JPH07130504A - Thermister for high temperature and its manufacture - Google Patents
Thermister for high temperature and its manufactureInfo
- Publication number
- JPH07130504A JPH07130504A JP27384193A JP27384193A JPH07130504A JP H07130504 A JPH07130504 A JP H07130504A JP 27384193 A JP27384193 A JP 27384193A JP 27384193 A JP27384193 A JP 27384193A JP H07130504 A JPH07130504 A JP H07130504A
- Authority
- JP
- Japan
- Prior art keywords
- thermistor
- nio
- high temperature
- mgo
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Thermistors And Varistors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、300℃以上の高温で
使用可能な高温用サーミスタ及びその製造方法に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature thermistor which can be used at a high temperature of 300.degree.
【0002】[0002]
【従来の技術】従来の高温用サーミスタの素体としては
Mn−Co−Ni系酸化物とAl2O3酸化物との複合酸
化物、ZrO2系酸化物、Cr2O3−Al2O3−MnO
系酸化物、スピネル系酸化物等各種のものが知られてい
る。BACKGROUND ART composite oxide of the conventional Mn-Co-Ni-based oxide as a body of high-temperature thermistor and Al 2 O 3 oxide, ZrO 2 based oxide, Cr 2 O 3 -Al 2 O 3- MnO
Various oxides such as oxides and spinel oxides are known.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、高温用
サーミスタの素体がMn−Co−Ni系酸化物とAl2
O3酸化物との複合酸化物、ZrO2系酸化物、Cr2O3
−Al2O3−MnO系酸化物、またはスピネル系酸化物
のものでは常温から高温への熱サイクル試験において抵
抗値の変化が大きいという欠点があった。[SUMMARY OF THE INVENTION However, body of high-temperature thermistor Mn-Co-Ni-based oxide and Al 2
Complex oxide with O 3 oxide, ZrO 2 type oxide, Cr 2 O 3
-Al 2 O 3 -MnO-based oxide, or those of spinel oxide has a drawback that the change in resistance in the heat cycle test from room temperature to elevated temperature is large.
【0004】また、サーミスタは使用目的や用途に応じ
て種々の抵抗値とB定数とが要求される。従って、サー
ミスタを製造する上で、同一成分の材料を用いてその成
分比を変えるだけで使用温度での抵抗値およびB定数を
任意に変えうることは重要である。また、近年、300
℃以上での高温での使用に耐え、且つ、頻繁な常温から
高温への熱サイクルに耐え得るサーミスタが強く要望さ
れている。そのような要求としては、例えば、自動車の
排気ガスを完全燃焼させるための触媒マフラーの温度制
御(900℃)がある。Further, the thermistor is required to have various resistance values and B constants depending on the purpose of use and the intended use. Therefore, in manufacturing a thermistor, it is important to be able to arbitrarily change the resistance value and the B constant at the operating temperature simply by changing the component ratio using the same component material. In recent years, 300
There is a strong demand for a thermistor that can withstand use at high temperatures above ℃ and can withstand frequent thermal cycles from room temperature to high temperature. Such requirements include, for example, temperature control (900 ° C.) of a catalytic muffler for completely burning exhaust gas of an automobile.
【0005】そこで、本発明は、上記事情に鑑みてなさ
れたものであり、広い温度範囲に亘って抵抗値変化領域
が得られ、抵抗値及びB定数を広範囲に自由に変えるこ
とができ、かつ、常温から高温への熱サイクル特性にお
いて良好な高温用サーミスタ及びその製造方法を提供す
ることを目的とする。Therefore, the present invention has been made in view of the above circumstances, a resistance value changing region can be obtained over a wide temperature range, and the resistance value and the B constant can be freely changed in a wide range, and An object of the present invention is to provide a high temperature thermistor having good thermal cycle characteristics from normal temperature to high temperature and a method for manufacturing the thermistor.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に請求項1に記載の高温用サーミスタは、サーミスタ素
体が、80乃至99.99mol%のNiOと0.01
乃至20mol%のSiO2とからなるNiO−SiO2
複合酸化物であることを特徴とするものである。In order to achieve the above object, the high temperature thermistor according to claim 1 has a thermistor body of 80 to 99.99 mol% NiO and 0.01.
To 20 mol% SiO 2 and NiO-SiO 2
It is characterized by being a complex oxide.
【0007】また、請求項2に記載の高温用サーミスタ
は、サーミスタ素体が、40乃至99.99mol%の
NiOと0.01乃至60mol%のMgOと0.01
乃至20mol%のSiO2とからなるNiO−MgO
−SiO2複合酸化物であることを特徴とするものであ
る。Further, in the thermistor for high temperature according to claim 2, the thermistor body is 40 to 99.99 mol% NiO and 0.01 to 60 mol% MgO and 0.01.
To 20 mol% of SiO 2 and NiO-MgO
It is characterized by being a —SiO 2 composite oxide.
【0008】また、請求項3に記載の高温用サーミスタ
は、一対のリード端子を備えたものである。Further, the high temperature thermistor according to claim 3 is provided with a pair of lead terminals.
【0009】また、請求項4に記載の高温用サーミスタ
はPd、PtまたはPd−Ptをリード端子として使用
したものである。Further, the high temperature thermistor according to claim 4 uses Pd, Pt or Pd-Pt as a lead terminal.
【0010】また、請求項5に記載の高温用サーミスタ
は、サーミスタ素体が、40乃至99.99mol%の
NiOと0.01乃至60mol%のMgOとからなる
NiO−MgO複合酸化物であり、Pd、PtまたはP
d−Ptをリード端子として使用したことを特徴とする
ものである。In the high temperature thermistor according to claim 5, the thermistor body is a NiO-MgO composite oxide composed of 40 to 99.99 mol% NiO and 0.01 to 60 mol% MgO. Pd, Pt or P
It is characterized by using d-Pt as a lead terminal.
【0011】また、請求項6に記載の高温用サーミスタ
は線熱膨張係数が8乃至12×10-6/Kの範囲にある
金属をリード端子として使用したものである。The high temperature thermistor according to claim 6 uses a metal having a linear thermal expansion coefficient in the range of 8 to 12 × 10 -6 / K as a lead terminal.
【0012】また、請求項7に記載の高温用サーミスタ
の製造方法は、40乃至99.99mol%のNiOと
0.01乃至60mol%のMgOとからなるNiO−
MgO複合酸化物もしくは80乃至99.99mol%
のNiOと0.01乃至20mol%のSiO2とから
なるNiO−SiO2複合酸化物もしくは40乃至9
9.99mol%のNiOと0.01乃至60mol%
のMgOと0.01乃至20mol%のSiO2とから
なるNiO−MgO−SiO2複合酸化物であるサーミ
スタ素体と、一対のリード端子とを有する高温用サーミ
スタの製造方法であって、成形後叉は仮焼結後のサーミ
スタ素体に穴を設け、その穴に前記リード端子を挿入し
た後、サーミスタ素体を焼成してリード端子を固定する
ことを特徴とするものである。The method for manufacturing a high temperature thermistor according to the seventh aspect of the present invention is the NiO-containing 40 to 99.99 mol% NiO and 0.01 to 60 mol% MgO.
MgO composite oxide or 80 to 99.99 mol%
NiO-SiO 2 composite oxide consisting of NiO and 0.01 to 20 mol% SiO 2 or 40 to 9
9.99 mol% NiO and 0.01 to 60 mol%
Of the thermistor body and an NiO-MgO-SiO 2 composite oxide of 0.01 to 20 mol% of SiO 2 Metropolitan MgO, a method for producing a high-temperature thermistor comprising a pair of lead terminals, after forming Alternatively, it is characterized in that a hole is formed in the thermistor element body after provisional sintering, the lead terminal is inserted into the hole, and then the thermistor element body is fired to fix the lead terminal.
【0013】[0013]
【作用】請求項1に記載の高温用サーミスタによれば、
サーミスタ素体の組成材料をNiO及びSiO2とし各
組成材料を上記範囲内とすることにより、広い温度範囲
に亘って抵抗値変化領域を得ることができる。According to the high temperature thermistor of claim 1,
By setting the composition materials of the thermistor element body to NiO and SiO 2 and setting the composition materials to fall within the above ranges, the resistance value changing region can be obtained over a wide temperature range.
【0014】また、請求項2に記載の高温用サーミスタ
によれば、サーミスタ素体の組成材料をNiO及びMg
O及びSiO2とし各組成材料を上記範囲内とすること
により、広い温度範囲に亘って抵抗値変化領域が得ら
れ、抵抗値及びB定数を広範囲に自由に変え得ることが
できる。According to the high temperature thermistor of claim 2, the composition materials of the thermistor body are NiO and Mg.
By setting O and SiO 2 and the respective composition materials within the above range, a resistance value change region can be obtained over a wide temperature range, and the resistance value and the B constant can be freely changed in a wide range.
【0015】また、請求項3に記載の高温用サーミスタ
によれば、リード端子を備えているので、高温に適した
ものとなる。Further, according to the high temperature thermistor of the third aspect, since the thermistor is provided with the lead terminals, it becomes suitable for high temperature.
【0016】また、請求項4に記載の高温用サーミスタ
によれば、リード端子としてPd、PtまたはPd−P
tを使用することにより素体とリード端子の線熱膨張係
数を一致させることができ常温から高温への温度サイク
ルに優れたものとなる。また、請求項5に記載の高温用
サーミスタによれば、サーミスタ素体の組成材料をNi
O及びMgOとし各組成材料を上記範囲内とすることに
より、広い温度範囲に亘って抵抗値変化領域が得られ、
抵抗値及びB定数を広範囲に自由に変え得ることがで
き、かつ、リード端子としてPd、PtまたはPd−P
tを使用することにより素体とリード端子の熱膨張係数
を一致させることができ常温から高温への熱サイクルに
優れたものとなる。Further, according to the high temperature thermistor of the fourth aspect, the lead terminals are Pd, Pt or Pd-P.
By using t, the linear thermal expansion coefficients of the element body and the lead terminal can be matched, and the temperature cycle from room temperature to high temperature becomes excellent. According to the thermistor for high temperature of claim 5, the composition material of the thermistor body is Ni.
When O and MgO are used and each composition material is within the above range, a resistance value change region can be obtained over a wide temperature range,
The resistance value and B constant can be freely changed over a wide range, and Pd, Pt or Pd-P can be used as a lead terminal.
By using t, the coefficient of thermal expansion of the element body and the lead terminal can be matched, and the thermal cycle from normal temperature to high temperature becomes excellent.
【0017】また、請求項6に記載の高温用サーミスタ
によれば、熱膨張係数が8乃至12×10-6/Kの金属
をリード端子としてを使用することにより、素体とリー
ド端子の熱膨張係数を一致させることができ常温から高
温への熱サイクルに優れたものとなる。Further, according to the high temperature thermistor of the sixth aspect, by using a metal having a coefficient of thermal expansion of 8 to 12 × 10 −6 / K as the lead terminal, the heat of the element body and the lead terminal is reduced. The expansion coefficients can be matched and the thermal cycle from room temperature to high temperature becomes excellent.
【0018】また、請求項7に記載の高温用サーミスタ
の製造方法によれば、請求項1、2または6に記載の高
温用サーミスタと同様の効果が得られると共に、サーミ
スタ素体の焼成により、穴が収縮してリード端子を固着
するので、リード端子の接続作業を省略でき、製造容易
となり、高温での信頼性が優れたものとなる。According to the method for manufacturing a high temperature thermistor described in claim 7, the same effect as that of the high temperature thermistor described in claim 1, 2 or 6 can be obtained, and the thermistor element body is fired. Since the hole contracts to fix the lead terminal, the work of connecting the lead terminal can be omitted, the manufacturing becomes easy, and the reliability at high temperature becomes excellent.
【0019】[0019]
【実施例】以下、本発明の実施例を詳述する。EXAMPLES Examples of the present invention will be described in detail below.
【0020】図1は本発明の高温用サーミスタの第1の
実施例を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of a high temperature thermistor of the present invention.
【0021】同図に示す第1の実施例のサーミスタは、
70乃至99.99mol%のNiOと0.01乃至3
0mol%のSiO2とからなるNiO−SiO2複合酸
化物である柱状のサーミスタ素体1を有し、そのサーミ
スタ素体1の各端子部に穴1aを形成し、その穴1aに
Pd、Pd−PtまたはPtからなるリード端子2を挿
入固着したものである。The thermistor of the first embodiment shown in FIG.
70-99.99 mol% NiO and 0.01-3
It has a columnar thermistor body 1 which is a NiO—SiO 2 composite oxide consisting of 0 mol% SiO 2, and has holes 1a formed in each terminal portion of the thermistor body 1, and Pd and Pd are formed in the holes 1a. -Pt or a lead terminal 2 made of Pt is inserted and fixed.
【0022】次に、第1の実施例の製造方法の一例につ
いて説明する。Next, an example of the manufacturing method of the first embodiment will be described.
【0023】まず、市販のNiO、SiO2の各粉末を
上述の割合で所定量配合し、窯業的手段を用いて混合、
仮焼き、粉砕、乾燥後、例えばポリビニールアルコール
を加えて造粒する。First, commercially available powders of NiO and SiO 2 were blended in a predetermined amount in the above-mentioned proportions and mixed using a ceramic means,
After calcination, pulverization and drying, for example, polyvinyl alcohol is added to granulate.
【0024】そして、これらの造粒粉末を金型に入れ、
500乃至1000kg/cm2程度の圧力を加えて成
形を行う。この実施例では、成形体1の大きさは直径2
mm、長さ5mmである。なお、ここで仮焼結させても
よい。Then, these granulated powders are put into a mold,
Molding is performed by applying a pressure of about 500 to 1000 kg / cm 2 . In this embodiment, the compact 1 has a diameter of 2
mm and length 5 mm. In addition, preliminary sintering may be performed here.
【0025】次に、成形体1の両端部に直径0.3mm
のドリルで深さ1.5mmの丸穴1aを掘る。この穴1
aに直径 0.3mmのPd、Pd−PtまたはPtか
らなるリード端子2を挿入する。その後、成形体試料を
1400℃で1時間焼成すると、成形体1は収縮して穴
1aも収縮するため、リード端子2は固着され、第1の
実施例の高温用サーミスタが得られる。Next, a diameter of 0.3 mm is applied to both ends of the molded body 1.
The round hole 1a having a depth of 1.5 mm is digged with the above drill. This hole 1
The lead terminal 2 made of Pd, Pd-Pt or Pt having a diameter of 0.3 mm is inserted into a. Then, when the molded body sample is fired at 1400 ° C. for 1 hour, the molded body 1 contracts and the hole 1a also contracts, so that the lead terminal 2 is fixed and the high temperature thermistor of the first embodiment is obtained.
【0026】次に、本発明の高温用サーミスタの第2の
実施例を示す。Next, a second embodiment of the high temperature thermistor of the present invention will be shown.
【0027】第2の実施例のサーミスタは、第1の実施
例と同様に図1に断面図を示した。The thermistor of the second embodiment is shown in a sectional view in FIG. 1 similarly to the first embodiment.
【0028】同図に示す第2の実施例のサーミスタは、
29.70乃至99.98mol%のNiOと0.01
乃至69.30mol%のMgOと0.01乃至30m
ol%のSiO2とからなるNiO−MgO−SiO2複
合酸化物である柱状のサーミスタ素体1を有し、そのサ
ーミスタ素体1の各端子部に穴1aを形成し、その穴1
aにPd、Pd−PtまたはPtからなるリード端子2
を挿入固着したものである。The thermistor of the second embodiment shown in FIG.
29.70 to 99.98 mol% NiO and 0.01
To 69.30 mol% MgO and 0.01 to 30 m
It has a columnar thermistor element body 1 which is a NiO-MgO-SiO 2 composite oxide consisting of ol% SiO 2 and has holes 1 a formed in each terminal portion of the thermistor element body 1.
Lead terminal 2 made of Pd, Pd-Pt or Pt for a
Inserted and fixed.
【0029】次に、第2の実施例の製造方法の一例につ
いて説明する。Next, an example of the manufacturing method of the second embodiment will be described.
【0030】まず、市販のNiO、MgO、SiO2の
各粉末を上述の割合で所定量配合し、窯業的手段を用い
て混合、仮焼き、粉砕、乾燥後、例えばポリビニールア
ルコールを加えて造粒する。First, commercially available powders of NiO, MgO, and SiO 2 were mixed in a predetermined amount in the above-mentioned proportions, mixed by using industrial means, calcined, pulverized and dried, and then, for example, polyvinyl alcohol was added to produce them. Grain.
【0031】そして、これらの造粒粉末を金型に入れ、
500乃至1000kg/cm2程度の圧力を加えて成
形を行う。この実施例では、成形体1の大きさは直径2
mm、長さ5mmである。なお、ここで仮焼結させても
よい。Then, these granulated powders are put in a mold,
Molding is performed by applying a pressure of about 500 to 1000 kg / cm 2 . In this embodiment, the compact 1 has a diameter of 2
mm and length 5 mm. In addition, preliminary sintering may be performed here.
【0032】次に、成形体1の両端部に直径0.3mm
のドリルで深さ1.5mmの丸穴1aを掘る。この穴1
aに直径 0.3mmのPd、Pd−PtまたはPtか
らなるリード端子2を挿入する。その後、成形体試料を
1400℃で1時間焼成すると、成形体1は収縮して穴
1aも収縮するため、リード端子2は固着され、第1の
実施例の高温用サーミスタが得られる。Next, a diameter of 0.3 mm is applied to both ends of the molded body 1.
The round hole 1a having a depth of 1.5 mm is digged with the above drill. This hole 1
The lead terminal 2 made of Pd, Pd-Pt or Pt having a diameter of 0.3 mm is inserted into a. Then, when the molded body sample is fired at 1400 ° C. for 1 hour, the molded body 1 contracts and the hole 1a also contracts, so that the lead terminal 2 is fixed and the high temperature thermistor of the first embodiment is obtained.
【0033】次に、本発明の高温用サーミスタの第3の
実施例を示す。Next, a third embodiment of the high temperature thermistor of the present invention will be shown.
【0034】第3の実施例のサーミスタは、第1の実施
例と同様に図1に断面図を示した。The thermistor of the third embodiment is shown in a sectional view in FIG. 1 as in the first embodiment.
【0035】同図に示す第3の実施例のサーミスタは3
0乃至99.99mol%のNiOと0.01乃至70
mol%のMgOとからなるNiO−MgO複合酸化物
である柱状のサーミスタ素体1を有し、そのサーミスタ
素体1の各端子部に穴1aを形成し、その穴1aにP
d、Pd−PtまたはPtからなるリード端子2を挿入
固着したものである。The thermistor of the third embodiment shown in FIG.
0-99.99 mol% NiO and 0.01-70
It has a columnar thermistor body 1 which is a NiO-MgO composite oxide composed of mol% MgO, and has holes 1a formed in each terminal portion of the thermistor body 1, and P is formed in the hole 1a.
A lead terminal 2 made of d, Pd-Pt or Pt is inserted and fixed.
【0036】次に、第3の実施例の製造方法の一例につ
いて説明する。Next, an example of the manufacturing method of the third embodiment will be described.
【0037】まず、市販のNiO、MgOの各粉末を上
述の割合で所定量配合し、窯業的手段を用いて混合、仮
焼き、粉砕、乾燥後、例えばポリビニールアルコールを
加えて造粒する。First, commercially available powders of NiO and MgO are blended in a predetermined amount in the above-mentioned proportions, mixed by using industrial means, calcined, pulverized and dried, and then, for example, polyvinyl alcohol is added for granulation.
【0038】そして、これらの造粒粉末を金型に入れ、
500乃至1000kg/cm2程度の圧力を加えて成
形を行う。この実施例では、成形体1の大きさは直径2
mm、長さ5mmである。なお、ここで仮焼結させても
よい。Then, these granulated powders are put into a mold,
Molding is performed by applying a pressure of about 500 to 1000 kg / cm 2 . In this embodiment, the compact 1 has a diameter of 2
mm and length 5 mm. In addition, preliminary sintering may be performed here.
【0039】次に、成形体1の両端部に直径0.3mm
のドリルで深さ1.5mmの丸穴1aを掘る。この穴1
aに直径 0.3mmのPd、Pd−PtまたはPtか
らなるリード端子2を挿入する。その後、成形体試料を
1400℃で1時間焼成すると、成形体1は収縮して穴
1aも収縮するため、リード端子2は固着され、第1の
実施例の高温用サーミスタが得られる。Next, a diameter of 0.3 mm is applied to both ends of the molded body 1.
The round hole 1a having a depth of 1.5 mm is digged with the above drill. This hole 1
The lead terminal 2 made of Pd, Pd-Pt or Pt having a diameter of 0.3 mm is inserted into a. Then, when the molded body sample is fired at 1400 ° C. for 1 hour, the molded body 1 contracts and the hole 1a also contracts, so that the lead terminal 2 is fixed and the high temperature thermistor of the first embodiment is obtained.
【0040】次に、このようにして得られた第1、第2
および第3の実施例の高温用サーミスタの効果を表1を
参照して説明する。Next, the first and second obtained in this way
The effect of the high temperature thermistor of the third embodiment will be described with reference to Table 1.
【0041】表1は第1、第2および第3の実施例に基
づきサーミスタ素体の組成粉末の割合を変化させた試料
を上述した方法により作製し、その試料について600
℃、900℃の各温度での抵抗値、B定数、熱サイクル
試験後の抵抗変化率を求めたものである。Table 1 shows samples based on the first, second and third embodiments in which the ratio of the composition powder of the thermistor body was changed by the above-mentioned method.
The resistance value at each temperature of ° C and 900 ° C, the B constant, and the resistance change rate after the heat cycle test were obtained.
【0042】[0042]
【表1】 [Table 1]
【0043】試料は、上述した如く作製して得られた高
温用サーミスタを用い、試料番号1乃至9の組成粉末の
割合は、粉末NiOは30乃至99.99mol%、粉
末MgOは0.01乃至70mol%変化させた。ま
た、リード端子は線熱膨張係数が11.8×10-6/K
のPd線を用いた。As the sample, the high temperature thermistor produced as described above was used. The composition powders of Sample Nos. 1 to 9 were 30 to 99.99 mol% in powder NiO and 0.01 to 0.9 in powder MgO. It was changed by 70 mol%. In addition, the linear thermal expansion coefficient of the lead terminal is 11.8 × 10 -6 / K
The Pd line of was used.
【0044】また、試料番号10乃至15の組成粉末の
割合は、粉末NiOは70乃至99.99mol%、粉
末SiO2は0.01乃至30mol%変化させた。ま
た、リード端子は線熱膨張係数が11.8×10-6/K
のPd線を用いた。The proportions of the composition powders of Sample Nos. 10 to 15 were changed from 70 to 99.99 mol% for powder NiO and 0.01 to 30 mol% for powder SiO 2 . In addition, the linear thermal expansion coefficient of the lead terminal is 11.8 × 10 -6 / K
The Pd line of was used.
【0045】また、試料番号16乃至29の組成粉末の
割合は、粉末NiOは29.70乃至99.98mol
%、粉末MgOは0.01乃至69.30mol%、粉
末SiO2は1乃至30mol%変化させた。また、リ
ード端子は線熱膨張係数が11.8×10-6/KのPd
線を用いた。The proportion of the composition powders of sample Nos. 16 to 29 is 29.70 to 99.98 mol of powder NiO.
%, Powder MgO was changed from 0.01 to 69.30 mol%, and powder SiO 2 was changed from 1 to 30 mol%. In addition, the lead terminal has a Pd with a linear thermal expansion coefficient of 11.8 × 10 −6 / K.
A line was used.
【0046】また,試料番号30の組成粉末の割合は、
粉末NiOは90.00mol%、粉末MgOは10.
00mol%、リード端子は線熱膨張係数が8.9×1
0-6/KのPt線を用いた。The ratio of the composition powder of sample No. 30 is
The powder NiO was 90.00 mol% and the powder MgO was 10.
00 mol%, the lead terminal has a linear thermal expansion coefficient of 8.9 × 1
A Pt wire of 0 -6 / K was used.
【0047】また、試料番号31の組成粉末の割合は、
粉末NiOは99.00mol%、粉末SiO2は1.
00mol%、リード端子は線熱膨張係数が8.9×1
0-6/KのPt線を用いた。The ratio of the composition powder of sample No. 31 is
The powder NiO is 99.00 mol% and the powder SiO2 is 1.
00 mol%, the lead terminal has a linear thermal expansion coefficient of 8.9 × 1
A Pt wire of 0 -6 / K was used.
【0048】また、試料番号32の組成粉末の割合は、
粉末NiOは89.10mol%、粉末MgOは9.9
0mol%、粉末SiO2は1.00mol%、リード
端子は線熱膨張係数が8.9×10-6/KのPt線を用
いた。The ratio of the composition powder of sample No. 32 is
The powder NiO is 89.10 mol% and the powder MgO is 9.9.
0 mol%, powder SiO 2 was 1.00 mol%, and the lead terminal was a Pt wire having a linear thermal expansion coefficient of 8.9 × 10 −6 / K.
【0049】また,試料番号33の組成粉末の割合は、
粉末NiOは90.00mol%、粉末MgOは10.
00mol%、リード端子は線熱膨張係数が10.5×
10-6/KのPd−Pt線を用いた。The ratio of the composition powder of sample No. 33 is
The powder NiO was 90.00 mol% and the powder MgO was 10.
00 mol%, the linear thermal expansion coefficient of the lead terminal is 10.5 ×
A 10 −6 / K Pd—Pt wire was used.
【0050】また、試料番号34の組成粉末の割合は、
粉末NiOは99.00mol%、粉末SiO2は1.
00mol%、リード端子は線熱膨張係数が10.5×
10-6/KのPd−Pt線を用いた。The ratio of the composition powder of sample No. 34 is
The powder NiO was 99.00 mol%, and the powder SiO 2 was 1.
00 mol%, the linear thermal expansion coefficient of the lead terminal is 10.5 ×
A 10 −6 / K Pd—Pt wire was used.
【0051】また、試料番号35の組成粉末の割合は、
粉末NiOは89.10mol%、粉末MgOは9.9
0mol%、粉末SiO2は1.00mol%、リード
端子は線熱膨張係数が10.5×10-6/KのPd−P
t線を用いた。The ratio of the composition powder of sample No. 35 is
The powder NiO is 89.10 mol% and the powder MgO is 9.9.
0 mol%, powder SiO 2 is 1.00 mol%, and the lead terminal has a linear thermal expansion coefficient of 10.5 × 10 −6 / K Pd-P.
The t-line was used.
【0052】なお、サーミスタのB定数は、以下の式か
ら求められる。The B constant of the thermistor is obtained from the following equation.
【0053】 B=ln(R1/R0)/(1/T1−1/T0) (但し、R1,R0は抵抗値、T1,T0は絶対温度、Bは
B定数)また、各試料についての熱サイクル試験は、9
00℃に保持した炉内と常温とをそれぞれ移動し、各雰
囲気の温度に到達してから5分間保持し、常温と900
℃との1往復を1サイクルとして、1000サイクル後
の900℃における抵抗を測定した。その測定結果を基
に1000サイクル後の抵抗変化率ΔRを求め、その結
果を表1に示す。また、抵抗変化率ΔRは、次式によっ
て算出した。B = ln (R 1 / R 0 ) / (1 / T 1 −1 / T 0 ) (where R 1 and R 0 are resistance values, T 1 and T 0 are absolute temperatures, and B is a B constant ) Also, the thermal cycle test for each sample is 9
The temperature inside the furnace held at 00 ° C and the room temperature are moved respectively, and after reaching the temperature of each atmosphere, the temperature is held for 5 minutes to reach the room temperature and 900
The resistance was measured at 900 ° C. after 1000 cycles, with one cycle of one reciprocation with respect to ° C. Based on the measurement results, the resistance change rate ΔR after 1000 cycles was determined, and the results are shown in Table 1. Further, the resistance change rate ΔR was calculated by the following equation.
【0054】ΔR={(Rt−R0)/R0}×100% (但し、Rtは1000サイクル後の抵抗値、R0は出発
時の抵抗値)表1から明らかなように、第1の実施例に
よれば、SiO2の組成割合を0.01乃至20mol
%まで変えることにより、熱サイクル試験後の抵抗変化
率が30%以下に収まることが判った。また、表1から
明らかなように、SiO2との複合材料により、任意に
抵抗値、B定数を変化させることができた。ΔR = {(R t −R 0 ) / R 0 } × 100% (where R t is the resistance value after 1000 cycles and R 0 is the resistance value at the time of departure) As is apparent from Table 1, According to the first embodiment, the composition ratio of SiO 2 is 0.01 to 20 mol.
It was found that the resistance change rate after the heat cycle test was kept to 30% or less by changing the value to%. Further, as is clear from Table 1, the resistance value and the B constant could be arbitrarily changed by the composite material with SiO 2 .
【0055】また、表1から明らかなように、第2の実
施例によれば、SiO2の組成割合を0.01乃至20
mol%までMgOの組成割合を0.01乃至60mo
l%まで変えることにより、熱サイクル試験後の抵抗変
化率が30%以下に収まることが判った。As is clear from Table 1, according to the second embodiment, the composition ratio of SiO 2 is 0.01 to 20.
The composition ratio of MgO up to mol% is 0.01 to 60mo
It was found that the resistance change rate after the heat cycle test was kept within 30% by changing to 1%.
【0056】また、SiO2とMgOとの複合材料によ
り、任意に抵抗値、B定数を変化させることができた。Further, the resistance value and the B constant could be arbitrarily changed by the composite material of SiO 2 and MgO.
【0057】また、表1から明らかなように、第3の実
施例によれば、MgOの組成割合を0.01乃至60m
ol%まで変えることにより、熱サイクル試験後の抵抗
変化率が30%以下に収まることが判った。Further, as is clear from Table 1, according to the third embodiment, the composition ratio of MgO is 0.01 to 60 m.
It was found that the resistance change rate after the heat cycle test was kept within 30% by changing to ol%.
【0058】また、表1から明らかなように、リード端
子に線熱膨張係数が8乃至12×10-6/Kの範囲にあ
るPd線、Pt線または、Pd−Pt線を使用すること
により熱サイクル試験後の抵抗変化率を低く抑えること
が可能となることが判った。Further, as is clear from Table 1, by using a Pd wire, a Pt wire or a Pd-Pt wire having a linear thermal expansion coefficient of 8 to 12 × 10 −6 / K for the lead terminal, It was found that the rate of resistance change after the heat cycle test can be suppressed to a low level.
【0059】なお、本発明は上記実施例に限定されず、
その要旨を変更しない範囲内で種々に変形実施できる。
例えば、第1、第2または第3の実施例は図2に示すよ
うに一対のリード端子2,2を同方向に導出してもよ
い。The present invention is not limited to the above embodiment,
Various modifications can be made without changing the gist of the invention.
For example, in the first, second or third embodiment, the pair of lead terminals 2 and 2 may be led out in the same direction as shown in FIG.
【0060】[0060]
【発明の効果】以上詳述した請求項1に記載の発明によ
れば、サーミスタ素体を上記構成とすることにより、広
い温度範囲に亘って抵抗値変化領域が得られ、抵抗値お
よびB定数を任意に変え得ることができる高温用サーミ
スタを提供することができる。According to the invention described in claim 1 which has been described in detail above, the resistance value changing region can be obtained over a wide temperature range and the resistance value and the B constant can be obtained by using the thermistor element body having the above structure. It is possible to provide a high temperature thermistor which can be changed arbitrarily.
【0061】同様に請求項2に記載の発明によれば、サ
ーミスタ素体を上記構成とすることにより、広い温度範
囲に亘って抵抗値変化領域が得られ、抵抗値およびB定
数を任意に変え得ることができる高温用サーミスタを提
供することができる。Similarly, according to the second aspect of the present invention, by forming the thermistor element body as described above, a resistance value change region can be obtained over a wide temperature range, and the resistance value and B constant can be arbitrarily changed. A high temperature thermistor that can be obtained can be provided.
【0062】請求項3に記載の発明によれば、リード端
子を備えているので、高温に適したものとなる。According to the third aspect of the invention, since the lead terminal is provided, it is suitable for high temperatures.
【0063】請求項4に記載の発明によれば、リード端
子をPd、PtまたはPd−Ptにすることにより常温
から高温への熱サイクル特性の良好な高温用サーミスタ
を提供することができる。According to the fourth aspect of the present invention, it is possible to provide a high temperature thermistor having good thermal cycle characteristics from normal temperature to high temperature by using Pd, Pt or Pd-Pt for the lead terminal.
【0064】請求項5に記載の発明によれば、サーミス
タ素体を上記構成とし、かつ、リード端子をPd、Pt
またはPd−Ptにすることにより、広い温度範囲に亘
って抵抗値変化領域が得られ、抵抗値およびB定数を任
意に変え得ることができ、かつ、常温から高温への熱サ
イクル特性の良好な高温用サーミスタを提供することが
できる。According to the fifth aspect of the present invention, the thermistor element is constructed as described above, and the lead terminals are Pd and Pt.
Alternatively, by using Pd-Pt, a resistance value change region can be obtained over a wide temperature range, the resistance value and the B constant can be arbitrarily changed, and good thermal cycle characteristics from normal temperature to high temperature can be obtained. A thermistor for high temperature can be provided.
【0065】請求項6に記載の発明によれば、リード端
子を線熱膨張係数が8乃至12×10-6/Kの金属にす
ることにより常温から高温への熱サイクル特性の良好な
高温用サーミスタを提供することができる。According to the sixth aspect of the invention, the lead terminal is made of a metal having a linear thermal expansion coefficient of 8 to 12 × 10 −6 / K. A thermistor can be provided.
【0066】請求項7に記載の発明によれば、サーミス
タ素体の焼成により、穴が収縮してリード端子を固着す
るので、リード端子の接続作業を省略でき、製造容易と
なり、高温での信頼性に優れたものとなる。According to the invention described in claim 7, since the hole is contracted and the lead terminal is fixed by firing the thermistor element body, the work of connecting the lead terminal can be omitted, the manufacturing becomes easy, and the reliability at high temperature is improved. It has excellent properties.
【図1】本発明の高温用サーミスタの第1、第2および
第3の実施例を示す断面図である。FIG. 1 is a cross-sectional view showing first, second and third embodiments of a high temperature thermistor of the present invention.
【図2】第1、第2および第3の実施例の他の例を示す
断面図である。FIG. 2 is a sectional view showing another example of the first, second and third embodiments.
1、サーミスタ素体 1a、穴 2、リード端子 1, thermistor body 1a, hole 2, lead terminal
Claims (7)
l%のNiOと0.01乃至20mol%のSiO2と
からなるNiO−SiO2複合酸化物であることを特徴
とする高温用サーミスタ。1. The thermistor body is 80 to 99.99 mo.
A high temperature thermistor, which is a NiO-SiO 2 composite oxide composed of 1% NiO and 0.01 to 20 mol% SiO 2 .
l%のNiOと0.01乃至60mol%のMgOと
0.01乃至20mol%のSiO2とからなるNiO
−MgO−SiO2複合酸化物であることを特徴とする
高温用サーミスタ。2. The thermistor body is 40 to 99.98 mo.
NiO composed of 1% NiO, 0.01 to 60 mol% MgO, and 0.01 to 20 mol% SiO 2.
A high temperature thermistor which is a —MgO—SiO 2 composite oxide.
る請求項1または2に記載の高温用サーミスタ。3. The high temperature thermistor according to claim 1, further comprising a pair of lead terminals.
とPd、PtまたはPd−Ptをリード端子とする高温
用サーミスタ。4. A high temperature thermistor comprising the thermistor body according to claim 1 or 2 and Pd, Pt or Pd-Pt as a lead terminal.
l%のNiOと0.01乃至60mol%のMgOとか
らなるNiO−MgO複合酸化物であり、Pd、Ptま
たはPd−Ptをリード端子とすることを特徴とする高
温用サーミスタ。5. The thermistor body is 40 to 99.99 mo.
A high temperature thermistor, which is a NiO-MgO composite oxide composed of 1% NiO and 0.01 to 60 mol% MgO, and uses Pd, Pt or Pd-Pt as a lead terminal.
スタ素体と線熱膨張係数が8乃至12×10-6/Kの範
囲にある金属をリード端子とする高温用サーミスタ。6. A high temperature thermistor having a lead terminal made of the thermistor element according to claim 1, 2 or 5 and a metal having a coefficient of linear thermal expansion of 8 to 12 × 10 −6 / K.
タ素体と請求項4または6に記載の一対のリード端子と
をする高温用サーミスタの製造方法であって、成形後叉
は仮焼成後のサーミスタ素体に穴を設け、その穴にリー
ド端子を挿入した後、サーミスタ素体と同時焼成してリ
ード端子を固定することを特徴とする高温用サーミスタ
の製造方法。7. A method of manufacturing a high temperature thermistor comprising the thermistor element body according to claim 1, 2 or 5 and a pair of lead terminals according to claim 4 or 6, which is after molding or after calcination. 1. A method for manufacturing a high temperature thermistor, characterized in that a hole is formed in the thermistor body, the lead terminal is inserted into the hole, and then the lead terminal is fixed by simultaneous firing with the thermistor body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27384193A JPH07130504A (en) | 1993-11-01 | 1993-11-01 | Thermister for high temperature and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27384193A JPH07130504A (en) | 1993-11-01 | 1993-11-01 | Thermister for high temperature and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07130504A true JPH07130504A (en) | 1995-05-19 |
Family
ID=17533296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27384193A Withdrawn JPH07130504A (en) | 1993-11-01 | 1993-11-01 | Thermister for high temperature and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07130504A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010109317A (en) * | 2008-10-03 | 2010-05-13 | Mitsubishi Materials Corp | Thermistor element manufacturing method, and thermistor element |
-
1993
- 1993-11-01 JP JP27384193A patent/JPH07130504A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010109317A (en) * | 2008-10-03 | 2010-05-13 | Mitsubishi Materials Corp | Thermistor element manufacturing method, and thermistor element |
US8607440B2 (en) | 2008-10-03 | 2013-12-17 | Mitsubishi Materials Corporation | Method of manufacturing a thermistor element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4110260A (en) | Electroconductive composite ceramics | |
JP5256897B2 (en) | Metal oxide sintered body for thermistor, thermistor element, thermistor temperature sensor, and method for producing metal oxide sintered body for thermistor | |
WO2006109792A1 (en) | Sintered electroconductive oxide, thermister element using sintered electroconductive oxide, and temperature sensor using thermister element | |
US6663794B2 (en) | Reducing-atmosphere-resistant thermistor element, production method thereof and temperature sensor | |
JP3254594B2 (en) | Porcelain composition for thermistor and thermistor element | |
JP5546995B2 (en) | Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element | |
JP2002124403A (en) | Reduction-resistant thermistor element, its manufacturing method, and temperature sensor | |
WO1986003051A1 (en) | Oxide semiconductor for thermistor and a method of producing the same | |
JP4307152B2 (en) | Sintered body for thermistor element, manufacturing method thereof, thermistor element, temperature sensor | |
JP5546996B2 (en) | Conductive oxide sintered body, thermistor element using the same, and temperature sensor using thermistor element | |
JPH07130504A (en) | Thermister for high temperature and its manufacture | |
JP3331447B2 (en) | Method for producing porcelain composition for thermistor | |
JP4302487B2 (en) | Sintered body for thermistor, thermistor element, and temperature sensor | |
JP4990072B2 (en) | Thermistor for high temperature | |
JP2006515113A (en) | Ceramic mixture having negative temperature coefficient, thermistor containing ceramic mixture and preparation method thereof | |
US20040159825A1 (en) | Sintered body for theremistor devices, thermistor device and temperature sensor | |
JP3826494B2 (en) | Wide range type thermistor element | |
JPH08162302A (en) | Thermistor and its manufacture | |
JPH06163206A (en) | Thermistor for high temperature and manufacturings method thereof | |
JP5158487B2 (en) | Metal oxide sintered body for thermistor, thermistor element, and method for producing metal oxide sintered body for thermistor | |
JP3970851B2 (en) | Sintered body for thermistor element, manufacturing method thereof, and temperature sensor | |
JP3391190B2 (en) | Thermistor composition | |
JP3551269B2 (en) | High temperature measurement thermistor | |
KR101647354B1 (en) | Ceramic composition of thermistor for temperature sensor | |
KR20240127852A (en) | Negative temperature coefficient ceramic composition and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010130 |