卑金属電極を使用するので、貴金属電極のものに
比して安価なNTCサーミスタ素子を提供することができ
る。
In addition, since the base metal electrode is used, an inexpensive NTC thermistor element can be provided as compared with a noble metal electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 淀川 正忠 東京都中央区日本橋1丁目13番1号 テ ィーディーケイ株式会社内 (56)参考文献 特開 昭57−111004(JP,A) 特開 昭63−119503(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masatada Yodogawa 1-1-13 Nihonbashi, Chuo-ku, Tokyo Inside TDK Corporation (56) References JP-A-57-111004 (JP, A) JP-A-63 -119503 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Mn、Ni、Co、Fe、Cu、Cr等の遷移金属酸化
物の複数種類あるいはこれらにAl、Zrなどの金属酸化物
を加えたものを主成分とするNTCサーミスタ組成物に卑
金属電極を塗布形成した後に、還元または中性雰囲気
で、この塗布形成した卑金属電極の焼付けを行うことを
特徴とするNTCサーミスタの製造方法。
1. An NTC thermistor composition comprising as a main component a plurality of transition metal oxides such as Mn, Ni, Co, Fe, Cu, Cr and the like and a metal oxide such as Al and Zr added thereto. A method for manufacturing an NTC thermistor, characterized in that after coating and forming a base metal electrode, the coated and formed base metal electrode is baked in a reducing or neutral atmosphere.
JP63297911A 1988-11-25 1988-11-25 Method for manufacturing NTC thermistor Expired - Fee Related JP2841395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63297911A JP2841395B2 (en) 1988-11-25 1988-11-25 Method for manufacturing NTC thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63297911A JP2841395B2 (en) 1988-11-25 1988-11-25 Method for manufacturing NTC thermistor

Publications (2)

Publication Number Publication Date
JPH02143502A JPH02143502A (en) 1990-06-01
JP2841395B2 true JP2841395B2 (en) 1998-12-24

Family

ID=17852688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63297911A Expired - Fee Related JP2841395B2 (en) 1988-11-25 1988-11-25 Method for manufacturing NTC thermistor

Country Status (1)

Country Link
JP (1) JP2841395B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319043A (en) * 2014-10-10 2015-01-28 广州新莱福磁电有限公司 Manufacturing method of negative-temperature-coefficient thermistor chip electrode

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582310A (en) * 1991-09-24 1993-04-02 Tdk Corp Composition for thermistor
JPH0582308A (en) * 1991-09-24 1993-04-02 Tdk Corp Composition for thermistor
US5497139A (en) * 1994-09-23 1996-03-05 Matsushita Electric Industrial Co., Ltd. Temperature sensor and its manufacturing method
US6099164A (en) * 1995-06-07 2000-08-08 Thermometrics, Inc. Sensors incorporating nickel-manganese oxide single crystals
US6076965A (en) * 1996-06-17 2000-06-20 Therometrics, Inc. Monocrystal of nickel-cobalt-manganese oxide having a cubic spinel structure, method of growth and sensor formed therefrom
US6125529A (en) * 1996-06-17 2000-10-03 Thermometrics, Inc. Method of making wafer based sensors and wafer chip sensors
WO1998007656A1 (en) * 1996-08-23 1998-02-26 Thermometrics, Inc. Growth of nickel-iron-manganese oxide single crystals
CN115073140B (en) * 2022-06-08 2023-05-05 盐城工学院 Preparation method of copper-containing negative temperature coefficient thermosensitive ceramic material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111004A (en) * 1980-12-26 1982-07-10 Tdk Electronics Co Ltd Voltage non-linear resistance element and method of producing same
JPS63119503A (en) * 1986-11-07 1988-05-24 株式会社村田製作所 Manufacture of thermistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319043A (en) * 2014-10-10 2015-01-28 广州新莱福磁电有限公司 Manufacturing method of negative-temperature-coefficient thermistor chip electrode
CN104319043B (en) * 2014-10-10 2017-05-03 广州新莱福磁电有限公司 Manufacturing method of negative-temperature-coefficient thermistor chip electrode

Also Published As

Publication number Publication date
JPH02143502A (en) 1990-06-01

Similar Documents

Publication Publication Date Title
JP2841395B2 (en) Method for manufacturing NTC thermistor
JP3202273B2 (en) Composition for thermistor
JP2572310B2 (en) Composition for thermistor
JP3569810B2 (en) High temperature thermistor
JP2572312B2 (en) Composition for thermistor
JP3202278B2 (en) Composition for thermistor
JP3559405B2 (en) Composition for thermistor
JP3202275B2 (en) Composition for thermistor
JP2572313B2 (en) Composition for thermistor
CN115894026B (en) NTC thermistor material with low resistivity and high B value and preparation method thereof
JPS6143841B2 (en)
JP3559911B2 (en) Thermistor
JP3642184B2 (en) Thermistor composition
JP4850330B2 (en) THERMISTOR COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND THERMISTOR DEVICE
JP3202276B2 (en) Composition for thermistor
JP3551269B2 (en) High temperature measurement thermistor
JP3202274B2 (en) Composition for thermistor
JP2948933B2 (en) Composition for thermistor
JPH04701A (en) Manufacture of ntc thermistor
JP3202277B2 (en) Composition for thermistor
JP3334264B2 (en) Semiconductor ceramic element
JP3391190B2 (en) Thermistor composition
JP3650560B2 (en) Composition for chip thermistor
JPS6211202A (en) Composition for thermistor
JPH0259462A (en) Composition for thermistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees