JP3131071B2 - Ceramic heating element - Google Patents

Ceramic heating element

Info

Publication number
JP3131071B2
JP3131071B2 JP05103117A JP10311793A JP3131071B2 JP 3131071 B2 JP3131071 B2 JP 3131071B2 JP 05103117 A JP05103117 A JP 05103117A JP 10311793 A JP10311793 A JP 10311793A JP 3131071 B2 JP3131071 B2 JP 3131071B2
Authority
JP
Japan
Prior art keywords
heating element
temperature
ceramic
resistance
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05103117A
Other languages
Japanese (ja)
Other versions
JPH06316457A (en
Inventor
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP05103117A priority Critical patent/JP3131071B2/en
Publication of JPH06316457A publication Critical patent/JPH06316457A/en
Application granted granted Critical
Publication of JP3131071B2 publication Critical patent/JP3131071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Resistance Heating (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化物系のセラミック
を抵抗体として具備したセラミック製発熱素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic heating element having an oxide ceramic as a resistor.

【0002】[0002]

【従来技術】従来、セラミック製発熱素子としては、絶
縁性セラミックスであるアルミナ等の表面に白金(P
t)などの抵抗体を被着形成したり、セラミック絶縁体
の表面や内部にタングステン等の抵抗体を内蔵したもの
が一般に使用されている。
2. Description of the Related Art Conventionally, as a ceramic heating element, platinum (P) has been used on the surface of an insulating ceramic such as alumina.
In general, a resistor such as t) is formed by attaching a resistor, or a resistor such as tungsten is built in the surface or inside of a ceramic insulator.

【0003】一方、チタン酸バリウム等に代表されるP
TCサーミスタと呼ばれる抵抗素子が知られている。こ
の素子は、電気抵抗が正の温度係数を有するとともにあ
る温度で電気抵抗が急激に増大する特徴を有する。通
常、チタン酸バリウムを主成分とし、これにNbやTa
等の半導体化のためのドナー成分やMn、Cu等の粒界
ポテンシャルバリア形成のためのアクセプター成分等が
微量加えられている。
On the other hand, P represented by barium titanate and the like
A resistance element called a TC thermistor is known. This element has a characteristic that the electric resistance has a positive temperature coefficient and the electric resistance sharply increases at a certain temperature. Usually, barium titanate is mainly used, and Nb or Ta
A small amount of a donor component such as Mn, Cu, or the like, or an acceptor component such as Mn or Cu for forming a grain boundary potential barrier is added.

【0004】前者の発熱素子は700℃程度までの比較
的高温域で、また、後者は350℃までの低い温度で使
用されており、これらの発熱素子は、通電初期には抵抗
が小さいのでわずかな時間で一定温度まで達する速応性
があること、また自己温度制御機能があることなどの利
点がある。
The former heating element is used in a relatively high temperature range up to about 700 ° C., and the latter is used at a low temperature up to 350 ° C. These heating elements have a small resistance at the beginning of energization, so that they have a small resistance. It has advantages such as quick response to a certain temperature in a short time and a self-temperature control function.

【0005】[0005]

【発明が解決しようとする問題点】しかしながら、上記
酸化物系の発熱素子において、抵抗体を内蔵した発熱素
子では、発熱素子に対する電圧分布が不均一なため、局
所的な発熱が生じるという欠点がある。それに対して、
サーミスタ等は均一な発熱が可能であるが、使用限界温
度が350℃程度と低く、高温での発熱に利用できない
という問題点があった。
However, in the above-mentioned oxide-based heating element, the heating element having a built-in resistor has a disadvantage that the voltage distribution with respect to the heating element is non-uniform, so that local heating occurs. is there. On the other hand,
A thermistor or the like can generate uniform heat, but has a problem that it cannot be used for heat generation at a high temperature because its use limit temperature is as low as about 350 ° C.

【0006】本発明は、上記のような従来品に比較して
使用限界温度が高く、自己発熱型の発熱領域の広い発熱
素子で且つ熱衝撃性に優れた発熱素子を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a self-heating type heating element having a higher limit temperature for use as compared with the above-mentioned conventional products, a self-heating type heating element having a wide heating area, and excellent thermal shock resistance. I do.

【0007】[0007]

【問題点を解決するための手段】本発明者は、高温にお
ける発熱性を有する酸化物系セラミックスの抵抗体材料
について検討を重ねた結果、少なくともLaと、Crあ
るいはMnを含有するペロブスカイト型複合酸化物が高
温で発熱体としての適性な抵抗を有するとともに、しか
も高温での均一発熱性および熱衝撃性に優れた材料であ
ることを見いだし、本発明に至った。
The inventor of the present invention has conducted studies on a resistor material of an oxide ceramic having a heat generation property at a high temperature. As a result, a perovskite-type composite oxide containing at least La and Cr or Mn is obtained. The present inventors have found that the material has a suitable resistance as a heating element at a high temperature and is excellent in uniform heat generation and thermal shock resistance at a high temperature.

【0008】即ち、本発明のセラミック製発熱素子は、
組成式が下記化1
That is, the ceramic heating element of the present invention comprises:
The composition formula is

【0009】[0009]

【化1】 Embedded image

【0010】で表され、式中、AはCa、Sr、Baの
群から選択される少なくとも1種、BはY、Yb、S
c、Er、Dy、Ndの群から選択される少なくとも1
種、CはMn、Co、Fe、Niから選択される少なく
とも1種であり、且つ0.05≦x≦0.40、0≦y
≦0.30、0.30≦z≦0.60および0.95≦
p≦1.0を満足するとともに、開気孔率が1〜30
%、平均結晶粒径が30μm以下を満足するセラミック
を抵抗体として具備することを特徴とするものである。
Wherein A is at least one selected from the group consisting of Ca, Sr, and Ba, and B is Y, Yb, S
at least one selected from the group consisting of c, Er, Dy, and Nd
The species C is at least one selected from Mn, Co, Fe, and Ni, and 0.05 ≦ x ≦ 0.40, 0 ≦ y
≦ 0.30, 0.30 ≦ z ≦ 0.60 and 0.95 ≦
p ≦ 1.0 and the open porosity is 1-30.
%, And a ceramic having an average crystal grain size of 30 μm or less is provided as a resistor.

【0011】本発明におけるセラミック製発熱素子の抵
抗体を構成するセラミックは、それ自体0.005〜1
30Ω−cmの電気抵抗を有するものであり、ペロブス
カイト型の結晶相を主相とするものである。本発明にお
いてセラミックの組成を上記の範囲に限定したのは、x
値が0.05より小さいと、LaMnO3 系において、
800℃付近でその固溶体が相変態し、発熱素子の昇降
温を繰り返した場合、素子自体が破壊するという問題が
ある。また、x値が0.6より大きいとアルカリ土類元
素を含む化合物が析出し電気抵抗が大きくなり発熱体が
良好な抵抗体として使用できなくなるためである。
The ceramic constituting the resistor of the ceramic heating element according to the present invention is itself 0.005 to 1%.
It has an electrical resistance of 30 Ω-cm and has a perovskite-type crystal phase as a main phase. In the present invention, the composition of the ceramic is limited to the above range because x
When the value is smaller than 0.05, in the LaMnO 3 system,
When the solid solution undergoes a phase transformation around 800 ° C. and the temperature of the heating element is repeatedly increased and decreased, there is a problem that the element itself is broken. On the other hand, when the value x is larger than 0.6, a compound containing an alkaline earth element is precipitated, the electric resistance increases, and the heating element cannot be used as a good resistor.

【0012】同様にy値が0.5を越えると希土類元素
を含む化合物が析出して電気抵抗が大きくなり発熱素子
として機能しない。また、z値が0.10より小さいと
材料の焼結製が極めて悪くなり、1600℃以上の高温
でしか焼成ができないため経済的な点でこれを限定し
た。さらにp値が0.90より小さいとCr等を含む化
合物が生成して電気抵抗が増大し、逆に1.05を越え
るとLa2 3 が析出して材料が短時間で分解する。
Similarly, when the y value exceeds 0.5, a compound containing a rare earth element precipitates and the electric resistance increases, so that the compound does not function as a heating element. On the other hand, if the z value is less than 0.10, the sintering of the material becomes extremely poor, and sintering can be performed only at a high temperature of 1600 ° C. or more, which is limited in terms of economy. Further, when the p-value is less than 0.90, a compound containing Cr or the like is formed to increase the electric resistance. Conversely, when the p-value exceeds 1.05, La 2 O 3 is precipitated and the material is decomposed in a short time.

【0013】[0013]

【0014】また、発熱素子は長時間高温度に保持され
るため変形や寸法変化が起こりやすく、さらには急激に
高温度まで昇温されるためにそれ自身の熱衝撃抵抗が大
きい必要がある。
Further, since the heating element is maintained at a high temperature for a long time, deformation and dimensional change are apt to occur. Further, since the temperature is rapidly raised to a high temperature, the heat shock resistance of the heating element itself needs to be large.

【0015】特に変形や寸法変化は、材料固有の性質以
外の要件として、材料中に含有される金属不純物に大き
く影響される。この金属不純物量としては、Al、S
i、Zr等が挙げられるが、これらが総量で5重量%を
越えると、高温における耐クリープ性が悪くなり、ま
た、長時間の使用において焼結が起こり所定の形状を保
持しなくなることがわかった。このため、上記金属不純
物量としては5重量%以下、特に2重量%以下であるこ
とが望ましい。
In particular, deformation and dimensional change are greatly affected by metal impurities contained in the material as a requirement other than the inherent properties of the material. The amounts of the metal impurities include Al, S
i, Zr, and the like. When the total amount exceeds 5% by weight, creep resistance at a high temperature is deteriorated, and sintering occurs over a long period of use, so that a predetermined shape cannot be maintained. Was. For this reason, the amount of the metal impurities is desirably 5% by weight or less, particularly preferably 2% by weight or less.

【0016】また、熱衝撃抵抗は、平均結晶粒径の熱衝
撃性と深い関係にあり、開気孔率が45%以下、特に1
〜30%、平均結晶粒径は50μm以下、特に30μm
以下であることが望ましく、上記範囲を逸脱すると所望
の耐熱衝撃性を得ることができない。
The thermal shock resistance has a deep relationship with the thermal shock resistance of the average crystal grain size, and the open porosity is 45% or less, particularly 1%.
3030%, average grain size is 50 μm or less, especially 30 μm
It is desirable to be the following, and if it deviates from the above range, the desired thermal shock resistance cannot be obtained.

【0017】本発明の上記組成の抵抗体を具備する発熱
素子は、例えば、図1に示すように、前記組成の焼結体
からなる円筒状の抵抗体1と、抵抗体1の両端に被着形
成された一対の電極2,3により構成され、電極2,3
に40V以下の電圧を印加することにより図2に示すよ
うに約500〜1200℃の温度にまで発熱させること
ができる。
As shown in FIG. 1, for example, a heating element having a resistor having the above composition according to the present invention comprises a cylindrical resistor 1 made of a sintered body having the above composition, and both ends of the resistor 1 covered at both ends. The electrodes 2 and 3 are formed by a pair of electrodes
By applying a voltage of 40 V or less to the substrate, heat can be generated to a temperature of about 500 to 1200 ° C. as shown in FIG.

【0018】[0018]

【作用】CaOを固溶したLaMnO3 およびLaCr
3 の格子欠陥構造を詳細に検討した結果、これらの固
溶体においては高温、大気中で電荷担体としてホールが
支配的に生成することがわかった。例えば、CaOのL
aMnO3 固溶体ではその反応は下記化2
[Function] LaMnO 3 and LaCr containing CaO as a solid solution
As a result of detailed examination of the lattice defect structure of O 3 , it was found that in these solid solutions, holes were predominantly generated as charge carriers at high temperatures and in the atmosphere. For example, L of CaO
For aMnO 3 solid solution, the reaction is

【0019】[0019]

【化2】 Embedded image

【0020】で表される。## EQU1 ##

【0021】また、LaCrO3 固溶体においても同様
な格子欠陥構造が生成する。しかしながら、ホール濃度
はLaMnO3 固溶体では極めて高く、またLaCrO
3 固溶体では逆にその濃度が極めて低い。このため発熱
素子として利用するためにはLaMnO3 固溶体は電気
抵抗が小さすぎ、またLaCrO3 固溶体では逆に電気
抵抗が大きすぎると判断される。このような理由からL
aMnO3 とLaCrO3 の固溶体の主としてCrとM
nの量比を特定の範囲に制御することにより所望の電気
抵抗を得ることができる。
Further, a similar lattice defect structure is generated in the LaCrO 3 solid solution. However, the hole concentration is extremely high in LaMnO 3 solid solution, and LaCrO 3
Very low concentration reversed in 3 solid solution. Therefore, it is determined that the LaMnO 3 solid solution has too low electric resistance and the LaCrO 3 solid solution has too high electric resistance in order to be used as a heating element. For this reason, L
aMnO 3 and LaCrO 3 solid solution mainly consisting of Cr and M
A desired electrical resistance can be obtained by controlling the ratio of n to a specific range.

【0022】しかしながら、この材料は高温で使用され
るため、耐クリープ性に優れる必要がある。また使用中
に焼結が進行して発熱素子として寸法変化が生じてはな
らない。そのため、上記の材料の添加物を検討した結
果、Laの一部を同じ原子価を有する希土類元素で置換
することにより耐クリープ性が優れ、かつ寸法変化が小
さくなることを見いだした。これは、同原子価にイオン
の固溶のため格子欠陥構造が変化することなく、イオン
半径が小さいために格子歪みが大きくなり、陽イオンの
拡散の活性化エネルギーが大きくなり、その結果陽イオ
ンの拡散速度が遅くなったためクリープが改善され、同
時に焼結性が抑制されたと考えられる。
However, since this material is used at a high temperature, it must have excellent creep resistance. In addition, sintering must not proceed during use to cause dimensional change as a heating element. Therefore, as a result of studying the additives of the above-mentioned materials, it was found that by replacing a part of La with a rare earth element having the same valence, the creep resistance was excellent and the dimensional change was small. This is because the lattice defect structure does not change due to solid solution of ions at the same valence, the lattice distortion increases due to the small ion radius, the activation energy of cation diffusion increases, and as a result, It is considered that the creep was improved due to the slow diffusion rate of, and the sinterability was suppressed at the same time.

【0023】それに対して、金属不純物に関しては、そ
の量が少ないと、結晶内に固溶し、クリープや焼結性に
大きな影響は与えないが、不純物量が増加しこれが粒界
に析出すると陽イオンの粒界拡散速度を高め焼結を促進
する効果を有する。また、クリープに関しては、粒子の
粒界すべりを引き起こし耐クリープ性を悪くする。特に
Al、Si、Zr等が耐クリープ性を劣化させると同時
に焼結を促進し発熱素子としての寸法変化を助長する。
On the other hand, with respect to metal impurities, if the amount is small, it forms a solid solution in the crystal and does not greatly affect creep and sinterability, but if the amount of impurities increases and this precipitates at the grain boundary, it becomes positive. It has the effect of increasing the diffusion speed of ions at the grain boundary and promoting sintering. In addition, creep causes grain boundary sliding of the particles and deteriorates creep resistance. In particular, Al, Si, Zr, etc. degrade the creep resistance and at the same time promote sintering and promote dimensional change as a heating element.

【0024】さらに、上記材料のマイクロストラクチャ
ーについて検討した結果、緻密質よりポーラス体である
方が熱衝撃性に優れることを見いだした。これは、緻密
質よりポーラス品の方が熱伝導率が小さくなることに起
因していると考えられる。よって、本発明では、緻密度
の尺度として開気孔率を前記範囲に限定した。また、熱
衝撃抵抗と結晶粒径も深い関係にあり、結晶粒径が大き
くなると高温強度が小さくなるため、本発明では平均結
晶粒径を前記の範囲に限定した。
Further, as a result of examining the microstructure of the above-mentioned material, it was found that a porous body had better thermal shock resistance than a dense one. This is considered to be due to the fact that the thermal conductivity of the porous product is smaller than that of the dense product. Therefore, in the present invention, the open porosity is limited to the above range as a measure of the density. In addition, since the thermal shock resistance and the crystal grain size have a deep relationship, and as the crystal grain size increases, the high-temperature strength decreases, the average crystal grain size is limited to the above range in the present invention.

【0025】本発明によれば、前記抵抗体はそれ自体に
通電することにより、自己発熱性を有し、しかも均一焼
結体(モノリシック体)であるため、電気特性が抵抗体
全体として均一であり局所的な発熱も当然ない。しか
も、通電により500〜1200℃の高温での発熱が可
能であり、これまで使用されていた自己発熱型の発熱素
子に比較して発熱温度を大きく向上することができ、そ
の利用分野を拡大することができる。
According to the present invention, the resistor has a self-heating property by being energized by itself, and is a uniform sintered body (monolithic body). There is of course no local fever. Moreover, heat generation at a high temperature of 500 to 1200 ° C. is possible by energization, and the heat generation temperature can be greatly improved as compared with a self-heating type heating element used hitherto, thereby expanding the field of application. be able to.

【0026】[0026]

【実施例】市販の純度99.9%のLa2 3 、Y2
3 、SrCO3 、CaCO3 、Mn2 3 、Cr2 3
を出発原料として用い、これを表1および表2に示す組
成で調合しZrO2 ボールにて12時間混合した後、1
200℃で3時間仮焼して固相反応を行わせた。これを
ZrO2 ボールを用いて24時間粉砕を行った後、円柱
状に成形して1450〜1500℃で5時間焼成して外
径6mm、長さ100mmの焼結体を得た。
EXAMPLES La 2 O 3 and Y 2 O having a commercial purity of 99.9% were used.
3 , SrCO 3 , CaCO 3 , Mn 2 O 3 , Cr 2 O 3
Was used as a starting material, mixed with the compositions shown in Tables 1 and 2, and mixed with a ZrO 2 ball for 12 hours.
The solid phase reaction was performed by calcining at 200 ° C. for 3 hours. This was pulverized for 24 hours using a ZrO 2 ball, formed into a column shape, and fired at 1450 to 1500 ° C. for 5 hours to obtain a sintered body having an outer diameter of 6 mm and a length of 100 mm.

【0027】これを電気中に支点間距離を80mmとな
るように設置し、1000℃で200時間焼鈍して変形
率と外径の収縮率を測定した。この際、変形率はたわみ
量を支点間距離80mmで除算したものである。
This was placed in electricity so that the distance between fulcrums was 80 mm, annealed at 1000 ° C. for 200 hours, and the deformation rate and the shrinkage rate of the outer diameter were measured. At this time, the deformation rate is obtained by dividing the amount of deflection by the distance between fulcrums of 80 mm.

【0028】また、上記円柱状焼結体より大きさ3×3
×60mmの試料を作製し1000℃で電気抵抗を測定
した。一方、大気中同一サイズの試料に10〜30Vの
電圧を印加して大気中800℃以上まで急激に温度を上
げ、5分間保持した後、急激に冷却を行った。この温度
サイクルを100回繰り返し行い、100回未満で破損
が生じたものに×、上記熱サイクル試験後も破損しなか
ったものを○として評価した。また、ICP分析からい
ずれの試料の金属不純物の総量が0.3重量%以下であ
った。
The size of the columnar sintered body is 3 × 3.
A sample of × 60 mm was prepared, and the electric resistance was measured at 1000 ° C. On the other hand, a voltage of 10 to 30 V was applied to a sample of the same size in the atmosphere to rapidly raise the temperature to 800 ° C. or more in the atmosphere, and after maintaining for 5 minutes, the cooling was rapidly performed. This temperature cycle was repeated 100 times. When the temperature was less than 100 times, breakage was evaluated as x, and when the temperature was not damaged even after the heat cycle test, it was evaluated as ○. In addition, the total amount of metal impurities in all the samples was 0.3% by weight or less according to the ICP analysis.

【0029】さらに、各試料について開気孔率をアルキ
メデス法により、平均結晶粒径をSEM写真により測定
した。また焼結体の3点曲げ強度をJISR1601に
基づき測定した。各測定の結果は表1および表2に示
す。
Further, the open porosity of each sample was measured by the Archimedes method, and the average crystal grain size was measured by an SEM photograph. The three-point bending strength of the sintered body was measured based on JISR1601. The results of each measurement are shown in Tables 1 and 2.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】表1および表2によれば、Laに対するC
aの置換量xが0.05より小さいと繰り返しの熱サイ
クルにより試料が破壊した。CaおよびSrの置換比率
が0.6を越えても、またYの置換量yが0.5を越え
ても電気抵抗が大きく発熱素子として機能しない。ま
た、不定比に関して、p値が0.90より小さいと変形
率、収縮率との大きくなる。また、p値が1.05を越
えるとLa2 3 が析出し材料が短時間で風化した。M
nの比率が0.10より小さくなると、焼結性が極めて
悪くなり、目的の形状のものが作製できなかった。
According to Tables 1 and 2, C with respect to La
When the substitution amount x of a was smaller than 0.05, the sample was broken by repeated thermal cycling. Even if the substitution ratio of Ca and Sr exceeds 0.6 and the substitution amount y of Y exceeds 0.5, the electric resistance is large and does not function as a heating element. Further, with respect to the indefinite ratio, if the p value is smaller than 0.90, the deformation ratio and the shrinkage ratio become large. When the p value exceeded 1.05, La 2 O 3 was precipitated and the material was weathered in a short time. M
When the ratio of n was less than 0.10, the sinterability was extremely poor, and a desired shape could not be produced.

【0033】実施例2 市販の純度99.9%のLa2 3 、Y2 3 、Yb2
3 、Sc2 3 、Er2 3 、Dy2 3 、Nd2
3 、SrCO3 、CaCO3 、BaCO3 、Mn
2 3 、Cr2 3 、CoO、FeO、NiOを出発原
料として表3および表4に示す割合で秤量混合する以外
は、実施例1と同様にして試料を作製し、得られた試料
に対して、実施例1と同様な方法で特性の評価を行っ
た。測定結果は表3および表4に示した。
Example 2 La 2 O 3 , Y 2 O 3 , and Yb 2 having a purity of 99.9% commercially available
O 3 , Sc 2 O 3 , Er 2 O 3 , Dy 2 O 3 , Nd 2 O
3 , SrCO 3 , CaCO 3 , BaCO 3 , Mn
A sample was prepared in the same manner as in Example 1 except that 2 O 3 , Cr 2 O 3 , CoO, FeO, and NiO were used as starting materials and weighed and mixed at the ratios shown in Tables 3 and 4 to obtain a sample. On the other hand, characteristics were evaluated in the same manner as in Example 1. The measurement results are shown in Tables 3 and 4.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】表3および表4によれば、Ca、Sr、B
aによりLaの置換効果、Y、Yb、Sc、Er、D
y、Ndの置換による効果とも実施例1と同様な結果が
得られた。また、Ni、Co、FeによるCrの置換も
Mnと同様な効果を示した。
According to Tables 3 and 4, Ca, Sr, B
a is the substitution effect of La, Y, Yb, Sc, Er, D
The same effect as in Example 1 was obtained with respect to the effect of the substitution of y and Nd. Further, substitution of Cr by Ni, Co, and Fe also showed the same effect as Mn.

【0037】実施例3 実施例1において、CaCO3 、SrCO3 、Y
2 3 、Mn2 3 を用いて表5に示す割合で混合し
た。これに、不純物成分としてAl2 3 、SiO2
ZrO2 を適当に添加し、実施例1と同様にして焼結体
を得た。この焼結体に対して実施例1と同様な方法によ
り、変形率、収縮率、電気抵抗、破壊に至るまでの回数
を測定評価した。結果を表5に示した。
Example 3 In Example 1, CaCO 3 , SrCO 3 , Y
2 O 3 and Mn 2 O 3 were mixed at the ratio shown in Table 5. In addition, Al 2 O 3 , SiO 2 ,
A sintered body was obtained in the same manner as in Example 1 by appropriately adding ZrO 2 . The deformation ratio, shrinkage ratio, electrical resistance, and the number of times until the sintered body were broken were measured and evaluated in the same manner as in Example 1 for the sintered body. Table 5 shows the results.

【0038】[0038]

【表5】 [Table 5]

【0039】表5から明らかなように金属不純物量が増
加することにより、変形率および収縮率が大きくなるこ
とが分かり、特に金属不純物量が5重量%以下で比較的
安定な挙動を示した。
As is apparent from Table 5, it was found that the deformation rate and the shrinkage rate were increased by increasing the amount of metal impurities. In particular, when the amount of metal impurities was 5% by weight or less, relatively stable behavior was exhibited.

【0040】実施例4 上記実施例において試料No.5、51組成の原料を12
00〜1450℃で仮焼し、ジルコニアボールで12〜
24時間粉砕し、これを1300〜1550℃で焼成し
て開気孔率、平均結晶粒径が異なる大きさ4×3×40
mmと、大きさ3×3×60mmの試料を得た。それぞ
れの試料について実施例1と同様な方法により電気抵
抗、3点曲げ強度、熱サイクル試験による破壊状況を調
べ、その結果を表6に示した。表6では、熱サイクル試
験において、300回未満で破損したものを×、300
回以上500回以下で破損したものを△、500回でも
破損しなかったものを○とした。
Example 4 In the above example, the raw materials having the composition Nos.
Calcined at 00 to 1450 ° C and zirconia balls for 12 to
This is pulverized for 24 hours, baked at 1300 to 1550 ° C., and has different open porosity and average crystal grain size 4 × 3 × 40.
mm and a sample having a size of 3 × 3 × 60 mm were obtained. The electrical resistance, the three-point bending strength, and the state of breakage by the heat cycle test were examined for each sample in the same manner as in Example 1, and the results are shown in Table 6. In Table 6, in the heat cycle test, those that were damaged less than 300 times were evaluated as x, 300
A sample that was damaged more than 500 times but less than 500 times was rated as Δ, and a sample that was not damaged even after 500 times was rated as ○.

【0041】[0041]

【表6】 [Table 6]

【0042】表6によれば、開気孔率が45%以下では
熱衝撃性に優れ、45%を越えると強度、熱衝撃性との
悪くなる。また平均結晶粒径が50μm を越えても強
度、耐熱衝撃性が低下した。
According to Table 6, when the open porosity is 45% or less, the thermal shock resistance is excellent, and when it exceeds 45%, the strength and the thermal shock resistance deteriorate. Further, even if the average crystal grain size exceeds 50 μm, the strength and the thermal shock resistance were reduced.

【0043】実施例5 上記実施例中の試料No.5,30,33,57組成の大
きさ3×3mm、長さ60mmの焼結体を作製した。開
気孔率はいずれも5〜7%、平均結晶粒径が3〜6μm
であった。この焼結体の金属不純物量はICP分析結果
から0.3重量%以下であった。この試料に間隔が50
mmとなるように白金端子を取付、印加電圧を変化させ
て試料温度を測定した。その結果を図2に示した。いず
れの試料も低電圧で800℃以上の温度まで加熱するこ
とが可能であった。また電極間の50mmの領域では温
度はほぼ均一であった。
Example 5 A sintered body having a composition of 3 × 3 mm and a length of 60 mm having the composition of Sample Nos. 5, 30, 33 and 57 in the above example was prepared. The open porosity is 5 to 7% and the average crystal grain size is 3 to 6 μm.
Met. The amount of metal impurities in this sintered body was 0.3% by weight or less based on the result of ICP analysis. This sample has an interval of 50
mm, a platinum terminal was attached, and the applied voltage was changed to measure the sample temperature. The result is shown in FIG. All the samples could be heated at a low voltage to a temperature of 800 ° C. or higher. Further, the temperature was almost uniform in a region of 50 mm between the electrodes.

【0044】[0044]

【発明の効果】以上詳述した通り、本発明によれば、低
電圧を通電することにより、500〜1200℃の高温
での自己発熱が可能であり、しかも高温発熱時における
変形、収縮のない安定性に優れた発熱素子を提供するこ
とができる。これにより、セラミック製発熱素子のその
利用分野を拡大することができる。
As described above in detail, according to the present invention, by applying a low voltage, self-heating at a high temperature of 500 to 1200 ° C. is possible, and there is no deformation or shrinkage at the time of high-temperature heating. A heating element with excellent stability can be provided. Thereby, the field of application of the ceramic heating element can be expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明におけるセラミック製発熱素子の一実施
例の概略図である。
FIG. 1 is a schematic view of one embodiment of a ceramic heating element according to the present invention.

【図2】本発明におけるセラミック製発熱素子の印加電
圧と発熱温度との関係を示した図である。
FIG. 2 is a diagram showing a relationship between an applied voltage and a heating temperature of a ceramic heating element according to the present invention.

【符号の説明】 1 抵抗体 2,3 電極[Explanation of Signs] 1 Resistor 2, 3 electrodes

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】組成式が(La1―x―yxyp(Cr
1-zz)O3±δで表され、式中、AはCa、Sr、B
aの群から選択される少なくとも1種、BはY、Yb、
Sc、Er、Dy、Ndの群から選択される少なくとも
1種、CはMn、Co、Fe、Niから選択される少な
くとも1種であり、且つ0.05≦x≦0.40、0≦
y≦0.30、0.30≦z≦0.60および0.95
≦p≦1.0を満足するとともに、開気孔率が1〜30
%、平均結晶粒径が30μm以下を満足するセラミック
を抵抗体として具備することを特徴とするセラミック製
発熱素子。
(1) The composition formula is (La 1−x−y A x B y ) p (Cr
1-z C z ) O 3 ± δ , where A is Ca, Sr, B
at least one selected from the group of a, B is Y, Yb,
At least one selected from the group consisting of Sc, Er, Dy, and Nd, and C is at least one selected from Mn, Co, Fe, and Ni, and 0.05 ≦ x ≦ 0.40, 0 ≦
y ≦ 0.30, 0.30 ≦ z ≦ 0.60 and 0.95
≦ p ≦ 1.0, and the open porosity is 1-30.
%, And a ceramic heat-generating element comprising, as a resistor, a ceramic having an average crystal grain size of 30 μm or less.
【請求項2】前記セラミック中の金属不純物の総量が5
重量%以下である請求項1記載のセラミック製発熱素
子。
2. The method according to claim 1, wherein the total amount of metal impurities in said ceramic is 5%.
The ceramic heating element according to claim 1, wherein the content is not more than weight%.
JP05103117A 1993-04-28 1993-04-28 Ceramic heating element Expired - Fee Related JP3131071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05103117A JP3131071B2 (en) 1993-04-28 1993-04-28 Ceramic heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05103117A JP3131071B2 (en) 1993-04-28 1993-04-28 Ceramic heating element

Publications (2)

Publication Number Publication Date
JPH06316457A JPH06316457A (en) 1994-11-15
JP3131071B2 true JP3131071B2 (en) 2001-01-31

Family

ID=14345651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05103117A Expired - Fee Related JP3131071B2 (en) 1993-04-28 1993-04-28 Ceramic heating element

Country Status (1)

Country Link
JP (1) JP3131071B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562964U (en) * 1992-01-31 1993-08-20 株式会社ケンウッド Cable address display holder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5256897B2 (en) 2007-08-03 2013-08-07 三菱マテリアル株式会社 Metal oxide sintered body for thermistor, thermistor element, thermistor temperature sensor, and method for producing metal oxide sintered body for thermistor
DE602007004871D1 (en) * 2007-12-21 2010-04-01 Vishay Resistors Belgium Bvba Stable thermistor
JP5526552B2 (en) * 2009-01-30 2014-06-18 三菱マテリアル株式会社 Metal oxide sintered body for thermistor, thermistor element, thermistor temperature sensor, and method for producing metal oxide sintered body for thermistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562964U (en) * 1992-01-31 1993-08-20 株式会社ケンウッド Cable address display holder

Also Published As

Publication number Publication date
JPH06316457A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
CN107056273A (en) A kind of double-deck negative tempperature coefficient thermistor and preparation method thereof
Su et al. Preparation of porous BaTiO3 PTC thermistors by adding graphite porosifiers
JP4307152B2 (en) Sintered body for thermistor element, manufacturing method thereof, thermistor element, temperature sensor
JP3131071B2 (en) Ceramic heating element
Dwivedi et al. Valence compensated perovskite oxide system Ca1− x La x Ti1− x Cr x O3 Part I Structure and dielectric behaviour
US6204748B1 (en) Yttrium chromite chromia thermistors
JP3331447B2 (en) Method for producing porcelain composition for thermistor
JP3121967B2 (en) Ceramic heating element
JP3245316B2 (en) Conductive ceramics
JP3145568B2 (en) Ceramic heating element
JPH11106261A (en) Ceramic heater element
JP3077054B2 (en) Heat-resistant conductive ceramics
JP5995096B2 (en) Metal oxide material for thermistor, method for producing the same, and thermistor element
JPH0945581A (en) Laminated capacitor
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP3956676B2 (en) Method for manufacturing voltage-dependent non-linear resistor porcelain
JP3085632B2 (en) Method for producing conductive ceramics
JP3370460B2 (en) Method for producing conductive ceramics
JP3091100B2 (en) Method for producing conductive ceramics
JP3719135B2 (en) Method for manufacturing voltage-dependent non-linear resistor porcelain
JP3311872B2 (en) Conductive ceramics
Li et al. Influence of AST additives on the stability of PTCR characteristics and microstructure in ferroelectric ceramics
JPH0757956A (en) Semiconductor ceramic composition and production thereof
KR0147968B1 (en) A ceramic composite for a ptc thermister
JPH04144201A (en) Positive temperature coefficient thermistor and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees