JPH08124782A - Manufacture of semiconductor ceramic - Google Patents

Manufacture of semiconductor ceramic

Info

Publication number
JPH08124782A
JPH08124782A JP6282957A JP28295794A JPH08124782A JP H08124782 A JPH08124782 A JP H08124782A JP 6282957 A JP6282957 A JP 6282957A JP 28295794 A JP28295794 A JP 28295794A JP H08124782 A JPH08124782 A JP H08124782A
Authority
JP
Japan
Prior art keywords
compound
raw material
control agent
added
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6282957A
Other languages
Japanese (ja)
Other versions
JP2934388B2 (en
Inventor
Yoshiaki Iguchi
喜章 井口
Shintaro Hayashi
慎太郎 林
Noriyuki Kozu
典之 神津
Kiyoshi Tanaka
喜佳 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP6282957A priority Critical patent/JP2934388B2/en
Publication of JPH08124782A publication Critical patent/JPH08124782A/en
Application granted granted Critical
Publication of JP2934388B2 publication Critical patent/JP2934388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE: To make crystal grain diameter uniform and restrain variation of characteristics, by calcinating and molding semiconductor porcelain material wherein specific valence control agent is added to main component material containing at least SrCO3 and TiO2 , and baking the object at a temperature higher than the calcinating temperature. CONSTITUTION: Semiconductor porcelain material is prepared wherein at least one kind of valence control agent out of compound of Y and Ti, compound of La and Ti, and compound of Ce and Ti is added to the main component material containing at least SrCO3 and TiO2 . The semiconductor ceramic material is calcinated, and then a molded object containing the calcinated ceramic material is formed. The molded object is baked at a temperature higher than the calcinating temperature. As the valence control agent, at least one out of compound of Nb and Sr, compound of Ta and Sr, and compound of W and Sr can be used. Thereby the additive material easily forms solid solution in crystal, so that semiconductor ceramic wherein electric resistance is low and grain diameter is uniform can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコンデンサやバリスタに
使用されるSrTiO3 を主成分とする半導体磁器の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor porcelain containing SrTiO 3 as a main component used in capacitors and varistors.

【0002】[0002]

【従来の技術】SrTiO3 を主成分とする半導体磁器
の従来の典型的な製造方法においては、SrCO3 とT
iO2 との混合物を仮焼してSrTiO3 を予め作り、
このSrTiO3 に対してY、La、Ce、Nb、T
a、W等の金属酸化物から成る原子価制御剤(半導体化
剤)及びその他の添加剤を添加したもので成形体を作
り、この成形体を焼成した。
2. Description of the Related Art In a conventional typical manufacturing method of a semiconductor ceramic containing SrTiO 3 as a main component, SrCO 3 and T
The mixture with iO 2 is calcined to make SrTiO 3 in advance,
Y, La, Ce, Nb, T for this SrTiO 3
A molded body was made by adding a valence control agent (semiconductor agent) composed of a metal oxide such as a and W and other additives, and the molded body was fired.

【0003】[0003]

【発明が解決しようとする課題】半導体磁器を利用して
粒界絶縁型のコンデンサやバリスタを作成する場合、良
好な電気的特性を得るためには半導体化を促進して粒内
の電気抵抗を十分低くすること及びできるだけ粒子を均
一にして負荷を分散することが必要になる。前者の半導
体化を促進するためには、原子価制御剤の添加量を増や
すことが有効だが、単に添加量を増やしても、従来の方
法ではSrTiO3 結晶粒内への固溶量に限界があり、
粒内抵抗が十分に低くならないばかりか過剰な添加剤が
粒界に偏析し粒界の絶縁化を阻害し耐電圧を低下させ
た。また、後者の焼結した磁器の結晶粒径を均一にする
ためには、SrTiO3 粉体の粒度分布を細かくシャー
プにする必要があるが、上記従来方法では粉体の粒径が
仮焼温度に対して敏感で制御が困難であった。
When a grain boundary insulating type capacitor or varistor is produced by using a semiconductor porcelain, in order to obtain good electric characteristics, it is necessary to promote the formation of a semiconductor and increase the electrical resistance in the grain. It needs to be low enough and the particles should be as uniform as possible to distribute the load. In order to promote the former semiconductor formation, it is effective to increase the addition amount of the valence control agent, but even if the addition amount is simply increased, the conventional method has a limit in the amount of solid solution in SrTiO 3 crystal grains. Yes,
Not only did the intragranular resistance not become sufficiently low, but an excessive amount of additives segregated at the grain boundaries, impeding the insulation of the grain boundaries and lowering the withstand voltage. Further, in order to make the crystal grain size of the latter sintered porcelain uniform, it is necessary to make the grain size distribution of the SrTiO 3 powder fine and sharp. Was difficult to control.

【0004】そこで、本発明の目的は、磁器の結晶粒径
を均一にして特性のバラツキを抑えることができる半導
体磁器の製造方法を提供することにある。
Therefore, it is an object of the present invention to provide a method of manufacturing a semiconductor porcelain which can make the crystal grain size of the porcelain uniform and suppress variations in characteristics.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明は、少なくともSrCO3 とTiO2 とを含む
主成分原料に対してYとTiの化合物、LaとTiの化
合物、及びCeとTiの化合物の内の少なくとも1種の
原子価制御剤を添加した半導体磁器原料を用意し、この
半導体磁器原料を仮焼する工程と、前記仮焼された磁器
原料を含む成形体を形成する工程と、前記成形体を前記
仮焼工程の温度よりも高い温度で焼成する工程とを有す
る半導体磁器の製造方法に係わるものである。なお、請
求項3に示すように原子価制御剤としてNbとSrの化
合物、TaとSrの化合物及びWとSrの化合物の内の
少なくとも1種とすることができる。また、請求項5に
示すように原子価制御剤としてYとTiの化合物、La
とTiの化合物及びCeとTiの化合物の内少なくとも
1種と、NbとSrの化合物、TaとSrの化合物及び
WとSrの化合物の内の少なくとも1種との両方を使用
することができる。また、請求項2、4、6に示すよう
にCaCO3 を添加することができる。
The present invention for achieving the above object provides a compound of Y and Ti, a compound of La and Ti, and Ce with respect to a main component raw material containing at least SrCO 3 and TiO 2. A step of preparing a semiconductor porcelain raw material to which at least one valence control agent of Ti compounds is added, calcination of the semiconductor porcelain raw material, and a step of forming a compact containing the calcinated porcelain raw material And a step of firing the molded body at a temperature higher than the temperature of the calcination step, the present invention relates to a method for manufacturing a semiconductor porcelain. The valence control agent may be at least one of Nb and Sr compounds, Ta and Sr compounds, and W and Sr compounds. Further, as described in claim 5, a compound of Y and Ti as a valence control agent, La
It is possible to use both at least one of the compounds of Ti and Ti and the compounds of Ce and Ti, and at least one of the compounds of Nb and Sr, the compounds of Ta and Sr, and the compounds of W and Sr. Further, as shown in claims 2, 4, and 6, CaCO 3 can be added.

【0006】[0006]

【発明の作用及び効果】各請求項の発明の方法によれ
ば、添加物質がSrTiO3 結晶を構成するTi又はS
rと化合しているため、その合成過程で結晶内に容易に
固溶し添加量に相当する原子価制御効果を発揮し電気抵
抗の低い半導体磁器が得られる。さらに添加したTi化
合物又はSr化合物は合成粉体の粒成長を抑制する効果
があり、仮焼時の温度分布や仮焼条件の変動に対して安
定して細かくシャープな粒度分布を有する合成粉体が容
易に得られ、これを焼成したときに均一な粒径の半導体
磁器を得ることができる。なお、請求項2、4、6に示
すようにCaCO3 を添加するとバリスタ特性が得られ
る。
According to the method of the invention of each claim, the additive substance is Ti or S constituting SrTiO 3 crystal.
Since it is combined with r, a semiconductor porcelain having a low electric resistance can be obtained by easily forming a solid solution in the crystal during the synthesis process to exert a valence control effect corresponding to the added amount. Further, the added Ti compound or Sr compound has an effect of suppressing the grain growth of the synthetic powder, and has a fine and sharp particle size distribution which is stable and stable against changes in temperature distribution during calcination and changes in calcination conditions. Can be easily obtained, and when this is fired, a semiconductor ceramic having a uniform grain size can be obtained. When CaCO 3 is added as described in claims 2, 4 and 6, varistor characteristics are obtained.

【0007】[0007]

【第1の実施例】次に、本発明の第1の実施例に係わる
コンデンサの製造方法を説明する。半導体磁器原料を得
るために、SrTiO3 を得るための主成分としてのS
rCO3(炭酸ストロンチウム)及びTiO2 (酸化チ
タン)と、原子価制御剤(半導体化剤)としてのY(イ
ットリウム)、La(ランタン)、及びCe(セリウ
ム)とTi(チタン)との化合物であるY2 Ti
2 7 、La2 Ti2 7 、CeTiO4 と、比較例の
原子価制御剤としてのY2 3 とを用意し、これ等を次
の表1の組成となるように秤量した。
[First Embodiment] Next, a method of manufacturing a capacitor according to a first embodiment of the present invention will be described. In order to obtain a semiconductor porcelain raw material, S as a main component for obtaining SrTiO 3
rCO 3 (strontium carbonate) and TiO 2 (titanium oxide), Y (yttrium), La (lanthanum), and a compound of Ce (cerium) and Ti (titanium) as a valence control agent (semiconductor agent) A certain Y 2 Ti
2 O 7 , La 2 Ti 2 O 7 and CeTiO 4 and Y 2 O 3 as a valence control agent of Comparative Example were prepared and weighed so as to have the composition shown in Table 1 below.

【0008】 表1 試料NO. SrCO3 TiO2 2 Ti2 7 La2 Ti2 7 CeTiO4 2 3 1 49.9 49.9 0.05 2 49.9 49.9 0.05 3 49.9 49.9 0.1 4 49.9 49.9 0.025 0.025 5 49.9 49.9 0.025 0.05 6 49.9 49.9 0.015 0.01 0.05 7 49.9 50.0 0.05 なお、各成分はモル部で示されている。Table 1 Sample NO. SrCO 3 TiO 2 Y 2 Ti 2 O 7 La 2 Ti 2 O 7 CeTiO 4 Y 2 O 3 1 49.9 49.9 0.05 2 49.9 49.9 0.05 3 49.9 49.9 0.1 4 49.9 99.9 0.025 0.025 5 49.9 49.9 0.025 0.05 6 49.9 49.9 0.015 0.01 0 .05 7 49.9 50.0 0.05 Each component is shown in parts by mole.

【0009】次に各試料の原料粉体を湿式ポットミルで
混合した後に乾燥した。次に、この混合粉体を大気中
(酸化性雰囲気中)で1200℃、2時間仮焼した。
Next, the raw material powders of the respective samples were mixed in a wet pot mill and then dried. Next, this mixed powder was calcined in the air (in an oxidizing atmosphere) at 1200 ° C. for 2 hours.

【0010】次に仮焼して得られた主成分と原子価制御
剤との混合物における100モル部のSr(ストロンチ
ウム)に対して0.2モル部の割合になるように焼結助
剤としてのSiO2 を添加し、これを再び湿式ポットミ
ルで粉砕混合した後に乾燥した。
Next, as a sintering aid, a ratio of 0.2 parts by mole to 100 parts by mole of Sr (strontium) in the mixture of the main component and the valence control agent obtained by calcination is used as a sintering aid. Of SiO 2 was added, and this was again ground and mixed in a wet pot mill and then dried.

【0011】次に、この粉砕した混合物に有機バインダ
ーとしてポリビニルアルコール水溶液を10重量%添加
し、混合し、造粒し、この造粒物を1ton /cm2 の圧力
で成形して直径10mm、厚さ0.5mmの円板状成形
体を得た。次に、この成形体を炉に入れて容積比で
2 :N2 =1.5:98.5のH2 +N2 混合ガス雰
囲気(非酸化性雰囲気又は還元性雰囲気)中で1420
℃で2時間焼成して焼結体から成る図1に示すSrTi
3 を主成分とする粒界絶縁型半導体磁器1を得た。
Next, 10% by weight of an aqueous polyvinyl alcohol solution was added as an organic binder to the crushed mixture, mixed and granulated, and the granulated product was molded at a pressure of 1 ton / cm 2 to have a diameter of 10 mm and a thickness of 10 mm. A disk-shaped molded body having a size of 0.5 mm was obtained. Next, this compact was put in a furnace and put in a H 2 + N 2 mixed gas atmosphere (non-oxidizing atmosphere or reducing atmosphere) of H 2 : N 2 = 1.5: 98.5 in a volume ratio of 1420.
SrTi shown in Fig. 1 consisting of a sintered body after firing at ℃ for 2 hours.
A grain boundary insulation type semiconductor ceramic 1 containing O 3 as a main component was obtained.

【0012】次に、粒界絶縁化剤としてBi2 3 (酸
化ビスマス)に周知の糊成分を加えてペーストを作り、
これを図2に示すように磁器1の表面に塗布してペース
ト層2を形成し、これを炉に入れて大気中において12
00℃で2時間焼成し、磁器1の中にBi2 3 を拡散
させて粒界絶縁層を形成した。これにより得られた磁器
1aは図4に原理的に示すように結晶粒子10と粒界絶
縁層11とから成る。
Next, a known paste component is added to Bi 2 O 3 (bismuth oxide) as a grain boundary insulating agent to prepare a paste,
This is applied to the surface of the porcelain 1 to form a paste layer 2 as shown in FIG.
After firing at 00 ° C. for 2 hours, Bi 2 O 3 was diffused in the porcelain 1 to form a grain boundary insulating layer. The porcelain 1a thus obtained is composed of crystal grains 10 and a grain boundary insulating layer 11 as shown in principle in FIG.

【0013】次に、図3に示すように焼結体1aの一対
の主面に導電ペースト(銀ペースト)を塗布し、800
℃で焼付けて第1及び第2の電極3、4を形成し、各試
料のコンデンサを完成させた。なお、試料NO. 7の比較
例の場合には原子価制御剤としてのY2 3 を仮焼後の
原料にSiO2 と共に添加した。また、各試料をそれぞ
れ100個作った。
Next, as shown in FIG. 3, a conductive paste (silver paste) is applied to the pair of main surfaces of the sintered body 1a, and 800
The first and second electrodes 3 and 4 were formed by baking at ° C to complete the capacitors of the respective samples. In the case of the comparative example of sample No. 7, Y 2 O 3 as a valence control agent was added to the raw material after calcination together with SiO 2 . In addition, 100 samples were made for each sample.

【0014】次に試料NO. 1〜7のコンデンサの静電容
量C、及び静電容量Cのバラツキ、誘電損失tan δ、絶
縁破壊電圧BDVを測定した。なお、静電容量C及び誘
電損失tan δは、25℃、周波数1kHz、電圧1Vの
条件で測定した。また、静電容量Cのバラツキは次式に
従って求めた。 バラツキ=(静電容量Cの標準偏差/静電容量Cの平均
値)×100(%)
Next, the capacitance C of the capacitors of sample Nos. 1 to 7, the variation of the capacitance C, the dielectric loss tan δ, and the dielectric breakdown voltage BDV were measured. The capacitance C and the dielectric loss tan δ were measured under the conditions of 25 ° C., frequency 1 kHz and voltage 1V. Further, the variation of the capacitance C was obtained according to the following equation. Variation = (standard deviation of capacitance C / average value of capacitance C) x 100 (%)

【0015】 表2 試料NO. C(nF) Cのバラツキ(%) tan δ(%) BDV(V) 1 54.3 4.85 0.56 353 2 53.2 7.65 0.62 308 3 55.5 6.02 0.71 278 4 53.2 5.08 0.79 298 5 54.8 4.62 0.83 315 6 53.8 6.20 0.57 306 7 55.9 9.63 0.97 211Table 2 Sample NO. C (nF) C Variation (%) tan δ (%) BDV (V) 1 54.3 4.85 0.56 353 2 53.2 7.65 0.62 308 3 55.5 6.02 0.71 278 4 53.2 5.08 0.79 298 5 54.8 4.62 0.83 315 6 53.8 6.20 0.57 306 7 55.9 9.63 0.97 211

【0016】表2の本発明に従う試料NO. 1〜6と比較
例の試料NO. 7との比較から明らかなように本発明によ
れば従来と実質的に同一の静電容量値Cを維持しつつそ
のバラツキを小さくすることができ、且つ誘電損失を小
さくし、絶縁破壊電圧を大きくすることができる。
As can be seen from the comparison between the sample Nos. 1 to 6 according to the present invention and the sample No. 7 of the comparative example in Table 2, according to the present invention, the substantially same capacitance value C as the conventional one is maintained. In addition, the variation can be reduced, the dielectric loss can be reduced, and the dielectric breakdown voltage can be increased.

【0017】[0017]

【第2の実施例】次に、本発明に従うバリスタの製造方
法を説明する。バリスタを製作するために表1と同一の
組成の主成分と原子価制御剤との混合物を7種類用意し
た。次に、各混合物を第1の実施例と同様に湿式ポット
ミルで混合した後に乾燥した。次に、この混合粉体を大
気中(酸化性雰囲気中)で1200℃、2時間仮焼し
た。
Second Embodiment Next, a method of manufacturing a varistor according to the present invention will be described. In order to manufacture a varistor, seven types of mixtures of a main component having the same composition as in Table 1 and a valence control agent were prepared. Next, each mixture was mixed in a wet pot mill as in the first example, and then dried. Next, this mixed powder was calcined in the air (in an oxidizing atmosphere) at 1200 ° C. for 2 hours.

【0018】次に、仮焼して得られた主成分と原子価制
御剤との混合物におけるSr(ストロンチウム)100
モル部に対して10モル部の割合になるように追加主成
分としてのCaTiO3 (チタン酸カルシウム)と、
0.2モル部の割合になるように焼結助剤としてのSi
2 とを添加し、これを再び湿式ポットミルで粉砕混合
した後に乾燥し、第1の実施例の試料NO. 1〜7に対応
する試料NO. 8〜14の7つの試料を得た。
Next, Sr (strontium) 100 in the mixture of the main component obtained by calcination and the valence control agent is added.
CaTiO 3 (calcium titanate) as an additional main component so that the ratio of 10 parts by mole to the parts by mole,
Si as a sintering aid in a proportion of 0.2 parts by mole
O 2 was added, and the mixture was pulverized and mixed again in the wet pot mill and then dried to obtain seven samples No. 8 to 14 corresponding to the sample Nos. 1 to 7 in the first example.

【0019】次に、各試料の粉砕した混合物に有機バイ
ンダーとしてのポリビニールアルコール水溶液を5重量
%添加し、混合し、造粒し、この造粒物を1ton /cm2
の圧力で成形して直径10mm、厚さ0.5mmの円板
状成形体を得た。次に、この成形体を炉に入れて容積比
でH2 :N2 =1.5:98.5のH2 +N2 混合ガス
雰囲気(非酸化性雰囲気又は還元性雰囲気)中で142
0℃で2時間焼成して焼結体から成る図1と同様のSr
CaTiO3 を主成分とする粒界絶縁型半導体磁器を得
た。
Next, 5% by weight of an aqueous polyvinyl alcohol solution as an organic binder was added to the crushed mixture of each sample, mixed and granulated, and the granulated product was 1 ton / cm 2.
Was molded under pressure to obtain a disk-shaped molded body having a diameter of 10 mm and a thickness of 0.5 mm. Next, this molded body was placed in a furnace and placed in a H 2 + N 2 mixed gas atmosphere (non-oxidizing atmosphere or reducing atmosphere) having a volume ratio of H 2 : N 2 = 1.5: 98.5.
Sr similar to that in FIG. 1 composed of a sintered body after firing at 0 ° C. for 2 hours
A grain boundary insulation type semiconductor ceramic containing CaTiO 3 as a main component was obtained.

【0020】次に、Na2 O(酸化ナトリウム)に周知
の糊成分を5重量部加えて混合して均質な拡散組成物ペ
ーストを作り、これを図2と同様に磁器の表面に塗布し
てペースト層を形成し、これを炉に入れて大気中におい
て1100℃で2時間焼成し、磁器の中にNa2 Oを拡
散させた。これにより、粒界絶縁層が形成されると共に
NaまたはNa化合物が結晶の粒界に液相として拡散
し、隣接する粒子同志を強固に結合させる。
Next, 5 parts by weight of a known paste component was added to Na 2 O (sodium oxide) and mixed to prepare a homogeneous diffusion composition paste, which was applied to the surface of the porcelain in the same manner as in FIG. A paste layer was formed, which was placed in a furnace and fired in the atmosphere at 1100 ° C. for 2 hours to diffuse Na 2 O into the porcelain. As a result, the grain boundary insulating layer is formed, and Na or Na compound diffuses into the grain boundaries of the crystal as a liquid phase to firmly bond adjacent grains.

【0021】次に、図3と同様に焼結体の一対の主面に
導電ペースト(銀ペースト)を塗布し、焼付けて第1及
び第2の電極を形成し、試料NO. 8〜14の容量性バリ
スタ素子即ち半導体磁器バリスタを完成させた。
Next, as in FIG. 3, a conductive paste (silver paste) is applied to a pair of main surfaces of the sintered body and baked to form first and second electrodes, and sample Nos. 8 to 14 are prepared. A capacitive varistor element, that is, a semiconductor porcelain varistor was completed.

【0022】次に、試料NO. 8〜14のバリスタ電圧V
1m、バリスタ電圧V1mのバラツキ、非直線係数α、エネ
ルギー耐量Eを求めた。ここで、バリタ電圧V1mはバリ
スタ素子の一対の電極間に1mAを流した時の一対の電
極間電圧である。電圧非直線係数αはバリスタ素子に1
mAを流した時の一対の電極間の電圧V1mと10mAを
流した時の一対の電極間の電圧V10m とに基づいて次式
で求めた。 α=1/{log (V10m /V1m)} エネルギー耐量Eは電圧Vのパルスを10秒間隔で2回
バリスタ素子に印加し、バリスタ電圧の変化率が5%以
内に収まる電圧Vを求め、次式で決定した。 E=1/2(CV2 )(joul) なお、バリスタ電圧のバラツキは次式で求めた。 V1mのバラツキ=(V1mの標準偏差/V1mの平均値)×
100(%) 次の表は試料NO. 8〜14の測定結果を示す。
Next, the varistor voltage V of sample Nos. 8 to 14 was measured.
The variation of 1 m, the varistor voltage V1 m, the non-linear coefficient α, and the energy tolerance E were obtained. Here, the varitor voltage V1m is a voltage between the pair of electrodes when 1 mA is applied between the pair of electrodes of the varistor element. The voltage nonlinear coefficient α is 1 for the varistor element.
It was determined by the following formula based on the voltage V1m between the pair of electrodes when a current of mA was applied and the voltage V10m between the pair of electrodes when a current of 10 mA was applied. α = 1 / {log (V10m / V1m)} Energy tolerance E is obtained by applying a pulse of voltage V twice to the varistor element at intervals of 10 seconds to obtain voltage V within which the rate of change in varistor voltage is within 5%. It was decided by the formula. E = 1/2 (CV 2 ) (joul) The variation of the varistor voltage was calculated by the following formula. Variation of V1m = (standard deviation of V1m / average value of V1m) ×
100 (%) The following table shows the measurement results of sample Nos. 8-14.

【0023】 表3 試料NO. V1m(V) V1mのバラツキ(%) α E(joul) 8 33.2 4.58 10.78 13.5 9 29.8 5.45 10.85 12.5 10 31.5 6.26 11.22 16.0 11 30.8 6.56 10.89 13.0 12 29.3 7.28 11.03 18.5 13 31.5 4.85 10.85 14.5 14 27.3 9.79 10.58 7.0Table 3 Sample No. V1m (V) V1m Variation (%) α E (joul) 8 33.2 4.58 10.78 13.5 9 29.8 5.45 10.85 12.5 10 31.5 6.26 11.22 16.0 11 30.8 6.56 10.89 13.0 12 29.3 7.28 11.03 18.5 13 31.5 4.85 10.85 14. 5 14 27.3 9.79 10.58 7.0

【0024】表3の本発明に従う試料NO. 8〜13と比
較例の試料NO. 14との比較から明らかなように、本発
明によれば従来と実質的に同一のバリスタ電圧V1mと非
直線係数αを維持しつつ、バリスタ電圧のバラツキを小
さくし、且つエネルギー耐量を大幅に向上させることが
できる。
As is clear from the comparison between the sample Nos. 8 to 13 according to the present invention in Table 3 and the sample No. 14 of the comparative example, according to the present invention, the varistor voltage V1m and the non-linearity which are substantially the same as those of the conventional one are obtained. While maintaining the coefficient α, it is possible to reduce variations in the varistor voltage and significantly improve the energy tolerance.

【0025】[0025]

【第3の実施例】コンデンサにおいて、原子価制御剤と
してのNb(ニオブ)、Ta(タンタル)、W(タング
ステン)をSr化合物についても第1の実施例と同一の
作用効果が得られることを確かめるために、第1の実施
例におけるY2 Ti2 7 、La2 Ti2 7 、CeT
iO4 、Y2 3 をSr2 Nb2 7 、Sr2 Ta
2 O、SrWO4 、Nb2 5 に置換えた次の表4に示
す組成の7つの試料を用意した。
[Third Embodiment] In a capacitor, the same effects as those of the first embodiment can be obtained with Nb (niobium), Ta (tantalum), W (tungsten) and Sr compounds as valence control agents. To confirm, Y 2 Ti 2 O 7 , La 2 Ti 2 O 7 and CeT in the first embodiment are used.
iO 4 , Y 2 O 3 to Sr 2 Nb 2 O 7 , Sr 2 Ta
Seven samples having the compositions shown in the following Table 4 in which 2 O, SrWO 4 , and Nb 2 O 5 were substituted were prepared.

【0026】 表4 試料NO. SrCO3 TiO2 Sr2 Nb2 7 Sr2 Ta2 7 SrWO4 Nb2 5 15 49.9 49.9 0.05 16 49.9 49.9 0.05 17 49.9 49.9 0.1 18 49.9 49.9 0.025 0.025 19 49.9 49.9 0.025 0.05 20 49.9 49.9 0.015 0.01 0.05 21 50.0 49.9 0.05 なお、表4の組成はモル部で示されている。Table 4 Sample NO. SrCO 3 TiO 2 Sr 2 Nb 2 O 7 Sr 2 Ta 2 O 7 SrWO 4 Nb 2 O 5 15 49.9 49.9 0.05 16 16 49.9 49.9 0.05 17 49.9 49.9 0.1 18 49.9 49.9 0.025 0.025 19 49.9 49.9 0.025 0.05 20 49.9 49.9 0.015 0.01 0 .05 21 50.0 49.9 0.05 The composition in Table 4 is shown in parts by mole.

【0027】第1の実施例の表1の組成を表4の組成に
変えた他は第1の実施例と同一の方法でSrTiO3
主成分とする磁器コンデンサを作り、この特性を同一の
方法で測定したところ、次の表5の結果が得られた。
A porcelain capacitor containing SrTiO 3 as a main component was prepared in the same manner as in the first embodiment except that the composition shown in Table 1 of the first embodiment was changed to the composition shown in Table 4, and the characteristics were the same. When measured by the method, the results shown in Table 5 below were obtained.

【0028】 表5 試料NO. C(nF) Cのバラツキ(%) tan δ(%) BDV(V) 15 51.3 4.35 0.53 365 16 49.8 5.78 0.42 318 17 48.5 4.58 0.62 329 18 50.2 5.08 0.54 345 19 51.5 6.08 0.70 328 20 50.8 6.82 0.47 358 21 55.9 8.28 0.85 206Table 5 Sample NO. C (nF) C variation (%) tan δ (%) BDV (V) 15 51.3 4.35 0.53 365 16 49.8 5.78 0.42 318 17 48.5 4.58 0.62 329 18 18 50.2 5.08 0.54 345 19 51.5 6.08 0.70 328 20 50.8 6.82 0.47 358 21 55.9 8.28 0.85 206

【0029】表5の本発明に従う試料NO. 15〜20と
比較例の試料NO. 21との比較から明らかなように第1
の実施例と同一の効果が得られる。
As can be seen from the comparison of sample Nos. 15 to 20 according to the present invention in Table 5 with sample No. 21 of the comparative example,
The same effect as that of the embodiment can be obtained.

【0030】[0030]

【第4の実施例】バリスタにおいて、原子価制御剤とし
てのNb(ニオブ)、Ta(タンタル)、W(タングス
テン)をSr化合物としても第2の実施例と同一の作用
効果が得られることを確かめるために、第3の実施例に
おける表4の組成物と同一のものを用意し、第2の実施
例のY2 Ti2 7 、La2 Ti2 7 、CeTi
4 、Y2 3 をSr2 Nb2 7 、Sr2 Ta2 O、
SrWO4 、Nb2 5 に置換えた他は第2の実施例と
同一の方法で試料NO. 15〜21に対応する試料NO. 2
2〜28のSrCaTiO3 を主成分とする磁器バリス
タを作り、この特性を第2の実施例と同一の方法で測定
したところ、次の表6に示す結果が得られた。
[Fourth Embodiment] In the varistor, even if Nb (niobium), Ta (tantalum), and W (tungsten) as valence control agents are used as Sr compounds, the same effects as those of the second embodiment can be obtained. For confirmation, the same composition as in Table 4 in the third example was prepared, and Y 2 Ti 2 O 7 , La 2 Ti 2 O 7 , CeTi in the second example were prepared.
O 4 , Y 2 O 3 are replaced with Sr 2 Nb 2 O 7 , Sr 2 Ta 2 O,
Sample No. 2 corresponding to sample Nos. 15 to 21 in the same manner as in the second embodiment except that SrWO 4 and Nb 2 O 5 were replaced.
A porcelain varistor containing SrCaTiO 3 of 2 to 28 as a main component was prepared, and its characteristics were measured by the same method as in the second embodiment. The results shown in Table 6 below were obtained.

【0031】 表6 試料NO. V1m(V) V1mのバラツキ(%) α E(joul) 22 32.5 5.02 11.28 16.0 23 31.8 6.34 10.89 14.5 24 33.2 7.28 11.35 12.0 25 31.6 5.50 10.81 13.5 26 33.7 6.59 10.96 11.5 27 31.2 4.81 11.05 13.0 28 29.7 9.83 10.02 7.5Table 6 Sample NO. V1m (V) V1m variation (%) α E (joul) 22 32.5 5.02 11.28 16.0 23 31.8 6.34 10.89 14.5 24 33.2 7.28 11.35 12.0 25 31.6 5.50 10.81 13.5 26 33.7 6.59 10.96 11.5 27 31.2 4.81 11.05 13. 0 28 29.7 9.83 10.02 7.5

【0032】表6の本発明に従う試料NO. 22〜27と
比較例の試料NO. 28との比較から明らかなようにこの
第4の実施例によっても第2の実施例と同一の効果を得
ることができる。
As is clear from the comparison between the sample Nos. 22 to 27 according to the present invention in Table 6 and the sample No. 28 of the comparative example, the same effect as that of the second example can be obtained by the fourth embodiment. be able to.

【0033】[0033]

【第5の実施例】第1の実施例の表1に示す組成に、第
3の実施例の原子価制御剤としてのSr2 Nb2 7
Sr2 Ta2 7 、SrWO4 を追加しても第1の実施
例と同様な効果が得られることを確かめるために次の表
7に示す組成物を用意した。なお、表7において組成は
モル部で示される。
[Fifth Embodiment] In the composition shown in Table 1 of the first embodiment, Sr 2 Nb 2 O 7 as a valence control agent of the third embodiment,
The compositions shown in the following Table 7 were prepared in order to confirm that the same effect as that of the first example can be obtained even if Sr 2 Ta 2 O 7 and SrWO 4 are added. In Table 7, the composition is shown in parts by mole.

【0034】[0034]

【表1】 [Table 1]

【0035】第1の実施例における表1の組成を表7の
組成に変えた他は第1の実施例と同一の方法で試料NO.
29〜35のSrTiO3 を主成分とする磁器コンデン
サを作り、この特性を第1の実施例と同一の方法で測定
したところ、次の表8の結果が得られた。
Sample No. 1 was prepared in the same manner as in the first embodiment except that the composition shown in Table 1 in the first embodiment was changed to the composition shown in Table 7.
When 29 to 35 porcelain capacitors containing SrTiO 3 as a main component were made and their characteristics were measured by the same method as in the first embodiment, the results shown in Table 8 below were obtained.

【0036】 表8 試料NO. C(nF) Cのバラツキ(%) tan δ(%) BDV(V) 29 51.3 5.55 0.73 323 30 49.2 5.35 0.88 318 31 51.5 5.72 0.82 319 32 50.2 5.28 0.79 332 33 51.8 5.61 0.78 319 34 50.8 5.13 0.75 316 35 55.9 9.25 0.92 278Table 8 Sample NO. C (nF) C variation (%) tan δ (%) BDV (V) 29 51.3 5.55 0.73 323 30 49.2 5.35 0.88 318 31 51.5 5.72 0.82 319 32 50.2 5.28 0.79 332 33 51.8 5.61 0.78 319 34 50.8 5.13 0.75 316 35 55.9 925 0.92 278

【0037】表8の本発明に従う試料NO. 29〜34と
比較例の試料NO. 35との比較から明らかなように第5
の実施例によっても第1の実施例と同一の効果が得られ
る。
As can be seen from the comparison of the sample Nos. 29 to 34 according to the present invention in Table 8 with the sample No. 35 of the comparative example,
The same effect as that of the first embodiment can be obtained by the embodiment.

【0038】[0038]

【第6の実施例】第5の実施例における表8の試料NO.
29〜34の組成物に基づいてバリスタを作製すること
ができることを確かめるため、即ち、第2の実施例の原
子価制御剤に更にSr2 Nb2 7 、Sr2 Ta
2 7 、SrWO4 を追加しても第2の実施例と同様な
効果が得られることを確かめるために表7と同一の組成
物を用意し、第2の実施例における表1に従う組成を表
7の組成に変えた他は第2の実施例と同一の方法で試料
NO. 36〜42のSrCaTiO3 を主成分とする磁器
バリスタを作り、この特性を第2の実施例と同一の方法
で測定したところ、次の表9の結果が得られた。
[Sixth Embodiment] The sample No. of Table 8 in the fifth embodiment.
To confirm that varistors can be made based on the compositions of 29-34, ie the valency control agent of the second example is further supplemented with Sr 2 Nb 2 O 7 , Sr 2 Ta.
In order to confirm that the same effect as in the second embodiment can be obtained by adding 2 O 7 and SrWO 4 , the same composition as in Table 7 was prepared, and the composition according to Table 1 in the second embodiment was prepared. Samples were prepared in the same manner as in the second embodiment except that the composition shown in Table 7 was changed.
When a porcelain varistor containing SrCaTiO 3 of NO. 36 to 42 as a main component was prepared and its characteristics were measured by the same method as in the second embodiment, the results shown in Table 9 below were obtained.

【0039】 表9 試料NO. V1m(V) V1mのバラツキ(%) α E(joul) 36 28.2 6.32 11.22 15.37 37 27.8 6.48 11.06 14.29 38 28.4 6.56 11.35 15.78 39 26.8 6.27 11.33 13.45 40 27.3 6.19 11.43 14.67 41 26.9 6.57 11.25 16.71 42 31.3 9.32 10.88 8.27Table 9 Sample NO. V1m (V) V1m variation (%) α E (joul) 36 28.2 6.32 11.22 15.37 37 37 27.8 6.48 11.06 14.29 38 28.4 6.56 11.35 15.78 39 26.8 6.27 11.33 13.45 40 27.3 6.19 11.43 14.67 41 26.9 6.57 11.25 16. 71 42 31.3 9.32 10.88 8.27

【0040】表9の本発明に従う試料NO. 36〜41と
比較例の試料NO. 42との比較から明らかなように第6
の実施例によっても第2の実施例と同一の効果が得られ
る。
As can be seen from the comparison of sample Nos. 36 to 41 according to the present invention in Table 9 with sample No. 42 of the comparative example,
The same effect as that of the second embodiment can be obtained by this embodiment.

【0041】[0041]

【変形例】本発明は上述の実施例に限定されるものでな
く、例えば次の変形が可能なものである。 (1) 主成分はSrTiO3 、SrCaTiO3 に限
ることなく、ABO3(但しAはSr、Ca、Ba、M
gの内の1種又は複数種の元素、BはTi、Zrの1種
又は複数種の元素)で示すことができるチタンストロン
チウム系の成分とすることができる。 (2) 原子価制御剤として、Y、La、CeのTi化
合物及び/又はNb、Ta、WのSr化合物に加えて、
W、Ta、Nb及び希土類元素の酸化物の1種又は複数
種を使用することができる。 (3) 100モル部の主成分に対する原子価制御剤の
添加量を好ましくは0.01〜5.00モル部の範囲で
変えることができる。 (4) 磁器材料に対する焼結助剤としてAl2 3
SiO2 、CuO、MnO2 、Ag2 Oから選択された
1種又は複数種を100モル部のSrTiO3又は前述
のABO3 から成る主成分に対して好ましくは0.05
〜0.50モル部の範囲で添加することができる。 (5) 粒界の絶縁化剤としてのBi2 3 の代りにP
3 4 、B2 3 を使用すること、更にこれ等とMn
2 、CuO、Tl2 3 、Sb2 5 、Fe2 3
の金属酸化物から選択された1種又は複数種を使用して
金属酸化ペーストを作り、これを磁器に塗布することが
できる。 (6) 粒界絶縁化剤としてのBi2 3 、Pb
3 4 、B2 3 、MnO2、CuO等をペーストで塗
布する代りに焼成前の磁器原料に混合することができ
る。この場合には、焼成後に酸化雰囲気で熱処理する工
程(再酸化処理工程)を設ける。 (7) 磁器の製造の条件を種々変えることができる。
例えば、仮焼を1000〜1200℃の範囲で1〜5時
間とすること、非酸化性雰囲気での焼成を1300〜1
500℃、1〜5時間とすること、及び焼成後の再酸化
処理又は粒界絶縁化剤の拡散処理を800〜1300
℃、1〜5時間とすることができる。 (8) バリスタを作る時に添加するCaCO3 を仮焼
前にSrCO3 、TiO2 に対して添加してもよい。 (9) 磁器グリーンシート(生シート)に導電ペース
トを印刷したものを積層して焼成し、積層素子を作る場
合にも本発明を適用できる。
[Modifications] The present invention is not limited to the above-described embodiment, and for example, the following modifications are possible. (1) The main component is not limited to SrTiO 3 and SrCaTiO 3 , but ABO 3 (where A is Sr, Ca, Ba, M
One or more elements of g, B is one or more elements of Ti and Zr), and may be a titanium strontium-based component. (2) In addition to the Ti compound of Y, La and Ce and / or the Sr compound of Nb, Ta and W as a valence control agent,
One or more kinds of oxides of W, Ta, Nb and rare earth elements can be used. (3) The addition amount of the valency control agent to 100 parts by mol of the main component can be changed preferably in the range of 0.01 to 5.00 parts by mol. (4) Al 2 O 3 as a sintering aid for porcelain materials,
One or more selected from SiO 2 , CuO, MnO 2 and Ag 2 O is preferably added to the main component consisting of 100 parts by mole of SrTiO 3 or ABO 3 mentioned above.
It can be added in the range of 0.50 mol part. (5) Instead of Bi 2 O 3 as an insulating agent for grain boundaries, P
The use of b 3 O 4 and B 2 O 3, as well as these and Mn
Forming a metal oxide paste using one or more kinds selected from metal oxides such as O 2 , CuO, Tl 2 O 3 , Sb 2 O 5 , Fe 2 O 3 and applying it to porcelain. You can (6) Bi 2 O 3 , Pb as grain boundary insulating agent
Instead of applying 3 O 4 , B 2 O 3 , MnO 2 , CuO, etc. with a paste, it can be mixed with the porcelain raw material before firing. In this case, a step of performing heat treatment in an oxidizing atmosphere after firing (reoxidation treatment step) is provided. (7) The manufacturing conditions of porcelain can be variously changed.
For example, calcination is performed in the range of 1000 to 1200 ° C. for 1 to 5 hours, and calcination in a non-oxidizing atmosphere is 1300 to 1
The temperature is set to 500 ° C. for 1 to 5 hours, and the reoxidation treatment after firing or the diffusion treatment of the grain boundary insulating agent is performed at 800 to 1300.
The temperature may be 1 ° C for 1 to 5 hours. (8) CaCO 3 added when making a varistor may be added to SrCO 3 and TiO 2 before calcination. (9) The present invention can be applied to a case where a porcelain green sheet (green sheet) on which a conductive paste is printed is laminated and fired to form a laminated element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係わる磁器焼結体を示す正面
図である。
FIG. 1 is a front view showing a porcelain sintered body according to an example of the present invention.

【図2】図1の焼結体に拡散組成物のペーストを塗布し
たものを示す正面図である。
FIG. 2 is a front view showing the sintered body of FIG. 1 coated with a paste of a diffusion composition.

【図3】完成したコンデンサを示す正面図である。FIG. 3 is a front view showing a completed capacitor.

【図4】磁器の内部構造を原理的に示す断面図である。FIG. 4 is a sectional view showing in principle the internal structure of a porcelain.

【符号の説明】[Explanation of symbols]

1a 磁器 3、4 電極 1a Porcelain 3, 4 electrodes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 喜佳 東京都台東区上野6丁目16番20号 太陽誘 電株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshika Tanaka 6-16-20 Ueno Taito-ku, Tokyo Inside Taiyo Induction Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくともSrCO3 とTiO2 とを含
む主成分原料に対してYとTiの化合物、LaとTiの
化合物、及びCeとTiの化合物の内の少なくとも1種
の原子価制御剤を添加した半導体磁器原料を用意し、こ
の半導体磁器原料を仮焼する工程と、 前記仮焼された磁器原料を含む成形体を形成する工程
と、 前記成形体を前記仮焼工程の温度よりも高い温度で焼成
する工程とを有することを特徴とする半導体磁器の製造
方法。
1. A valence control agent of at least one of a compound of Y and Ti, a compound of La and Ti, and a compound of Ce and Ti is added to a main component material containing at least SrCO 3 and TiO 2. A step of preparing the added semiconductor porcelain raw material, calcination of the semiconductor porcelain raw material, a step of forming a compact containing the calcined porcelain raw material, and a temperature of the compact higher than the calcination step And a step of firing at a temperature.
【請求項2】 少なくともSrCO3 とTiO2 とを含
む主成分原料に対してYとTiの化合物、LaとTiの
化合物、及びCeとTiの化合物の内の少なくとも1種
の原子価制御剤を添加した半導体磁器原料を用意し、こ
の半導体磁器原料を仮焼する工程と、 前記仮焼された磁器原料に少なくともCaCO3 を添加
して成形体を形成する工程と、 前記成形体を前記仮焼工程の温度よりも高い温度で焼成
する工程とを有することを特徴とする半導体磁器の製造
方法。
2. A valence control agent of at least one of a compound of Y and Ti, a compound of La and Ti, and a compound of Ce and Ti is added to a main component material containing at least SrCO 3 and TiO 2. A step of preparing the added semiconductor porcelain raw material, calcination of the semiconductor porcelain raw material, a step of adding at least CaCO 3 to the calcinated porcelain raw material to form a compact, and the calcination of the compact And a step of firing at a temperature higher than the temperature of the step.
【請求項3】 少なくともSrCO3 とTiO2 とを含
む主成分原料に対してNbとSrの化合物、TaとSr
の化合物、及びWとSrの化合物の内の少なくとも1種
の原子価制御剤を添加した半導体磁器原料を用意し、こ
の半導体磁器原料を仮焼する工程と、 前記仮焼された磁器原料を含む成形体を形成する工程
と、 前記成形体を前記仮焼工程の温度よりも高い温度で焼成
する工程とを有することを特徴とする半導体磁器の製造
方法。
3. A compound of Nb and Sr, Ta and Sr with respect to a main material containing at least SrCO 3 and TiO 2.
A semiconductor porcelain raw material to which at least one valence control agent of the compound of No. 1 and a compound of W and Sr is added, and calcining the semiconductor porcelain raw material, and including the calcined porcelain raw material A method of manufacturing a semiconductor porcelain, comprising: a step of forming a molded body; and a step of firing the molded body at a temperature higher than the temperature of the calcination step.
【請求項4】 少なくともSrCO3 とTiO2 とを含
む主成分原料に対してNbとSrの化合物、TaとSr
の化合物、及びWとSrの化合物の内の少なくとも1種
の原子価制御剤を添加した半導体磁器原料を用意し、こ
の半導体磁器原料を仮焼する工程と、 前記仮焼された磁器原料に少なくともCaCO3 を添加
して成形体を形成する工程と、 前記成形体を前記仮焼工程の温度よりも高い温度で焼成
する工程とを有することを特徴とする半導体磁器の製造
方法。
4. A compound of Nb and Sr, Ta and Sr with respect to a main component material containing at least SrCO 3 and TiO 2.
And a valence control agent of at least one of the compounds of W and Sr are added to prepare a semiconductor porcelain raw material, and the semiconductor porcelain raw material is calcined; A method of manufacturing a semiconductor porcelain, comprising: a step of forming a compact by adding CaCO 3 ; and a step of firing the compact at a temperature higher than the temperature of the calcination step.
【請求項5】 少なくともSrCO3 とTiO2 とを含
む主成分原料に対してYとTiの化合物、LaとTiの
化合物、及びCeとTiの化合物の内の少なくとも1種
の原子価制御剤とNbとSrの化合物、TaとSrの化
合物及びWとSrの化合物の内の少なくとも1種の原子
価制御剤とを添加した半導体磁器原料を用意し、この半
導体磁器原料を仮焼する工程と、 前記仮焼された磁器原料を含む成形体を形成する工程
と、 前記成形体を前記仮焼工程の温度よりも高い温度で焼成
する工程とを有することを特徴とする半導体磁器の製造
方法。
5. A valence control agent of at least one of a compound of Y and Ti, a compound of La and Ti, and a compound of Ce and Ti with respect to a main component raw material containing at least SrCO 3 and TiO 2. A step of preparing a semiconductor porcelain raw material to which a compound of Nb and Sr, a compound of Ta and Sr, and at least one valence control agent of compounds of W and Sr are added, and calcination of the semiconductor porcelain raw material; A method of manufacturing a semiconductor porcelain, comprising: a step of forming a formed body containing the calcined porcelain raw material; and a step of firing the formed body at a temperature higher than the temperature of the calcination step.
【請求項6】 少なくともSrCO3 とTiO2 とを含
む主成分原料に対してYとTiの化合物、LaとTiの
化合物、及びCeとTiの化合物の内の少なくとも1種
の原子価制御剤とNbとSrの化合物、TaとSrの化
合物及びWとSrの化合物の内の少なくとも1種の原子
価制御剤とを添加した半導体磁器原料を用意し、この半
導体磁器原料を仮焼する工程と、 前記仮焼された磁器原料に少なくともCaCO3 を添加
して成形体を形成する工程と、 前記成形体を前記仮焼工程の温度よりも高い温度で焼成
する工程とを有することを特徴とする半導体磁器の製造
方法。
6. A valence control agent of at least one of a compound of Y and Ti, a compound of La and Ti, and a compound of Ce and Ti, with respect to a main component raw material containing at least SrCO 3 and TiO 2. A step of preparing a semiconductor porcelain raw material to which a compound of Nb and Sr, a compound of Ta and Sr, and at least one valence control agent of compounds of W and Sr are added, and calcination of the semiconductor porcelain raw material; A semiconductor comprising: a step of forming a compact by adding at least CaCO 3 to the calcined porcelain raw material; and a step of firing the compact at a temperature higher than the temperature of the calcining step. Method of manufacturing porcelain.
JP6282957A 1994-10-20 1994-10-20 Manufacturing method of semiconductor porcelain Expired - Fee Related JP2934388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6282957A JP2934388B2 (en) 1994-10-20 1994-10-20 Manufacturing method of semiconductor porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6282957A JP2934388B2 (en) 1994-10-20 1994-10-20 Manufacturing method of semiconductor porcelain

Publications (2)

Publication Number Publication Date
JPH08124782A true JPH08124782A (en) 1996-05-17
JP2934388B2 JP2934388B2 (en) 1999-08-16

Family

ID=17659320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6282957A Expired - Fee Related JP2934388B2 (en) 1994-10-20 1994-10-20 Manufacturing method of semiconductor porcelain

Country Status (1)

Country Link
JP (1) JP2934388B2 (en)

Also Published As

Publication number Publication date
JP2934388B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
US3962146A (en) Ptc thermistor composition and method of making the same
US4308571A (en) Low temperature-sinterable dielectric composition and thick film capacitor using the same
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
JP2934388B2 (en) Manufacturing method of semiconductor porcelain
JPS623569B2 (en)
JP2614228B2 (en) Ceramic forming composition, semiconductor porcelain base and dielectric porcelain base using the same, and capacitor
KR19990083131A (en) Semiconducting ceramic and semiconducting ceramic electronic element
JPS6043651B2 (en) Composition for semiconductor ceramic capacitors
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JPH0785459B2 (en) Grain boundary insulation type semiconductor ceramic capacitor
JP2707706B2 (en) Grain boundary insulating semiconductor ceramic capacitor and method of manufacturing the same
JPH0687364B2 (en) High dielectric constant porcelain composition
JP2990627B2 (en) Varistor manufacturing method
JP2900687B2 (en) Semiconductor porcelain composition and method for producing the same
JPH0521265A (en) Manufacture of capacitor
JP2506286B2 (en) Method for manufacturing grain boundary insulated semiconductor porcelain
JPH0761897B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPH0761896B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPS6126207B2 (en)
JPH05345663A (en) Semiconductor ceramic and its production
JPH0332009A (en) Capacitor and manufacture thereof
JPH0472368B2 (en)
JPS6044816B2 (en) Composition for semiconductor ceramic capacitors
JPS6328491B2 (en)
JPH0761898B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990511

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees