JPH06163206A - Thermistor for high temperature and manufacturings method thereof - Google Patents

Thermistor for high temperature and manufacturings method thereof

Info

Publication number
JPH06163206A
JPH06163206A JP31359092A JP31359092A JPH06163206A JP H06163206 A JPH06163206 A JP H06163206A JP 31359092 A JP31359092 A JP 31359092A JP 31359092 A JP31359092 A JP 31359092A JP H06163206 A JPH06163206 A JP H06163206A
Authority
JP
Japan
Prior art keywords
thermistor
high temperature
mgo
nio
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31359092A
Other languages
Japanese (ja)
Inventor
Morikazu Tajima
盛一 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP31359092A priority Critical patent/JPH06163206A/en
Publication of JPH06163206A publication Critical patent/JPH06163206A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To provide a thermistor for a high temperature capable of obtaining a resistance change region ranging over a wide temperature scope, changing freely a resistance and a B constant within a wide scope, and having an excellent direct current load life characteristic at a high temperature, and its manufacturing method. CONSTITUTION:This thermistor element is a NiO-MgO composite oxide comprising NiO (30 to 99.99wt.%) and MgO (0.01 to 70wt.%). The composition materials of the thermistor element are NiO and MgO and each composition material is set within the scope, wherein it can obtain a resistance change region ranging in a wide temperature scope, and a resistance and a B constant can be changed, and as components of the solid solution are set within the scope, a direct current load life characteristic at a high temperature can become excellent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、300℃以上の高温で
使用可能な高温用サーミスタ及びその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature thermistor which can be used at a high temperature of 300.degree.

【0002】[0002]

【従来の技術】従来の高温用サーミスタの素体として
は、Mn−Co−Ni系酸化物とAl23 酸化物との
複合酸化物,ZrO2 系酸化物,Cr2 3 −Al2
3 −MnO系各酸化物及びスピネル系酸化物等各種のも
のが知られている。
2. Description of the Related Art A body of a conventional high-temperature thermistors, composite oxide of Mn-Co-Ni-based oxide and Al 2 O 3 oxide, ZrO 2 based oxide, Cr 2 O 3 -Al 2 O
Various types of 3- MnO-based oxides and spinel-based oxides are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、高温用
サーミスタの素体がMn−Co−Ni系酸化物とAl2
3 酸化物との複合酸化物のものでは、高温での直流負
荷寿命特性が悪く、またサーミスタ定数(以下、B定数
という)が小さい等の欠点があった。また、ZrO2
酸化物及びCr2 3 −Al2 3 −MnO系酸化物の
ものでは、材料特性により焼結性が悪い、焼結体強度が
弱い、高温度での比抵抗が低い等の不具合があり、構造
及び形状等に制限があるという欠点があった。さらに、
スピネル系酸化物のものでは、その結晶構造に起因して
高温での使用雰囲気が限定されるという欠点があった。
[SUMMARY OF THE INVENTION However, body of high-temperature thermistor Mn-Co-Ni-based oxide and Al 2
The composite oxide of O 3 oxide has drawbacks such as poor DC load life characteristics at high temperature and a small thermistor constant (hereinafter referred to as B constant). In addition, ZrO 2 -based oxides and Cr 2 O 3 -Al 2 O 3 -MnO-based oxides have poor sinterability due to material properties, weak sintered body strength, and low specific resistance at high temperatures. However, there are drawbacks such as restrictions on the structure and shape. further,
The spinel oxide has a drawback that the use atmosphere at high temperature is limited due to its crystal structure.

【0004】ところで、サーミスタは使用目的や用途に
応じて種々の抵抗値とB定数とが要求されている。従っ
て、サーミスタを製造する上で、同一成分の材料を用い
てその成分比を変えるだけで使用温度での抵抗値及びB
定数を広範囲に自由に変えうることは重要である。ま
た、近年、300℃以上の高温での使用に耐えうるサー
ミスタが強く要望されている。そのような要求として
は、例えば、自動車の排気ガスを完全燃焼させるための
触媒マフラーの温度制御(900℃)がある。
By the way, thermistors are required to have various resistance values and B constants according to the purpose of use and the intended use. Therefore, in manufacturing the thermistor, the resistance value at the use temperature and B
It is important that the constants can be freely changed over a wide range. Further, in recent years, there has been a strong demand for a thermistor that can withstand use at a high temperature of 300 ° C. or higher. Such requirements include, for example, temperature control (900 ° C.) of a catalytic muffler for completely burning exhaust gas of an automobile.

【0005】そこで、本発明は、上記事情に鑑みてなさ
れたものであり、広い温度範囲に亘って抵抗値変化領域
が得られ、抵抗値及びB定数を広範囲に自由に変えるこ
とができ、かつ、高温での直流負荷寿命特性の良好な高
温用サーミスタ及びその製造方法を提供することを目的
とする。
Therefore, the present invention has been made in view of the above circumstances, a resistance value changing region can be obtained over a wide temperature range, and the resistance value and the B constant can be freely changed in a wide range, and It is an object of the present invention to provide a high temperature thermistor having excellent DC load life characteristics at high temperature and a method for manufacturing the thermistor.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に請求項1記載の高温用サーミスタは、サーミスタ素体
が、30乃至99.99重量%のNiOと0.01乃至
70重量%のMgOとからなるNiO−MgO複合酸化
物であることを特徴とするものである。
In order to achieve the above object, the high temperature thermistor according to claim 1 has a thermistor body of 30 to 99.99% by weight of NiO and 0.01 to 70% by weight of MgO. It is a NiO-MgO composite oxide composed of and.

【0007】また、請求項2記載の高温用サーミスタ
は、一対のリード端子を備えたものである。
Further, the high temperature thermistor according to claim 2 is provided with a pair of lead terminals.

【0008】また、請求項3記載の高温用サーミスタの
製造方法は、30乃至99.99重量%のNiOと0.
01乃至70重量%のMgOとからなるNiO−MgO
複合酸化物であるサーミスタ素体と、一対のリード端子
とを有する高温用サーミスタの製造方法であって、成形
後又は仮焼結後のサーミスタ素体に穴を設け、その穴に
前記リード端子を挿入した後、サーミスタ素体を焼成し
てリード端子を固定することを特徴とするものである。
A method for manufacturing a high temperature thermistor according to claim 3 is 30 to 99.99% by weight of NiO and 0.
NiO-MgO consisting of 01 to 70 wt% MgO
A method for manufacturing a high temperature thermistor having a thermistor body which is a composite oxide and a pair of lead terminals, wherein a hole is provided in the thermistor body after molding or after provisional sintering, and the lead terminal is provided in the hole. After the insertion, the thermistor element body is fired to fix the lead terminal.

【0009】[0009]

【作用】請求項1記載の高温用サーミスタによれば、サ
ーミスタ素体の組成材料をNiO及びMgOとし、各組
成材料を上記範囲内とすることにより、広い温度範囲に
亘って抵抗値変化領域が得られ、抵抗値及びB定数を広
範囲に自由に変えることができ、かつ、高温での直流負
荷寿命特性が良好となる。
According to the high temperature thermistor of the first aspect, the composition material of the thermistor element body is NiO and MgO, and each composition material is within the above range, whereby the resistance value changing region is wide over a wide temperature range. The obtained resistance value and B constant can be freely changed over a wide range, and the DC load life characteristic at high temperature is improved.

【0010】また、請求項2記載の高温用サーミスタに
よれば、リード端子を備えているので、高温に適したも
のとなる。
Further, according to the high temperature thermistor of the second aspect, since the thermistor is provided with the lead terminals, it becomes suitable for high temperature.

【0011】また、請求項3記載の高温用サーミスタの
製造方法によれば、請求項1記載と同様の効果が得られ
ると共に、サーミスタ素体の焼成により、穴が収縮して
リード端子を固着するので、リード端子の接続作業を省
略でき、製造容易となり、高温での信頼性が優れたもの
となる。
According to the method for manufacturing a high temperature thermistor of claim 3, the same effect as that of claim 1 can be obtained, and the firing of the thermistor element causes the holes to shrink and fix the lead terminals. Therefore, the work of connecting the lead terminals can be omitted, the manufacturing becomes easy, and the reliability at high temperature becomes excellent.

【0012】[0012]

【実施例】以下、本発明の実施例を詳述する。EXAMPLES Examples of the present invention will be described in detail below.

【0013】本発明の高温用サーミスタの第1の実施例
は、図示は省略するが、30乃至99.99重量%のN
iOと0.01乃至70重量%のMgOとからなるNi
O−MgO複合酸化物であるサーミスタ素体と、このサ
ーミスタ素体の表裏両面に被着形成された例えば白金系
の電極と、この電極にろう材又は溶接等により接続され
たリード線とを有するものである。
The first embodiment of the high temperature thermistor according to the present invention, although not shown in the drawing, has a N content of 30 to 99.99% by weight.
Ni consisting of iO and 0.01 to 70 wt% MgO
It has a thermistor body which is an O-MgO composite oxide, a platinum-based electrode deposited on both front and back surfaces of this thermistor body, and a lead wire connected to this electrode by a brazing material or welding. It is a thing.

【0014】次に、第1の実施例の製造方法の一例につ
いて説明する。
Next, an example of the manufacturing method of the first embodiment will be described.

【0015】まず、市販のNiO,MgOの各粉末を上
述の割合で所定量配合する。次に、窯業的手段を用いて
混合,仮焼,粉砕,乾燥後、例えばポリビニールアルコ
ールを加えて造粒する。
First, commercially available NiO and MgO powders are mixed in a predetermined amount in the above-mentioned proportions. Next, after mixing, calcination, crushing, and drying using a ceramic means, for example, polyvinyl alcohol is added and granulated.

【0016】そして、これらの造粒粉末を金型に入れ、
500乃至1000kg/cm2 程度の圧力を加えて成
形を行う。成形体の大きさは、例えば直径30mm、厚
み3mmである。その後、成形体を1500℃で1時間
焼成する。得られた焼結素体の表裏両面に白金系の電極
を焼付け、その電極にろう材又は溶接等によりリード線
を接続して第1の実施例の高温用サーミスタが得られ
る。
Then, these granulated powders are put into a mold,
Molding is performed by applying a pressure of about 500 to 1000 kg / cm 2 . The size of the molded body is, for example, 30 mm in diameter and 3 mm in thickness. Then, the molded body is fired at 1500 ° C. for 1 hour. A platinum-based electrode is baked on both front and back surfaces of the obtained sintered body, and a lead wire is connected to the electrode by a brazing material or welding to obtain the high temperature thermistor of the first embodiment.

【0017】次に、このようにして得られた第1の実施
例の高温用サーミスタの効果を図1及び表1を参照して
説明する。
The effect of the high temperature thermistor of the first embodiment thus obtained will be described with reference to FIG. 1 and Table 1.

【0018】図1は第1の実施例の比抵抗と絶対温度の
逆数との関係を示すグラフである。同図はサーミスタ素
体の組成粉末の割合を変化させた試料を上述した方法に
より作製し、その試料について温度を常温から1000
℃まで変化させ、抵抗計を用いて抵抗値を測定し、この
測定結果を基に比抵抗と絶対温度の逆数との関係を求め
たもので、同図中の符号は、試料番号を示し、表1に示
す試料番号と対応させている。
FIG. 1 is a graph showing the relationship between the specific resistance of the first embodiment and the reciprocal of absolute temperature. In the figure, a sample in which the ratio of the composition powder of the thermistor body was changed was prepared by the method described above, and the temperature of the sample was changed from room temperature to 1000
It was changed to ℃, measured the resistance value using an ohmmeter, the relationship between the specific resistance and the reciprocal of absolute temperature was obtained based on this measurement result, the symbol in the figure indicates the sample number, Corresponds to the sample numbers shown in Table 1.

【0019】表1は、上記測定結果を基に比抵抗,B定
数,抵抗変化率を求めたものである。
Table 1 shows the specific resistance, the B constant, and the rate of change in resistance calculated based on the above measurement results.

【0020】[0020]

【表1】 [Table 1]

【0021】試料は、上述した如く作製して得られた直
径30mm、厚み3mmのものを用い、試料番号1乃至
10の組成粉末の割合は、粉末NiOは20乃至99.
9重量%、粉末MgOは0.01乃至80重量%変化さ
せた。なお、サーミスタ抵抗及びB定数は、以下の式か
ら求められる。
A sample having a diameter of 30 mm and a thickness of 3 mm obtained by the above-described method is used, and the ratio of the composition powders of sample numbers 1 to 10 is 20 to 99.
9 wt% and powder MgO were changed from 0.01 to 80 wt%. The thermistor resistance and B constant are obtained from the following equations.

【0022】 B=ln(R1 /R0 )/(1/T1 −1/T0 ) (但し、R1 ,R0 は抵抗、T1 ,T0 は絶対温度、B
はB定数)
B = ln (R 1 / R 0 ) / (1 / T 1 −1 / T 0 ) (where R 1 and R 0 are resistances, T 1 and T 0 are absolute temperatures, and B
Is the B constant)

【0023】表1から明らかなように、第1の実施例に
よれば、MgOの組成の割合を0.01乃至70重量%
まで変えることにより、サーミスタ素子の比抵抗ρは、
600℃で58乃至1.0×106 Ω・cm、900℃
で13乃至4.0×103 Ω・cmと大幅に変化し、B
定数も、5100乃至18850Kと大幅に変化するこ
とが分った。
As is apparent from Table 1, according to the first embodiment, the composition ratio of MgO is 0.01 to 70% by weight.
The specific resistance ρ of the thermistor element is
58 to 1.0 × 10 6 Ω · cm at 600 ℃, 900 ℃
Changes significantly from 13 to 4.0 × 10 3 Ω · cm, and B
It was found that the constant also changed significantly from 5100 to 18850K.

【0024】また、比抵抗ρは、600℃では106 Ω
・cm以下、900℃では104 Ω・cm以下となり、
回路形成上好ましい値にできた。なお、MgOを70重
量%越えると、比抵抗が大きくなりすぎ、また抵抗変化
率も大きくなって実用的でなくなる。
The specific resistance ρ is 10 6 Ω at 600 ° C.
-Cm or less, at 900 ° C becomes 10 4 Ω-cm or less,
It was possible to obtain a preferable value in circuit formation. When the content of MgO exceeds 70% by weight, the specific resistance becomes too large and the rate of change in resistance becomes large, which is not practical.

【0025】さらに、図1から明らかなように、抵抗値
変化領域は、広い温度範囲に亘って認められ、その使用
温度範囲をより一層拡大することができた。また、Mg
Oとの複合材料により、任意にB定数,比抵抗を変化さ
せることができた。
Further, as is apparent from FIG. 1, the resistance value changing region was recognized over a wide temperature range, and the operating temperature range could be further expanded. Also, Mg
The B constant and the specific resistance could be arbitrarily changed by the composite material with O.

【0026】またさらに、NiO−MgO酸化物系は、
緻密な結晶体が得られ、しかも焼結性が良いために焼結
体強度が強く、高温での比抵抗が実用回路形成の上から
十分に有用な値となるので、構造及び形状に自由度が多
く、例えば従来品の形状に比べ小さく、熱応答性に優
れ、かつ雰囲気に強い素子が可能となる。
Furthermore, the NiO-MgO oxide system is
Since a dense crystal body can be obtained and the sinterability is good, the strength of the sintered body is strong, and the specific resistance at high temperature is a value that is sufficiently useful for practical circuit formation. However, it is possible to provide an element that is smaller than the shape of a conventional product, has excellent thermal response, and is strong in the atmosphere.

【0027】図2は本発明の高温用サーミスタの第2の
実施例を示す断面図である。
FIG. 2 is a sectional view showing a second embodiment of the high temperature thermistor of the present invention.

【0028】同図に示す第2の実施例のサーミスタは、
第1の実施例と同様の30乃至99.99重量%のNi
Oと0.01乃至70重量%のMgOとからなるNiO
−MgO複合酸化物である柱状のサーミスタ素体1を有
し、そのサーミスタ素体1の各端部に穴1aを形成し、
その穴1aに例えば白金,白金ロジウム線等からなるリ
ード端子2を挿入固着したものである。
The thermistor of the second embodiment shown in FIG.
30 to 99.99% by weight of Ni as in the first embodiment
NiO consisting of O and 0.01 to 70 wt% MgO
A columnar thermistor body 1 which is a MgO composite oxide, and holes 1a are formed at each end of the thermistor body 1.
A lead terminal 2 made of, for example, platinum or platinum rhodium wire is inserted and fixed in the hole 1a.

【0029】次に、第2の実施例の製造方法の一例につ
いて説明する。
Next, an example of the manufacturing method of the second embodiment will be described.

【0030】まず、第1の実施例と同様に、市販のNi
O,MgOの各粉末を上述の割合で所定量配合し、窯業
的手段を用いて混合,仮焼,粉砕,乾燥後、例えばポリ
ビニールアルコールを加えて造粒する。
First, as in the first embodiment, commercially available Ni is used.
Each powder of O and MgO is blended in a predetermined amount in the above-mentioned proportion, and after mixing, calcination, pulverization and drying by using a ceramic means, for example, polyvinyl alcohol is added to granulate.

【0031】そして、第1の実施例と同様に、これらの
造粒粉末を金型に入れ、500乃至1000kg/cm
2 程度の圧力を加えて成形を行う。この実施例では、成
形体1の大きさは直径3mm,長さ6mmである。な
お、ここで仮焼結させてもよい。
Then, in the same manner as in the first embodiment, these granulated powders were put into a mold, and 500 to 1000 kg / cm.
Molding is performed by applying a pressure of about 2 . In this example, the molded body 1 has a diameter of 3 mm and a length of 6 mm. In addition, preliminary sintering may be performed here.

【0032】次に、成形体1の両端部に直径0.5mm
のドリルで深さ2mmの丸穴1aを掘る。この穴1aに
直径0.5mmの例えば白金等からなるリード端子2を
挿入する。その後、成形体試料を1500℃で1時間焼
成すると、成形体1は収縮して穴1aも収縮するため、
リード端子2は固着され、第2の実施例の高温用サーミ
スタが得られる。
Next, a diameter of 0.5 mm is applied to both ends of the molded body 1.
The round hole 1a having a depth of 2 mm is digged with the drill. A lead terminal 2 having a diameter of 0.5 mm and made of, for example, platinum is inserted into the hole 1a. After that, when the molded body sample is fired at 1500 ° C. for 1 hour, the molded body 1 contracts and the holes 1a also contract,
The lead terminal 2 is fixed, and the high temperature thermistor of the second embodiment is obtained.

【0033】次に、このようにして得られた第2の実施
例の高温用サーミスタの効果を表1を参照して説明す
る。
Next, the effect of the high temperature thermistor of the second embodiment thus obtained will be described with reference to Table 1.

【0034】第1の実施例の場合と同様に作製した各試
料について、1000℃の温度に保持し、直流印加電圧
6Vを連続印加して抵抗の時間変化を測定した。その測
定結果を基に1000時間後の抵抗変化率ΔRを求め、
その結果を表1に示す。また、抵抗変化率ΔRは、次式
によって算出した。
Each sample produced in the same manner as in the case of the first embodiment was maintained at a temperature of 1000 ° C., a direct current applied voltage of 6 V was continuously applied, and the time change of resistance was measured. Based on the measurement result, the resistance change rate ΔR after 1000 hours was calculated,
The results are shown in Table 1. Further, the resistance change rate ΔR was calculated by the following equation.

【0035】 ΔR={(R−R0 )/R0 }×100% (但し、Rtはt時間後の抵抗値、R0 は出発時の抵抗
値)
ΔR = {(R t −R 0 ) / R 0 } × 100% (where Rt is the resistance value after t hours and R 0 is the resistance value at the time of departure)

【0036】第2の実施例によれば、例えば、温度10
00℃,直流電圧6V印加の条件下で、抵抗変化率は1
00時間後で2%以下、1000時間後で5%以下(表
1参照)となり、直流負荷寿命特性において優れている
ことが分かった。
According to the second embodiment, for example, a temperature of 10
The resistance change rate is 1 under the conditions of 00 ° C and DC voltage of 6V.
It was 2% or less after 00 hours and 5% or less after 1000 hours (see Table 1), and it was found that the DC load life characteristics were excellent.

【0037】また、サーミスタ素体1を焼成するだけ
で、リード端子2を穴1aに固着しているので、リード
端子2の接続作業を省略でき、製造容易となり、高温で
の信頼性が優れたものとなる。なお、上記直流負荷寿命
特性は、第1の実施例においても同様に有するものであ
る。
Further, since the lead terminal 2 is fixed to the hole 1a only by firing the thermistor element body 1, the work of connecting the lead terminal 2 can be omitted, the manufacturing becomes easy, and the reliability at high temperature is excellent. Will be things. The above DC load life characteristics are similarly possessed in the first embodiment.

【0038】なお、本発明は上記実施例に限定されず、
その要旨を変更しない範囲内で種々に変形実施できる。
例えば、第2の実施例は図3に示すように一対のリード
端子2,2を同方向に導出してもよい。
The present invention is not limited to the above embodiment,
Various modifications can be made without changing the gist of the invention.
For example, in the second embodiment, a pair of lead terminals 2 and 2 may be led out in the same direction as shown in FIG.

【0039】[0039]

【発明の効果】以上詳述した請求項1記載の発明によれ
ば、サーミスタ素体を上記構成とすることにより、広い
温度範囲に亘って抵抗値変化領域が得られ、抵抗値及び
B定数を広範囲に自由に変えることができ、かつ、高温
での直流負荷寿命特性の良好な高温用サーミスタを提供
することができる。
According to the invention described in claim 1 described in detail above, by forming the thermistor element body as described above, a resistance value changing region can be obtained over a wide temperature range, and a resistance value and a B constant can be obtained. It is possible to provide a high temperature thermistor which can be freely changed over a wide range and has excellent DC load life characteristics at high temperatures.

【0040】請求項2記載の発明によれば、リード端子
を備えているので、高温に適したものとなる。
According to the second aspect of the invention, since the lead terminal is provided, it is suitable for high temperatures.

【0041】請求項3記載の発明によれば、請求項1記
載と同様の効果が得られると共に、サーミスタ素体の焼
成により、穴が収縮してリード端子を固着するので、リ
ード端子の接続作業を省略でき、製造容易となり、高温
での信頼性が優れたものとなる。
According to the invention of claim 3, the same effect as that of claim 1 is obtained, and since the hole is contracted and the lead terminal is fixed by firing the thermistor element body, the lead terminal connecting work is performed. Can be omitted, the manufacturing becomes easy, and the reliability at high temperature becomes excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高温用サーミスタの第1の実施例の比
抵抗と絶対温度の逆数との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the specific resistance and the reciprocal of absolute temperature of the first embodiment of the high temperature thermistor of the present invention.

【図2】本発明の高温用サーミスタの第2の実施例を示
す断面図である。
FIG. 2 is a sectional view showing a second embodiment of the high temperature thermistor of the present invention.

【図3】第2の実施例の他の例を示す断面図である。FIG. 3 is a sectional view showing another example of the second embodiment.

【符号の説明】[Explanation of symbols]

1 サーミスタ素体 1a 穴 2 リード端子 1 Thermistor body 1a hole 2 Lead terminal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 サーミスタ素体が、30乃至99.99
重量%のNiOと0.01乃至70重量%のMgOとか
らなるNiO−MgO複合酸化物であることを特徴とす
る高温用サーミスタ。
1. The thermistor body is 30 to 99.99.
A high temperature thermistor, which is a NiO-MgO composite oxide consisting of wt% NiO and 0.01 to 70 wt% MgO.
【請求項2】 一対のリード端子を備えたことを特徴と
する請求項1記載の高温用サーミスタ。
2. The high temperature thermistor according to claim 1, further comprising a pair of lead terminals.
【請求項3】 30乃至99.99重量%のNiOと
0.01乃至70重量%のMgOとからなるNiO−M
gO複合酸化物であるサーミスタ素体と、一対のリード
端子とを有する高温用サーミスタの製造方法であって、
成形後又は仮焼結後のサーミスタ素体に穴を設け、その
穴に前記リード端子を挿入した後、サーミスタ素体を焼
成してリード端子を固定することを特徴とする高温用サ
ーミスタの製造方法。
3. NiO-M consisting of 30 to 99.99% by weight NiO and 0.01 to 70% by weight MgO.
A method of manufacturing a high temperature thermistor having a thermistor element body, which is a gO complex oxide, and a pair of lead terminals,
A method for manufacturing a high temperature thermistor, characterized in that a hole is formed in the thermistor body after molding or after provisional sintering, the lead terminal is inserted into the hole, and then the thermistor body is baked to fix the lead terminal. .
JP31359092A 1992-11-24 1992-11-24 Thermistor for high temperature and manufacturings method thereof Withdrawn JPH06163206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31359092A JPH06163206A (en) 1992-11-24 1992-11-24 Thermistor for high temperature and manufacturings method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31359092A JPH06163206A (en) 1992-11-24 1992-11-24 Thermistor for high temperature and manufacturings method thereof

Publications (1)

Publication Number Publication Date
JPH06163206A true JPH06163206A (en) 1994-06-10

Family

ID=18043150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31359092A Withdrawn JPH06163206A (en) 1992-11-24 1992-11-24 Thermistor for high temperature and manufacturings method thereof

Country Status (1)

Country Link
JP (1) JPH06163206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143207A (en) * 1996-09-18 2000-11-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Wide-range thermistor material and method for producing it
JP2010109317A (en) * 2008-10-03 2010-05-13 Mitsubishi Materials Corp Thermistor element manufacturing method, and thermistor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143207A (en) * 1996-09-18 2000-11-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Wide-range thermistor material and method for producing it
JP2010109317A (en) * 2008-10-03 2010-05-13 Mitsubishi Materials Corp Thermistor element manufacturing method, and thermistor element

Similar Documents

Publication Publication Date Title
JP2000058237A (en) Ceramic heater and oxygen sensor using it
CN102436880B (en) Thermistor element
TW200927699A (en) Semiconductor ceramic material and NTC thermistor
CN103635444A (en) Ceramic composition for thermistor temperature sensors and thermistor device manufactured from said composition
US3510820A (en) Thermistor
JPS6022302A (en) Oxide semiconductor for thermistor
US20150137050A1 (en) Metal-oxide sintered body for temperature sensor, and method for manufacturing same
JP5546996B2 (en) Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element
JPH06163206A (en) Thermistor for high temperature and manufacturings method thereof
JP2841395B2 (en) Method for manufacturing NTC thermistor
JP5140450B2 (en) Thermistor element and temperature sensor
JP3305272B2 (en) Dielectric porcelain material
US6146550A (en) Electrical resistance heating element for an electric furnace and process for manufacturing such a resistance element
JPS6033265A (en) Silicon carbide electroconductive ceramics
JP2001230060A (en) Resistance element
JPH0729706A (en) High-temperature sensor and manufacture thereof
JP5765277B2 (en) Low temperature thermistor material and manufacturing method thereof
JPH08162302A (en) Thermistor and its manufacture
JP3131071B2 (en) Ceramic heating element
CN115894026B (en) NTC thermistor material with low resistivity and high B value and preparation method thereof
JP3121967B2 (en) Ceramic heating element
JPH07130504A (en) Thermister for high temperature and its manufacture
WO2024042767A1 (en) Thermistor element and method for producing same
SU982207A1 (en) Material for resistor heater
JP3642184B2 (en) Thermistor composition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201