JP3145568B2 - Ceramic heating element - Google Patents

Ceramic heating element

Info

Publication number
JP3145568B2
JP3145568B2 JP11841294A JP11841294A JP3145568B2 JP 3145568 B2 JP3145568 B2 JP 3145568B2 JP 11841294 A JP11841294 A JP 11841294A JP 11841294 A JP11841294 A JP 11841294A JP 3145568 B2 JP3145568 B2 JP 3145568B2
Authority
JP
Japan
Prior art keywords
heating element
oxide
temperature
lacro
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11841294A
Other languages
Japanese (ja)
Other versions
JPH07326468A (en
Inventor
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11841294A priority Critical patent/JP3145568B2/en
Publication of JPH07326468A publication Critical patent/JPH07326468A/en
Application granted granted Critical
Publication of JP3145568B2 publication Critical patent/JP3145568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Resistance Heating (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、LaCrO3 系の複合
酸化物系セラミックからなるセラミック製発熱素子に関
するものである。
The present invention relates to relates to a ceramic heater element comprising a composite oxide-based ceramic of LaCrO 3 system.

【0002】[0002]

【従来技術】セラミック発熱素子としては、従来絶縁性
のセラミックであるアルミナ等の表面に白金などの抵抗
体を被覆形成したり、絶縁性のセラミックの内部にタン
グステン等の抵抗体を埋設したものが使用されている。
これらの発熱素子は、700℃程度までの比較的高温領
域で使用されるが、発熱が局所的でまた形状が円筒状あ
るいは平板形状に限定される。
2. Description of the Related Art As a ceramic heating element, a resistor such as platinum is coated on the surface of a conventional insulating ceramic such as alumina or a resistor such as tungsten is embedded in an insulating ceramic. It is used.
These heating elements are used in a relatively high temperature range up to about 700 ° C., but generate heat locally and the shape is limited to a cylindrical or flat plate.

【0003】一方、発熱素子としてはチタン酸バリウム
に代表されるPTCサーミスタと呼ばれる抵抗素子が知
られているが、この素子は電気抵抗が正の温度係数を有
するとともにある温度以上になると電気抵抗が急激に大
きくなる特徴を有する。例えば、チタン酸バリウム系P
TCサ−ミスタは、半導体化のためNb、Taのドナ−
成分やあるいはMn、Cuの粒界ポテンシャルバリア形
成のためのアクセプタ−成分が微量加えられている。こ
の発熱素子は、350℃程度までの比較的低温領域で使
用されており、通電初期に電気抵抗が小さいため応答性
に優れ、ごくわずかな時間で所定の温度に達する。ま
た、この素子は高温で電気抵抗が大きいため、自己温度
制御機能を有することも特徴である。
On the other hand, as a heating element, a resistance element called a PTC thermistor represented by barium titanate is known. This element has an electric resistance having a positive temperature coefficient and when the electric resistance exceeds a certain temperature, the electric resistance becomes higher. It has the feature of increasing rapidly. For example, barium titanate-based P
The TC thermistor is an Nb, Ta donor for semiconductor conversion.
A trace amount of a component or an acceptor component for forming a grain boundary potential barrier of Mn or Cu is added. This heating element is used in a relatively low temperature range up to about 350 ° C., has a small electric resistance at the beginning of energization, has excellent responsiveness, and reaches a predetermined temperature in a very short time. In addition, since this element has a high electric resistance at a high temperature, it is also characterized by having a self-temperature control function.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、上述
の絶縁性のセラミック表面あるいは内部に発熱体を有す
る素子においては、電圧を印加すると電圧分布が不均一
なため、局所的な発熱が生じるという問題があり、また
発熱体形状を限定されるという欠点を有する。また、自
己温度制御機能を有するPTCサ−ミスタにおいては形
状は任意に変えられるものの作動限界温度が350℃と
低いという欠点を有する。
However, in the above-described element having a heating element on the surface or inside of the insulating ceramic, when a voltage is applied, the voltage distribution is not uniform, so that a local heat is generated. And the disadvantage that the shape of the heating element is limited. A PTC thermistor having a self-temperature control function has a drawback that its operating limit temperature is as low as 350 ° C., although its shape can be changed arbitrarily.

【0005】本発明は、上述の従来品に比較して使用限
界温度が高く、任意の形状を有する自己発熱型の発熱素
子を提供することを目的とした。
It is an object of the present invention to provide a self-heating type heating element having a higher usable temperature limit than the above-mentioned conventional products and having an arbitrary shape.

【0006】[0006]

【問題点を解決するための手段】本発明者は、酸化物系
セラミック抵抗体として、特にLaCrO3に着目し、
発熱素子としての性能について検討を重ねた結果、C
a、Sr、Ba、Mgの少なくとも一つを固溶するLa
CrO3固溶体を主結晶相とし、第2成分としてYおよ
びYb、Nd、Er等の希土類元素から選ばれる少なく
とも1種の元素の酸化物を含有させたLaCrO3系セ
ラミックスが、高い温度でも温度が均一で発熱面積の大
きな発熱素子と成り得ることを見出だした。
Means for Solving the Problems The present inventors have paid particular attention to LaCrO 3 as an oxide ceramic resistor,
As a result of repeated studies on the performance as a heating element, C
La which dissolves at least one of a, Sr, Ba and Mg
LaCrO 3 -based ceramics containing a CrO 3 solid solution as a main crystal phase and containing, as a second component, an oxide of at least one element selected from the group consisting of Y and rare earth elements such as Yb, Nd, and Er can be used at high temperatures. It has been found that a uniform heating element having a large heating area can be obtained.

【0007】以下、本発明を詳述すると、本発明の発熱
素子は、いずれもCa、Ba、SrおよびMgの少なく
とも1種の元素を含むLaCrO3 系ペロブスカイト型
固溶体を主結晶相とするものである。Ca、Baおよび
Srは、LaCrO3 におけるLaへの置換元素であ
り、MgはCrへの置換元素であり、これらはLaとC
rに対してそれぞれ1〜30原子%の割合で置換含有さ
れる。
Hereinafter, the present invention will be described in detail. The heating element of the present invention has a main crystal phase of a LaCrO 3 perovskite solid solution containing at least one element of Ca, Ba, Sr and Mg. is there. Ca, Ba and Sr are La substitution elements for LaCrO 3 and Mg is a substitution element for Cr, and these are La and Cr.
Substitution is contained at a ratio of 1 to 30 atomic% with respect to r.

【0008】また、本発明の発熱素子における大きな特
徴は、組織上、前記LaCrO3系ペロブスカイト型固
溶体からなる主結晶と第2相により構成され、第2相と
してYおよびLa、Yb、Sc、Er、Nd、Gd、D
yなどの希土類元素の酸化物を含むことを特徴とするも
のである。
A significant feature of the heat generating element of the present invention is that the structure is composed of a main crystal composed of the LaCrO 3 -based perovskite solid solution and a second phase, and Y and La, Yb, Sc, Er as the second phase. , Nd, Gd, D
It is characterized by containing an oxide of a rare earth element such as y.

【0009】この第2相中にYあるいは希土類元素を含
む場合、全量中に酸化物換算で0.001〜20重量
%、特に1〜5重量%の割合で含有されることが望まし
い。この第2相は、YおよびYb、Nd、Er等の希土
類の酸化物は単独、あるいいはLa2 3 との複合酸化
物として存在し、特に結晶相として存在すことが望まし
い。全量に対するYおよび希土類元素の添加比率が0.
001重量%より小さいと材料を焼結させることが難し
く、比率が20重量%を越えると電気抵抗が大きくなる
傾向にあり発熱素子としてあまり適さなくなるためであ
る。
When Y or a rare earth element is contained in the second phase, it is desirable that the second phase contains 0.001 to 20% by weight, particularly 1 to 5% by weight in terms of oxide in the total amount. In the second phase, Y and rare earth oxides such as Yb, Nd, Er and the like exist alone or as a composite oxide with La 2 O 3, and it is particularly desirable to exist as a crystalline phase. The addition ratio of Y and rare earth elements to the total amount is 0.
If the amount is less than 001% by weight, it is difficult to sinter the material, and if the ratio exceeds 20% by weight, the electrical resistance tends to increase, which makes the material less suitable as a heating element.

【0010】また、第2相中にSiやV、Nb、Taな
どの周期律表第5a族元素を含む場合、酸化物換算で全
量中0.001〜15重量%、特に1〜5重量%の割合
で含有されることが望ましい。これは、0.001重量
%より少ないと材料を焼結させることが難しく、15重
量%を越えると電気抵抗が大きくなる傾向にあり発熱素
子としてあまり適さなくなるためである。添加したS
i、V、Nb、Taは酸化物の結晶として析出すること
が望ましい。
When the second phase contains an element of Group 5a of the periodic table such as Si, V, Nb, Ta, etc., 0.001 to 15% by weight, particularly 1 to 5% by weight of the total amount in terms of oxide. Is desirably contained at a ratio of This is because if the amount is less than 0.001% by weight, it is difficult to sinter the material, and if it exceeds 15% by weight, the electrical resistance tends to increase, which makes the material less suitable as a heating element. S added
It is desirable that i, V, Nb, and Ta precipitate as oxide crystals.

【0011】なお、本発明においては、LaCrO3
固溶成分であるCa、Sr、Mgが少量CaO、Sr
O、MgOとして析出する場合があるが、特に問題はな
い。
In the present invention, Ca, Sr and Mg, which are solid solution components of LaCrO 3 , contain a small amount of CaO, Sr
O and MgO may be precipitated, but there is no particular problem.

【0012】また、発熱素子は、急速昇温が要求される
場合があるため、本質的に熱衝撃に強くなければならな
い。そのため本発明では発熱素子として材料の熱衝撃性
と電気抵抗と開気孔率との関係について検討した結果、
開気孔率が大きくなると熱衝撃に対しては強くなるが電
気抵抗が増大し発熱素子として機能しなくなる傾向にあ
ることが判明した。そこで、最適な開気孔率について検
討を行ったところ、開気孔率が30%以下、特に2〜1
0%以下が望ましいことがわかった。
Further, since the heating element may require a rapid temperature rise, it must be essentially resistant to thermal shock. Therefore, in the present invention, as a heating element, as a result of examining the relationship between the thermal shock resistance, electrical resistance, and open porosity of the material,
It has been found that when the open porosity is increased, the resistance to thermal shock is increased, but the electrical resistance is increased and the element tends not to function as a heating element. Then, when the optimal open porosity was examined, the open porosity was 30% or less, especially 2 to 1%.
It has been found that 0% or less is desirable.

【0013】また、発熱素子の結晶粒子径も熱衝撃に影
響を与える因子の1つであり、結晶粒子径が大き過ぎて
も、また小さすぎても発熱素子の熱衝撃が弱くなる傾向
がある。よって、結晶粒子径に対しても検討を行った結
果、主結晶相の平均結晶粒径が0.5〜30μm、特に
3〜10μmの範囲が良好であることがわかった。
Further, the crystal grain size of the heating element is also one of the factors affecting the thermal shock. If the crystal grain size is too large or too small, the thermal shock of the heating element tends to be weak. . Therefore, as a result of examining the crystal grain size, it was found that the average crystal grain size of the main crystal phase was good in the range of 0.5 to 30 μm, particularly 3 to 10 μm.

【0014】次に上記セラミック発熱素子を作製する方
法を説明する。具体的には、主結晶相を構成する、L
a、Crの金属酸化物や、Ca、Sr、Baの酸化物
と、第2相を形成するYあるいは希土類元素の酸化物、
またはSi、周期律表第5a族元素の酸化物粉末、ある
いは熱処理により酸化物を形成する炭酸塩、硝酸塩、酢
酸塩などの金属化合物を用いて、これらを前述したよう
な組成範囲を満足するように配合し、ボ−ルミル、振動
ミルなどの周知の方法より混合した後、その混合粉末を
金型プレス、押し出し法、冷間静水圧プレス法により所
定の形状に成形した後、1200〜1650℃、酸化性
雰囲気中で2〜10時間焼成することにより発熱素子を
作製することができる。
Next, a method of manufacturing the above ceramic heating element will be described. Specifically, L constituting the main crystal phase,
a, Cr metal oxides, Ca, Sr, Ba oxides and Y or rare earth element oxides forming the second phase;
Alternatively, using Si, an oxide powder of an element of Group 5a of the periodic table, or a metal compound such as a carbonate, a nitrate, or an acetate that forms an oxide by heat treatment, the composition may satisfy the above-described composition range. And then mixed by a well-known method such as a ball mill or a vibration mill, and then forming the mixed powder into a predetermined shape by a die press, an extrusion method, or a cold isostatic pressing method, and then, at 1200 to 1650 ° C. By baking in an oxidizing atmosphere for 2 to 10 hours, a heating element can be manufactured.

【0015】なお、発熱素子の寸法精度が必要な場合
は、予めCa、Sr、Baを含有したLaCrO3 固溶
体粉末を作製した後、この固溶体粉末にYや希土類元素
の酸化物、あるいはSiや周期律表第5a族元素の酸化
物を添加し混合した後、上述と同様な方法により成形、
焼成を行うと良い。
When the dimensional accuracy of the heating element is required, a LaCrO 3 solid solution powder containing Ca, Sr, and Ba is prepared in advance, and then Y, a rare earth element oxide, Si, After adding and mixing the oxide of the element of Group 5a of the Table, molding is performed in the same manner as described above.
It is good to perform baking.

【0016】また、焼成に際して、上記の組成物とは別
にCr2 3 の粉末を、上述の混合粉末に0.01〜1
重量%添加すると焼結性が向上し、焼成温度を添加しな
い場合に比較して、50℃程度低下させることができ
る。
At the time of firing, a powder of Cr 2 O 3 is added to the above-mentioned mixed powder in an amount of 0.01 to 1 in addition to the above composition.
The addition by weight improves sinterability and can be reduced by about 50 ° C. as compared to the case where no sintering temperature is added.

【0017】本発明におけるセラミック発熱素子によれ
ば、前述したセラミック材料を抵抗体としてそれ自体に
通電することにより、自己発熱性を有し、しかも均一焼
結体であるため均一な発熱が可能で、また従来の自己発
熱型の発熱素子に比較して作動温度の高温化を図ること
が可能であるため、その素子としての利用分野を大きく
拡大することができる。本発明の発熱素子は、例えば図
1に示すように円筒状焼結体からなる抵抗体1と抵抗体
の両端に形成した電極2、3により構成される。この発
熱素子は電極2、3に50V以下の電圧を印加すること
により、図2に示したように約400〜1200℃の温
度で作動させることが可能である。本発明の発熱素子は
円筒形状の他、平板形状をはじめ円筒スパイラル、ハニ
カム構造など任意の形状に作製することができる。
According to the ceramic heating element of the present invention, the above-mentioned ceramic material is used as a resistor to energize itself, so that it has a self-heating property and can generate uniform heat because it is a uniform sintered body. In addition, since the operating temperature can be increased as compared with the conventional self-heating type heating element, the field of use as the element can be greatly expanded. The heating element according to the present invention includes, for example, a resistor 1 made of a cylindrical sintered body and electrodes 2 and 3 formed at both ends of the resistor as shown in FIG. This heating element can be operated at a temperature of about 400 to 1200 ° C. by applying a voltage of 50 V or less to the electrodes 2 and 3 as shown in FIG. The heating element of the present invention can be manufactured in any shape such as a cylindrical shape, a cylindrical spiral shape, a honeycomb structure, etc., in addition to a cylindrical shape.

【0018】[0018]

【作用】一般にLaCrO3 で表されるランタンクロマ
イトは本来絶縁体であるが、これにCaが固溶すると下
記化1
In general, lanthanum chromite represented by LaCrO 3 is originally an insulator.

【0019】[0019]

【化1】 Embedded image

【0020】で表されるようにホ−ルが生成する。この
ようなLaCrO3 固溶体はホ−ル濃度が低いため発熱
素子として利用できる。
A hole is generated as represented by Such a LaCrO 3 solid solution has a low hole concentration and can be used as a heating element.

【0021】しかしながら、LaCrO3 固溶体の大き
な問題は難焼結性のため素子作製が極めて難しい事であ
る。一般的は、LaCrO3 固溶体は大気中2000℃
以上の温度またはAr等の不活性気体中1900℃以上
の温度でなければ焼結できない。LaCrO3 固溶体は
発熱素子としての利用を期待されながらも実用化されな
かった大きな原因は、このように焼成温度が高いため、
その結果製造コストが極めて高くなるためである。
However, a major problem of the LaCrO 3 solid solution is that it is extremely difficult to manufacture an element due to its difficulty in sintering. Generally, LaCrO 3 solid solution is 2000 ° C in air.
Sintering cannot be performed unless the temperature is higher than 1900 ° C. in an inert gas such as Ar. LaCrO 3 solid solution is expected to be used as a heating element, but has not been put to practical use.
As a result, the manufacturing cost becomes extremely high.

【0022】本発明においては、LaCrO3 固溶体に
YおよびYb、Nd等の希土類元素、あるいはSiやN
b等の周期律表第5a族元素の酸化物を添加すると、L
aCrO3 固溶体の焼結が極めて促進され1650℃以
下の温度においても焼結が可能となることを見出した。
本発明によると、Y、Yb、Si、Ndなどの酸化物を
添加するとこれらの元素は高温においてLaCrO3
主結晶のLaと置換固溶し、主結晶の表面にLa酸化物
が生成する。このLa酸化物とLaCrO3 から蒸発し
たCr酸化物蒸気が反応してLaを含む液相が生成さ
れ、Cr酸化物の蒸発抑制と液相中のLaおよびCrイ
オン等の拡散が促進され、その結果焼結が促進されると
推定される。また、添加物がLaの場合は、Laの酸化
物は直接蒸発成分と反応し、Cr成分の凝縮を美防ぐこ
とにより焼結が促進される。
In the present invention, the LaCrO 3 solid solution contains rare earth elements such as Y and Yb and Nd, or Si and Nd.
When an oxide of a Group 5a element of the periodic table such as b is added, L
It has been found that sintering of the aCrO 3 solid solution is extremely accelerated and sintering is possible even at a temperature of 1650 ° C. or less.
According to the present invention, when an oxide such as Y, Yb, Si, or Nd is added, these elements displace solid solution with La of the LaCrO 3 -based main crystal at a high temperature, and La oxide is generated on the surface of the main crystal. The La oxide and the Cr oxide vapor evaporated from LaCrO 3 react to form a liquid phase containing La, which suppresses the evaporation of the Cr oxide and promotes the diffusion of La and Cr ions and the like in the liquid phase. As a result, it is presumed that sintering is promoted. Further, when the additive is La, the La oxide directly reacts with the evaporating component and promotes sintering by preventing condensation of the Cr component.

【0023】しかも、本発明における発熱素子は、低電
圧の印加により400〜1200℃の温度範囲発熱させ
ることが可能で、しかも自己発熱型であることから発熱
面積が広く均一である。また、素子形状として任意の形
状が選択できる。
In addition, the heating element of the present invention can generate heat in a temperature range of 400 to 1200 ° C. by applying a low voltage, and since it is a self-heating type, the heating area is large and uniform. Also, an arbitrary shape can be selected as the element shape.

【0024】[0024]

【実施例】【Example】

実施例1 純度99.5%以上,平均結晶粒子径が約2〜3μmの
La0.9 Ca0.1 CrO3 、La0.9 Ba0.1 Cr
3 、La0.9 Sr0.1 CrO3 、LaCr0.9 Mg
0.1 CrO3 粉末に対して表1に示す割合でYおよび希
土類元素からなる酸化物を添加し、ボ−ルミルにて20
時間混合した後、1500〜1600℃の温度で3〜7
時間焼成し、大きさ4×4×65mmの焼結体を作製し
た。
Example 1 La 0.9 Ca 0.1 CrO 3 and La 0.9 Ba 0.1 Cr having a purity of 99.5% or more and an average crystal particle diameter of about 2 to 3 μm.
O 3 , La 0.9 Sr 0.1 CrO 3 , LaCr 0.9 Mg
An oxide composed of Y and a rare earth element was added to the 0.1 CrO 3 powder at a ratio shown in Table 1, and the mixture was subjected to ball milling.
After mixing for 3 hours at a temperature of 1500-1600 ° C.
By firing for a time, a sintered body having a size of 4 × 4 × 65 mm was prepared.

【0025】この試料に対してアルキメデス法により開
気孔率と走査型電子顕微鏡により主結晶相の平均結晶粒
子径を測定した。また、焼結体に対してPt電極を被着
して1000℃、大気中での電気抵抗を測定した。その
結果を表1に示した。
The open porosity of this sample was measured by Archimedes' method, and the average crystal grain size of the main crystal phase was measured by a scanning electron microscope. Further, a Pt electrode was adhered to the sintered body, and the electric resistance in the air at 1000 ° C. was measured. The results are shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】これより、添加物のないNo.1、2の試料
は、この温度ではまったく焼結しなかった。それに対し
て、本発明品は、Yなどの酸化物の添加量が0.001
重量%より小さい試料No.3、12では材料が不十分
で、開気孔率が30%より大きくなり電気抵抗が大きく
なった。またその添加量が20重量%を越える試料N
o.12、25では電気抵抗が大きくなった。本発明品
の試料のうち添加量が0.001〜20重量%の試料
は、いずれも1〜15%程度の開気孔率を有するととも
に、0.15Ω−cm以下の電気抵抗を示し、この範囲
が特に発熱素子に最適な特性を示した。
From this, the samples of Nos. 1 and 2 without additives did not sinter at this temperature at all. In contrast, the product of the present invention has an addition amount of an oxide such as Y of 0.001.
Samples Nos. 3 and 12, which were smaller than the weight percent, had insufficient material, the open porosity was greater than 30%, and the electrical resistance was large. In addition, sample N whose amount of addition exceeds 20% by weight
o. In Examples 12 and 25, the electric resistance increased. Among the samples of the present invention, the samples with an addition amount of 0.001 to 20% by weight all have an open porosity of about 1 to 15% and an electric resistance of 0.15 Ω-cm or less. Showed especially the characteristics optimal for the heating element.

【0028】参考例 純度99.3%以上、平均結晶粒子径が約2〜3μmの
La0.9Ca0.1CrO3、La0.9Sr0.1CrO3、La
Cr0.9Mg0.1CrO3粉末に対して、表2に示す割合
でSi、Nb、V、Taの各酸化物を添加し、実施例1
と同様にして大きさ4×4×65mmの焼結体を作製し
た。そして、この試料を用いて、実施例1と同様な方法
により開気孔率、結晶粒子径および電気抵抗を測定し
た。その結果を表2に示した。
Reference Example La 0.9 Ca 0.1 CrO 3 , La 0.9 Sr 0.1 CrO 3 , La with a purity of 99.3% or more and an average crystal particle diameter of about 2 to 3 μm
Example 1 The oxides of Si, Nb, V, and Ta were added at the ratios shown in Table 2 to Cr 0.9 Mg 0.1 CrO 3 powder.
In the same manner as in the above, a sintered body having a size of 4 × 4 × 65 mm was produced. Using this sample, the open porosity, the crystal particle diameter, and the electrical resistance were measured in the same manner as in Example 1. The results are shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】これより、Si、Nb、V、Taの添加量
が0.001重量%より小さいと緻密化が十分でなく、
開気孔率が30%より大きくなり電気抵抗が大きくなっ
た。
From the above, if the addition amounts of Si, Nb, V and Ta are less than 0.001% by weight, the densification is not sufficient,
The open porosity was greater than 30% and the electrical resistance was increased.

【0031】添加量が15%重量を越えると電気抵抗が
大きくなった。これに対して、添加量が0.001〜1
5重量%の範囲内でいずれも1〜15%程度の開気孔率
を有するとともに、0.15Ω−cm以下の電気抵抗を
示し、この範囲が特に発熱素子に最適な特性を示した。
When the amount exceeds 15% by weight, the electric resistance increases. On the other hand, when the amount added is 0.001 to 1
In the range of 5% by weight, all had an open porosity of about 1 to 15%, and exhibited an electrical resistance of 0.15 Ω-cm or less.

【0032】実施例2 実施例1の試料No.5、22、および参考例の試料N
o.44を用いてPt電極を電極間距離を50mmとな
るように取り付け、印加電圧を変化させて大気中にて試
料の温度を測定した。その結果を図2に示した。図2か
らも明らかなように、いずれの試料とも800℃まで2
0秒以内で温度が到達した。また、電極間の温度分布は
±20℃より小さかった。これより、本発明のセラミッ
クは高温作動の発熱素子として利用することができるこ
とが分かる。
Example 2 Samples Nos. 5 and 22 of Example 1 and Sample N of Reference Example
o. 44, a Pt electrode was attached so that the distance between the electrodes was 50 mm, and the temperature of the sample was measured in the air while changing the applied voltage. The result is shown in FIG. As is clear from FIG.
The temperature reached within 0 seconds. The temperature distribution between the electrodes was smaller than ± 20 ° C. This indicates that the ceramic of the present invention can be used as a heating element for high-temperature operation.

【0033】[0033]

【発明の効果】以上詳述した通り、本発明のセラミック
発熱素子は、低電圧の印加により400〜1200℃の
温度範囲で発熱させることが可能であり、しかも自己発
熱型であることから発熱面積が広く均一であるととも
に、素子形状として任意の形状が選択できる。
As described in detail above, the ceramic heating element of the present invention can generate heat in a temperature range of 400 to 1200 ° C. by applying a low voltage, and is a self-heating type, so that the heating area is large. Is wide and uniform, and an arbitrary shape can be selected as an element shape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミック発熱素子の構造を説明する
ための概略図である。
FIG. 1 is a schematic diagram for explaining a structure of a ceramic heating element of the present invention.

【図2】本発明におけるセラミック発熱素子の印加電圧
と試料温度との関係を示す図である。
FIG. 2 is a diagram showing a relationship between an applied voltage of a ceramic heating element and a sample temperature in the present invention.

【符号の説明】[Explanation of symbols]

1 抵抗体 2、3 電極 1 resistor 2, 3 electrodes

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ca、Sr、BaおよびMgのうち少なく
とも1種の元素を含むLaCrO3系固溶体からなる主
結晶相と、Yおよび希土類元素のうち少なくとも1種の
元素の酸化物を含む第2相とからなるとともに、前記Y
および希土類元素を酸化物換算で全量中0.001〜2
0重量%含有し、且つ前記主結晶相の平均結晶粒径が3
〜10μmであることを特徴とするセラミック発熱素
子。
1. A main crystal phase comprising a LaCrO 3 -based solid solution containing at least one element of Ca, Sr, Ba and Mg, and a second crystal containing an oxide of at least one of Y and rare earth elements. And Y
And rare earth elements in the total amount of 0.001-2 in oxide equivalent
0% by weight and the main crystal phase has an average crystal grain size of 3
A ceramic heating element having a thickness of 10 to 10 μm.
JP11841294A 1994-05-31 1994-05-31 Ceramic heating element Expired - Fee Related JP3145568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11841294A JP3145568B2 (en) 1994-05-31 1994-05-31 Ceramic heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11841294A JP3145568B2 (en) 1994-05-31 1994-05-31 Ceramic heating element

Publications (2)

Publication Number Publication Date
JPH07326468A JPH07326468A (en) 1995-12-12
JP3145568B2 true JP3145568B2 (en) 2001-03-12

Family

ID=14736011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11841294A Expired - Fee Related JP3145568B2 (en) 1994-05-31 1994-05-31 Ceramic heating element

Country Status (1)

Country Link
JP (1) JP3145568B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106187187B (en) * 2016-06-30 2020-04-24 四川航天拓鑫玄武岩实业有限公司 Ceramic preparation method, ceramic and basalt wire drawing bushing plate

Also Published As

Publication number Publication date
JPH07326468A (en) 1995-12-12

Similar Documents

Publication Publication Date Title
JP5099011B2 (en) Barium titanate-based semiconductor ceramic composition and PTC element using the same
EP2371788A1 (en) Semiconductor ceramic and positive temperature coefficient thermistor
EP2371789B1 (en) Semiconductor ceramic and positive temperature coefficient thermistor
EP2966050A1 (en) Semiconductor ceramic composition and ptc thermistor
TW200846299A (en) Production method of dielectric ceramic composition and production method of electronic device
US6542067B1 (en) Barium titanate semiconductor ceramic powder and laminated semiconductor ceramic device
WO1986003051A1 (en) Oxide semiconductor for thermistor and a method of producing the same
EP0680053B1 (en) A temperature sensor
JP3145568B2 (en) Ceramic heating element
KR100340668B1 (en) Laminated Type Semiconductor Ceramic Element and Production Method for the Laminated Type Semiconductor Ceramic Element
KR100327911B1 (en) Semiconducting ceramic and monolithic electronic element fabricated from the same
JP3131071B2 (en) Ceramic heating element
JP3121967B2 (en) Ceramic heating element
JP6675050B1 (en) Thermistor sintered body and temperature sensor element
JPH11106261A (en) Ceramic heater element
JP3245316B2 (en) Conductive ceramics
JP4217337B2 (en) Manufacturing method of semiconductor porcelain
JP7389306B1 (en) Temperature sensor element and temperature sensor
WO2024004845A1 (en) Temperature sensor element and temperature sensor
JP2012209292A (en) Positive thermistor
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP2762280B2 (en) Sintered body
JPH06251903A (en) Laminated semiconductor ceramic having positive temperature characteristic of resistance
JPH05250916A (en) Nonreducing dielectric porcelain composition
JPH118103A (en) Wide range type thermistor element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees