JP3198876B2 - Semiconductor porcelain, manufacturing method thereof, and positive temperature coefficient thermistor - Google Patents

Semiconductor porcelain, manufacturing method thereof, and positive temperature coefficient thermistor

Info

Publication number
JP3198876B2
JP3198876B2 JP15791995A JP15791995A JP3198876B2 JP 3198876 B2 JP3198876 B2 JP 3198876B2 JP 15791995 A JP15791995 A JP 15791995A JP 15791995 A JP15791995 A JP 15791995A JP 3198876 B2 JP3198876 B2 JP 3198876B2
Authority
JP
Japan
Prior art keywords
temperature
semiconductor porcelain
resistance value
porcelain
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15791995A
Other languages
Japanese (ja)
Other versions
JPH0912355A (en
Inventor
▲吉▼晶 阿部
康訓 並河
隆与 勝木
範光 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP15791995A priority Critical patent/JP3198876B2/en
Priority to TW085105783A priority patent/TW316985B/zh
Priority to KR1019960022930A priority patent/KR100341082B1/en
Priority to CN96106935A priority patent/CN1065219C/en
Publication of JPH0912355A publication Critical patent/JPH0912355A/en
Priority to KR1020000002816A priority patent/KR100353592B1/en
Application granted granted Critical
Publication of JP3198876B2 publication Critical patent/JP3198876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/0075Fastening of light sources or lamp holders of tubular light sources, e.g. ring-shaped fluorescent light sources
    • F21V19/008Fastening of light sources or lamp holders of tubular light sources, e.g. ring-shaped fluorescent light sources of straight tubular light sources, e.g. straight fluorescent tubes, soffit lamps
    • F21V19/0085Fastening of light sources or lamp holders of tubular light sources, e.g. ring-shaped fluorescent light sources of straight tubular light sources, e.g. straight fluorescent tubes, soffit lamps at least one conductive element acting as a support means, e.g. resilient contact blades, piston-like contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/06Arrangement of electric circuit elements in or on lighting devices the elements being coupling devices, e.g. connectors

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、チタン酸バリウム系
の半導体磁器およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a barium titanate-based semiconductor porcelain and a method for producing the same.

【0002】[0002]

【従来の技術】正の抵抗温度特性を有するチタン酸バリ
ウム系の半導体磁器(以下、半導体磁器という)は、キ
ュリー点以上で抵抗値が急激に増加するという特性を有
しており、モーター起動用、カラーテレビジョン受像機
のブラウン管の消磁用、ヒーター用、およびその他の用
途に幅広く用いられている。ところが、この種の半導体
磁器については、電圧印加時の突入電流に対する破壊特
性(以下、突入耐電圧特性という)以上の突入電流が流
れると層状に破壊するという問題が生じていた。
2. Description of the Related Art A barium titanate-based semiconductor porcelain having a positive resistance temperature characteristic (hereinafter referred to as a semiconductor porcelain) has a characteristic that the resistance value rapidly increases above the Curie point and is used for starting a motor. It is widely used for degaussing CRTs, heaters, and other uses of color television receivers. However, this type of semiconductor porcelain has a problem in that when an inrush current that exceeds a destruction characteristic with respect to an inrush current when a voltage is applied (hereinafter, referred to as an inrush withstand voltage characteristic) flows, the semiconductor ceramic is broken down into layers.

【0003】このような現象が起こるのは、半導体磁器
の外側部分は外気に接触しているため熱拡散が速く、そ
の部分の温度が低くなって低抵抗となるが、一方、半導
体磁器の内側部分は外側部分に比べて熱拡散が遅く高抵
抗となってしまい、半導体磁器が不均一に発熱するから
である。そこで、このような磁器破壊を起こさない半導
体磁器の製造方法として、特開平4−154661号公
報に記載されているように、空気中で焼成した後、還元
処理し、大気中で再酸化処理する方法が提案されてい
た。
[0003] Such a phenomenon occurs because the outside portion of the semiconductor porcelain is in contact with the outside air, so that the heat diffusion is fast, and the temperature of the portion becomes low, resulting in low resistance. This is because heat diffusion is slower in the portion than in the outer portion, resulting in high resistance, and the semiconductor porcelain generates heat unevenly. Therefore, as a method for manufacturing a semiconductor porcelain that does not cause such porcelain destruction, as described in JP-A-4-154661, after firing in air, reduction is performed, and reoxidation is performed in air. A method was proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、半導体
磁器を還元再酸化処理する方法では、再酸化処理が不十
分であると耐電圧が低く、再酸化処理が進むと室温での
比抵抗が高くなるという問題があった。
However, in the method of reducing and reoxidizing semiconductor porcelain, if the reoxidation is insufficient, the withstand voltage is low, and if the reoxidation proceeds, the specific resistance at room temperature increases. There was a problem.

【0005】この発明の目的は、突入耐電圧特性に優
れ、磁器破壊が生じにくい半導体磁器およびその製造方
法を提供することである。
An object of the present invention is to provide a semiconductor porcelain which has excellent inrush withstand voltage characteristics and hardly causes porcelain destruction, and a method of manufacturing the same.

【0006】請求項1に係る発明は、正の抵抗温度特性
を有するチタン酸バリウム系の半導体磁器において、半
導体磁器の表面部と中心部の間の抵抗値が、半導体磁器
の表面部および中心部の抵抗値よりも高い半導体磁器で
ある。
According to a first aspect of the present invention, in a barium titanate-based semiconductor porcelain having a positive resistance temperature characteristic, a resistance value between a surface portion and a center portion of the semiconductor porcelain is equal to a surface portion and a center portion of the semiconductor porcelain. Semiconductor porcelain having a resistance value higher than

【0007】請求項2に係る発明は、半導体磁器の表面
部と中心部の間の抵抗値が表面部および中心部の抵抗値
よりも15〜68%高い半導体磁器である。
According to a second aspect of the present invention, there is provided a semiconductor porcelain wherein the resistance between the surface and the center of the semiconductor porcelain is 15 to 68% higher than the resistance of the surface and the center.

【0008】請求項3に係る発明は、半導体磁器が、酸
化鉛、酸化ストロンチウム、酸化カルシウムを含むチタ
ン酸バリウム系の半導体磁器である。
According to a third aspect of the present invention, the semiconductor porcelain is a barium titanate-based semiconductor porcelain containing lead oxide, strontium oxide, and calcium oxide.

【0009】請求項4に係る発明は、正の抵抗温度特性
を有するチタン酸バリウム系の半導体磁器を焼成する工
程において、最高焼成温度到達後の降温過程で、110
0〜1200℃の間で保持温度を設定して0.4〜10
時間保持し、かつ前記最高焼成温度から前記保持温度ま
での降温過程および前記保持温度から以後の降温過程を
任意の降温速度で降温する半導体磁器の製造方法であ
る。
According to a fourth aspect of the present invention, in the step of firing a barium titanate-based semiconductor porcelain having a positive resistance temperature characteristic, the temperature is lowered by 110 ° C. after reaching the maximum firing temperature.
The holding temperature is set between 0 and 1200 ° C. and 0.4 to 10
Hold for a while and from the maximum firing temperature to the holding temperature.
The temperature lowering process and the subsequent temperature lowering process from the holding temperature
This is a method for manufacturing a semiconductor porcelain that lowers the temperature at an arbitrary rate .

【0010】請求項5に係る発明は、正の抵抗温度特性
を有するチタン酸バリウム系の半導体磁器を焼成する工
程において、最高焼成温度到達後の降温過程で、110
0〜1200℃の間を1.0℃/min以下の徐冷速度
降温し、かつ前記最高焼成温度から1200℃までの降
温過程および1100℃から以後の降温過程を前記徐冷
速度より速い降温速度で降温する半導体磁器の製造方法
である。請求項6に係る発明は、少なくとも、請求項1
から請求項3のいずれかに記載の半導体磁器と、前記半
導体磁器の表面に形成された一対の端子電極とから構成
される正特性サーミスタである。
According to a fifth aspect of the present invention, in the step of firing a barium titanate-based semiconductor porcelain having a positive resistance temperature characteristic, the temperature is lowered by 110 ° C.
The temperature is lowered from 0 to 1200 ° C. at a slow cooling rate of 1.0 ° C./min or less, and the temperature is lowered from the maximum firing temperature to 1200 ° C.
The temperature process and the subsequent cooling process from 1100 ° C are gradually cooled.
This is a method for manufacturing a semiconductor porcelain in which the temperature is lowered at a higher rate than the rate . The invention according to claim 6 provides at least claim 1
4. The semiconductor porcelain according to claim 3, wherein
Consists of a pair of terminal electrodes formed on the surface of conductive porcelain
Is a positive characteristic thermistor .

【0011】[0011]

【作用】この発明の半導体磁器によれば、厚み方向にみ
て抵抗値の分布を異ならせたことにより、突入破壊電圧
特性の向上を図ることができる。この発明の半導体磁器
の製造方法によれば、降温過程で徐冷あるいは保持する
ことで、半導体磁器の厚み方向にみて抵抗値の分布を異
ならせることができ、その結果突入破壊電圧特性の向上
を図ることができる。
According to the semiconductor porcelain of the present invention, the inrush breakdown voltage characteristics can be improved by making the distribution of resistance values different in the thickness direction. According to the method for manufacturing a semiconductor porcelain of the present invention, by gradually cooling or holding the semiconductor porcelain in the temperature decreasing process, the distribution of the resistance value can be varied in the thickness direction of the semiconductor porcelain, thereby improving the inrush breakdown voltage characteristics. Can be planned.

【0012】[0012]

【実施例】まず、(Ba0.536Pb0.08Sr0.20Ca
0.18Er0.004)TiO3+0.0004Mn+0.02
SiO2の組成となるように、BaCO3,SrCO3
Pb34,CaCO3,TiO2,Er23,MnCO3
およびSiO2を秤量した。これらを純水およびジルコ
ニアボールとともにポリエチレン製ポットに入れて、5
時間粉砕混合した後、脱水、乾燥し、1150℃で2時
間仮焼して仮焼粉を得た。この仮焼粉を純水およびジル
コニアボールとともにポリエチレン製ポットに入れて5
時間粉砕した。その後、それに酢酸ビニル系のバインダ
ーを混合して、造粒した。
EXAMPLE First, (Ba 0.536 Pb 0.08 Sr 0.20 Ca
0.18 Er 0.004 ) TiO 3 + 0.0004Mn + 0.02
As a composition of SiO 2, BaCO 3, SrCO 3 ,
Pb 3 O 4 , CaCO 3 , TiO 2 , Er 2 O 3 , MnCO 3
And SiO 2 were weighed. Put these in a polyethylene pot together with pure water and zirconia balls,
After crushing and mixing for hours, dehydration and drying were performed and calcined at 1150 ° C. for 2 hours to obtain a calcined powder. Put this calcined powder together with pure water and zirconia balls into a polyethylene pot
Crushed for hours. Thereafter, a vinyl acetate-based binder was mixed with the mixture and granulated.

【0013】次に、乾式プレスで直径18mm、厚さ3.
6mmの成形体を作製し、1360℃で1時間焼成し、表
1に示す条件にて冷却し、半導体磁器を得た。得られた
半導体磁器の両面に端子電極となる、オーミック性を示
すニッケル層を無電解メッキにより形成し、最外層に銀
ペーストを塗布して、600℃で30分焼き付け、正特
性サーミスタを得た。
Next, the diameter is 18 mm and the thickness is 3.
A 6 mm compact was prepared, baked at 1360 ° C. for 1 hour, and cooled under the conditions shown in Table 1 to obtain a semiconductor porcelain. A nickel layer exhibiting ohmic properties to be terminal electrodes was formed on both surfaces of the obtained semiconductor ceramic by electroless plating, a silver paste was applied to the outermost layer, and baked at 600 ° C. for 30 minutes to obtain a positive temperature coefficient thermistor. .

【0014】表1に示す冷却条件は、最高焼成温度から
室温まで冷却する条件を示しており、試料番号1〜26
は、最高焼成温度から保持温度まで降温速度の割合で冷
却し、保持温度にて保持時間分保持温度を保ち、保持温
度から室温まで冷却する。また、試料番号27〜30
は、最高焼成温度から1200℃まで降温速度で冷却
し、1200〜1100℃の間、徐冷速度の割合で冷却
し、1100℃から室温まで冷却する。さらに、試料番
号31,32は最高焼成温度から室温まで降温速度一定
で冷却する。
The cooling conditions shown in Table 1 indicate the conditions for cooling from the highest firing temperature to room temperature.
Is cooled from the maximum firing temperature to the holding temperature at a rate of the temperature decreasing rate, the holding temperature is maintained at the holding temperature for the holding time, and the temperature is cooled from the holding temperature to room temperature. In addition, sample numbers 27 to 30
Is cooled from the highest firing temperature to 1200 ° C. at a temperature decreasing rate, and is cooled at a rate of a slow cooling rate from 1200 to 1100 ° C., and is cooled from 1100 ° C. to room temperature. Further, the sample numbers 31 and 32 are cooled from the maximum firing temperature to the room temperature at a constant cooling rate.

【0015】[0015]

【表1】 [Table 1]

【0016】この正特性サーミスタを用いて、比抵抗、
単位厚さあたりの抵抗値、突入耐電圧特性および抵抗値
比を測定した。ここで、突入耐電圧特性とは、下記で示
される式から得られる値であり、抵抗値比とは、正特性
サーミスタの表面部と中心部の間で最大となる抵抗値
(最大抵抗値)と正特性サーミスタの中心部の最小とな
る抵抗値(最小抵抗値)の比から得られる値である。 突入耐電圧特性=(破壊電圧)2/常温抵抗値 前記の測定結果を表2に示す。*印は、この発明の請求
範囲外であり、*印のないものは、この発明の範囲内で
ある。
Using this positive temperature coefficient thermistor, specific resistance,
The resistance value per unit thickness, the inrush withstand voltage characteristic, and the resistance value ratio were measured. Here, the inrush withstand voltage characteristic is a value obtained from the following equation, and the resistance value ratio is a resistance value (maximum resistance value) that is the maximum between the surface portion and the center portion of the positive temperature coefficient thermistor. It is a value obtained from the ratio of the minimum resistance value (minimum resistance value) at the center of the positive characteristic thermistor. Inrush withstand voltage characteristics = (breakdown voltage) 2 / normal temperature resistance Table 2 shows the measurement results. The * marks are outside the scope of the present invention, and those without the * marks are within the scope of the present invention.

【0017】[0017]

【表2】 [Table 2]

【0018】図1は、この発明の正特性サーミスタの一
方の主面から他方の主面へ単位厚みあたりの抵抗値の変
化を模式的に示したものである。図1からわかるよう
に、中心部と両表面部の抵抗値が低く、中心部と表面部
の間で抵抗値が高い正特性サーミスタであることがわか
る。
FIG. 1 schematically shows a change in resistance per unit thickness from one main surface to the other main surface of the positive temperature coefficient thermistor of the present invention. As can be seen from FIG. 1, it is understood that the positive temperature coefficient thermistor has a low resistance value between the central portion and both surface portions and a high resistance value between the central portion and the surface portion.

【0019】また、図2は、抵抗値比と突入耐電圧特性
の関係について示したものである。図2より、表面部と
中心部の間の抵抗値が中心部の抵抗値より15〜68%
高い領域(抵抗値比=1.15から1.68)を有する
半導体磁器について突入耐電圧特性に優れているという
結果を示している。
FIG. 2 shows the relationship between the resistance value ratio and the inrush withstand voltage characteristics. From FIG. 2, the resistance value between the surface portion and the central portion is 15 to 68% of the resistance value at the central portion.
The results show that the semiconductor porcelain having a high region (resistance ratio = 1.15 to 1.68) has excellent inrush withstand voltage characteristics.

【0020】さらに、図3は、降温過程での保持温度と
突入耐電圧特性の関係について示したものである。図3
より、降温過程の保持温度1100〜1200℃の領域
で突入耐電圧特性がよい。また、当温度幅において徐冷
しても突入耐電圧特性の優れたものが得られている。
FIG. 3 shows the relationship between the holding temperature and the inrush withstand voltage characteristic in the temperature decreasing process. FIG.
Thus, the rush withstand voltage characteristics are good in the temperature holding range of 1100 to 1200 ° C. in the temperature decreasing process. In addition, even when the temperature is gradually cooled in the temperature range, a material having excellent inrush withstand voltage characteristics is obtained.

【0021】[0021]

【発明の効果】この発明の半導体磁器は、単位厚みあた
りの抵抗値分布を異なるものとすることにより、突入耐
電圧特性に優れ、高い電圧に対しても破壊されないとい
う効果を発揮する。
The semiconductor porcelain according to the present invention has an excellent rush withstand voltage characteristic by making the resistance value distribution per unit thickness different, and exhibits an effect of not being destroyed even at a high voltage.

【0022】また、半導体磁器の表面部と中心部の間の
抵抗値が表面部および中心部の抵抗値よりも15〜68
%高いことにより、高い電圧に対して磁器破壊が生じ
ず、回路の過電流保護の用途に適している。
The resistance between the surface and the center of the semiconductor porcelain is 15 to 68 times smaller than the resistance of the surface and the center.
By being higher, porcelain breakage does not occur at a high voltage, and is suitable for use in overcurrent protection of a circuit.

【0023】さらに、酸化鉛、酸化ストロンチウム、酸
化カルシウムを含むチタン酸バリウム系の半導体磁器か
らなることにより、半導体磁器の表面部と中心部の間の
抵抗値が表面部および中心部の抵抗値よりも15〜68
%高くなるという効果をより顕著にでき、高い電圧に対
して磁器破壊が生じない、回路の過電流保護用や消磁用
など幅広く利用することができる。
Further, by using a barium titanate-based semiconductor porcelain containing lead oxide, strontium oxide, and calcium oxide, the resistance between the surface and the center of the semiconductor porcelain is higher than the resistance of the surface and the center. Also 15-68
% Can be made more remarkable, and can be widely used for overcurrent protection, degaussing, and the like of a circuit, which does not cause porcelain breakdown at a high voltage.

【0024】この発明の半導体磁器の製造方法によれ
ば、降温過程で徐冷あるいは保持することで、半導体磁
器の単位厚みあたりの抵抗値分布を異なるものとするこ
とにより、高い電圧を印加しても、磁器破壊の生じにく
い、突入耐電圧特性に優れた半導体磁器を得ることがで
きる。
According to the method for manufacturing a semiconductor porcelain of the present invention, the resistance value per unit thickness of the semiconductor porcelain is changed by gradually cooling or maintaining the temperature in the process of lowering the temperature, thereby applying a high voltage. In addition, it is possible to obtain a semiconductor porcelain which is less likely to cause porcelain destruction and has excellent inrush withstand voltage characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の半導体磁器により得られた正特性サ
ーミスタの一方の主面から他方の主面へ単位厚みあたり
の抵抗値の変化を模式的に示したものである。
FIG. 1 schematically shows a change in resistance value per unit thickness from one main surface to another main surface of a positive temperature coefficient thermistor obtained by a semiconductor ceramic according to the present invention.

【図2】この発明の半導体磁器の抵抗値比と突入耐電圧
特性の関係について示す。
FIG. 2 shows the relationship between the resistance value ratio and the inrush withstand voltage characteristic of the semiconductor ceramic of the present invention.

【図3】この発明の半導体磁器の降温過程の温度と突入
耐電圧特性の関係について示す。
FIG. 3 shows the relationship between the temperature and the inrush withstand voltage characteristic of the semiconductor porcelain of the present invention during the temperature drop process.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−154661(JP,A) 特開 平5−294625(JP,A) 特開 平5−254928(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/42 - 35/49 H01C 7/02 - 7/22 C04B 35/00 - 35/22 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-154661 (JP, A) JP-A-5-294625 (JP, A) JP-A-5-254928 (JP, A) (58) Field (Int.Cl. 7 , DB name) C04B 35/42-35/49 H01C 7 /02-7/22 C04B 35/00-35/22

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正の抵抗温度特性を有するチタン酸バリ
ウム系の半導体磁器において、前記半導体磁器の表面部
と中心部の間の抵抗値が、前記半導体磁器の表面部およ
中心部の抵抗値よりも高いことを特徴とする半導体磁
器。
1. A semiconductive ceramic barium titanate having a positive resistance-temperature characteristic, the resistance value between the surface portion and the central portion of the semiconductor porcelain, Oyo surface portion of the semiconductor ceramic
Semiconducting ceramic, wherein the higher than the resistance value of the fine center.
【請求項2】 前記半導体磁器の表面部と中心部の間の
抵抗値が前記表面部および前記中心部の抵抗値よりも1
5〜68%高いことを特徴とする請求項1に記載の半導
体磁器。
2. A resistance value between a surface portion and a center portion of the semiconductor porcelain is 1 more than a resistance value of the surface portion and the center portion.
The semiconductor porcelain according to claim 1, wherein the height is 5 to 68% higher.
【請求項3】 前記半導体磁器は、酸化鉛、酸化ストロ
ンチウム、酸化カルシウムを含むチタン酸バリウム系で
あることを特徴とする請求項1または請求項2に記載の
半導体磁器。
3. The semiconductor porcelain according to claim 1, wherein the semiconductor porcelain is a barium titanate containing lead oxide, strontium oxide, and calcium oxide.
【請求項4】 正の抵抗温度特性を有するチタン酸バリ
ウム系の半導体磁器を焼成する工程において、最高焼成
温度到達後の降温過程で、1100〜1200℃の間で
保持温度を設定して0.4〜10時間保持し、かつ前記
最高焼成温度から前記保持温度までの降温過程および前
記保持温度から以後の降温過程を任意の降温速度で降温
することを特徴とする半導体磁器の製造方法。
4. In a step of firing a barium titanate-based semiconductor porcelain having a positive resistance temperature characteristic, a holding temperature is set between 1100 and 1200 ° C. in a temperature decreasing process after reaching a maximum firing temperature. A method for manufacturing a semiconductor porcelain, wherein the temperature is maintained at 4 to 10 hours, and the temperature is decreased at an arbitrary rate in a temperature decreasing process from the maximum firing temperature to the holding temperature and a subsequent temperature decreasing process from the holding temperature.
【請求項5】 正の抵抗温度特性を有するチタン酸バリ
ウム系の半導体磁器を焼成する工程において、最高焼成
温度到達後の降温過程で、1100〜1200℃の間を
1.0℃/min以下の徐冷速度で降温し、かつ前記最高
焼成温度から1200℃までの降温過程および1100
℃から以後の降温過程を前記徐冷速度より速い降温速度
で降温することを特徴とする半導体磁器の製造方法。
5. A step of firing a barium titanate-based semiconductor porcelain having a positive resistance temperature characteristic, wherein a temperature between 1100 and 1200 ° C. is 1.0 ° C./min or less in a temperature decreasing process after reaching a maximum firing temperature. The temperature is lowered at a slow cooling rate, and the temperature is lowered from the maximum firing temperature to 1200 ° C. and 1100
A method for manufacturing semiconductor porcelain, wherein the temperature is lowered at a temperature lowering rate than the slow cooling rate in a subsequent temperature lowering process from a temperature of ° C.
【請求項6】 少なくとも、請求項1から請求項3のい
ずれかに記載の半導体磁器と、前記半導体磁器の表面に
形成された一対の端子電極とから構成されることを特徴
とする正特性サーミスタ。
6. A positive temperature coefficient thermistor comprising at least the semiconductor porcelain according to claim 1 and a pair of terminal electrodes formed on a surface of said semiconductor porcelain. .
JP15791995A 1995-06-23 1995-06-23 Semiconductor porcelain, manufacturing method thereof, and positive temperature coefficient thermistor Expired - Lifetime JP3198876B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15791995A JP3198876B2 (en) 1995-06-23 1995-06-23 Semiconductor porcelain, manufacturing method thereof, and positive temperature coefficient thermistor
TW085105783A TW316985B (en) 1995-06-23 1996-05-16
KR1019960022930A KR100341082B1 (en) 1995-06-23 1996-06-21 Semiconductor ceramics and method for producing same
CN96106935A CN1065219C (en) 1995-06-23 1996-06-22 Semiconductor ceramics and manufacturing method thereof
KR1020000002816A KR100353592B1 (en) 1995-06-23 2000-01-21 Semiconductor ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15791995A JP3198876B2 (en) 1995-06-23 1995-06-23 Semiconductor porcelain, manufacturing method thereof, and positive temperature coefficient thermistor

Publications (2)

Publication Number Publication Date
JPH0912355A JPH0912355A (en) 1997-01-14
JP3198876B2 true JP3198876B2 (en) 2001-08-13

Family

ID=15660334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15791995A Expired - Lifetime JP3198876B2 (en) 1995-06-23 1995-06-23 Semiconductor porcelain, manufacturing method thereof, and positive temperature coefficient thermistor

Country Status (4)

Country Link
JP (1) JP3198876B2 (en)
KR (2) KR100341082B1 (en)
CN (1) CN1065219C (en)
TW (1) TW316985B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145275B (en) * 2011-01-19 2013-09-11 颜建平 Tubular polymer reactor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154661A (en) * 1990-10-17 1992-05-27 Murata Mfg Co Ltd Semiconductor porcelain and its production
JPH07142207A (en) * 1993-11-16 1995-06-02 Teika Corp Barium titanate semiconductor ceramic and its manufacture

Also Published As

Publication number Publication date
KR100341082B1 (en) 2002-09-18
JPH0912355A (en) 1997-01-14
KR970003722A (en) 1997-01-28
KR100353592B1 (en) 2002-09-27
TW316985B (en) 1997-10-01
CN1142476A (en) 1997-02-12
CN1065219C (en) 2001-05-02

Similar Documents

Publication Publication Date Title
JP3319314B2 (en) Barium titanate-based semiconductor porcelain composition
US3962146A (en) Ptc thermistor composition and method of making the same
JP3198876B2 (en) Semiconductor porcelain, manufacturing method thereof, and positive temperature coefficient thermistor
JP2002029839A (en) Semiconductor ceramic and positive characteristic thermistor
JP3554786B2 (en) Semiconductor ceramic, degaussing positive temperature coefficient thermistor, degaussing circuit, and method of manufacturing semiconductor ceramic
JP3254316B2 (en) Barium titanate-based semiconductor porcelain composition
JPS6243522B2 (en)
JPH03155352A (en) Small direct current motor
JPH0922801A (en) Semiconductor ceramic
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
JPH1179833A (en) Barium titanate-based semiconductor ceramic
JPH07220902A (en) Barium titanate semiconductor ceramic
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JP2956131B2 (en) Strontium titanate-based semiconductor porcelain and method of manufacturing the same
JPH0212001B2 (en)
JP2940182B2 (en) Method for manufacturing semiconductor porcelain having positive temperature coefficient of resistance
JPH11139870A (en) Barium titanate-base semiconductor porcelain
JP2990679B2 (en) Barium titanate-based semiconductor porcelain composition
KR100246298B1 (en) Semiconductive Ceramic
JP3185301B2 (en) Varistor manufacturing method
JPH04338601A (en) Semiconductor porcelain having positive resistance temperature coefficient and manufacture thereof
JP3223462B2 (en) Method for producing reduction-reoxidation type varistor
JPH0561221B2 (en)
JPS6126207B2 (en)
JP2000016866A (en) Production of barium titanate-based semiconductor material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 12

EXPY Cancellation because of completion of term