JPH09330805A - Positive characteristic thermistor and manufacture thereof - Google Patents

Positive characteristic thermistor and manufacture thereof

Info

Publication number
JPH09330805A
JPH09330805A JP8148813A JP14881396A JPH09330805A JP H09330805 A JPH09330805 A JP H09330805A JP 8148813 A JP8148813 A JP 8148813A JP 14881396 A JP14881396 A JP 14881396A JP H09330805 A JPH09330805 A JP H09330805A
Authority
JP
Japan
Prior art keywords
mntio
temperature coefficient
positive temperature
coefficient thermistor
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8148813A
Other languages
Japanese (ja)
Inventor
Taiji Goto
泰司 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8148813A priority Critical patent/JPH09330805A/en
Publication of JPH09330805A publication Critical patent/JPH09330805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive characteristic thermistor which has a positive temperature coefficient of resistance and is used as a heater or a switching element, and which is low in its resistive value and large in its breakdown voltage, in particular, at room temperature. SOLUTION: In a method for preparing a composition contains barium titanate or its solid solution as its main component and at least one of rate earth elements and Nb, Bi, Sb oxides and SiO2 , Al2 O3 , and MnTiO3 as its subcomponents; MnTiO3 is added and mixed after being calcined and controlled, so that an average particle diameter ratio between the calcined crushed powder and MnTiO3 is 0.5-1.0, thereby forming a positive characteristic thermistor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、室温での抵抗値が
低く、耐電圧の高い正特性サーミスタおよびその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive temperature coefficient thermistor having a low resistance value at room temperature and a high withstand voltage, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】低抵抗化を達成しながら抵抗温度係数を
向上させるために、チタン酸バリウムを主成分とする焼
結体をMn,Feなどの遷移元素を含む溶液に浸漬して
正特性サーミスタを作製していた。
2. Description of the Related Art In order to improve resistance temperature coefficient while achieving low resistance, a positive temperature coefficient thermistor is prepared by immersing a sintered body containing barium titanate as a main component in a solution containing transition elements such as Mn and Fe. Was being made.

【0003】[0003]

【発明が解決しようとする課題】PTC特性の発現部で
ある粒界付近にMn,Feなどの遷移元素を局在させる
と、アクセプター元素として働き、粒界でのポテンシャ
ル障壁が大きくなるためPTC特性が向上すると考えら
れている。これらの元素が粒界に局在せず、粒内に存在
すると粒内成分との原子価補償を起こし、比抵抗が高く
なるためいかにこれらの元素を粒界付近に局在させるか
が課題である。しかしながら上記方法では、溶液が焼結
体内部まで十分に浸透しないため、焼結体内部と表面と
でPTC特性に差が生じるため耐電圧が低下したり、特
性のバラツキが大きくなるなどの問題点を有していた。
When a transition element such as Mn or Fe is localized near the grain boundary where the PTC characteristic develops, it acts as an acceptor element and the potential barrier at the grain boundary becomes large, so the PTC characteristic is increased. Is believed to improve. If these elements do not localize at the grain boundaries and exist in the grains, valence compensation with the intragranular components occurs and the resistivity increases, so the issue is how to localize these elements near the grain boundaries. is there. However, in the above method, since the solution does not sufficiently penetrate into the inside of the sintered body, there is a difference in PTC characteristics between the inside and the surface of the sintered body, which causes a decrease in withstand voltage and a large variation in characteristics. Had.

【0004】そこで本発明は、室温での抵抗値が小さ
く、温度係数および耐電圧の向上した正特性サーミスタ
を提供することを目的とするものである。
Therefore, an object of the present invention is to provide a positive temperature coefficient thermistor having a small resistance value at room temperature and an improved temperature coefficient and withstand voltage.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明の正特性サーミスタは、チタン酸バリウムを有
する主成分と、副成分としての希土類元素、Nb,S
b,Biの酸化物の中から少なくとも一種類と、SiO
2,Al23,MnTiO3とから素子を形成したもので
あり、これにより上記目的が達成できる。
To achieve this object, a positive temperature coefficient thermistor of the present invention comprises a main component containing barium titanate and a rare earth element, Nb, S as a subcomponent.
At least one of the oxides of b and Bi, and SiO
An element is formed from 2 , Al 2 O 3 , and MnTiO 3, and the above object can be achieved by this.

【0006】[0006]

【発明の実施の形態】本発明の請求項1に記載の発明
は、チタン酸バリウム又はその固溶体からなる主成分
に、副成分として、希土類元素あるいはNb,Sb,B
iの酸化物のうち少なくとも一種類、さらにSiO2
Al23,MnTiO3とを含有させた素子と、この素
子の表面に形成した少なくとも一対の電極とを備えた正
特性サーミスタであり、Mnの粒内への拡散を抑制でき
るため、低抵抗でしかもPTC特性の大きな素子を得る
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is characterized in that a rare earth element or Nb, Sb, B as a main component comprising barium titanate or a solid solution thereof is added as a subcomponent.
at least one of the oxides of i, SiO 2 ,
A positive temperature coefficient thermistor including an element containing Al 2 O 3 and MnTiO 3 and at least a pair of electrodes formed on the surface of the element, which has a low resistance because Mn can be suppressed from diffusing into the grain. Moreover, it is possible to obtain an element having a large PTC characteristic.

【0007】請求項2に記載の発明は、MnTiO
3は、主成分100モルに対して0.03〜0.2モル
含有させた請求項1に記載の正特性サーミスタであり、
比抵抗が極端に大きくなるのを防ぎ、十分なPTC特性
を得ることができる。
The invention according to claim 2 is directed to MnTiO 3.
3 is the positive temperature coefficient thermistor according to claim 1, which is contained in an amount of 0.03 to 0.2 mol based on 100 mol of the main component,
It is possible to prevent the specific resistance from becoming extremely large and obtain sufficient PTC characteristics.

【0008】請求項3に記載の発明は、チタン酸バリウ
ムを有する主成分に、副成分として希土類元素あるいは
Nb,Sb,Biの酸化物の中から少なくとも一種類
と、SiO2,Al23を添加した原料を仮焼し、次に
この原料にMnTiO3を添加して粉砕し、次いでこの
原料を成形、焼成して焼結体を得、その後この焼結体表
面に少なくとも一対の電極を形成する成特性サーミスタ
の製造方法であり、より粒界付近にMnを局在させるこ
とができるので、PTC効果の高い正特性サーミスタを
得ることができる。
According to a third aspect of the present invention, the main component containing barium titanate, at least one of rare earth elements or oxides of Nb, Sb, Bi as a sub-component, and SiO 2 , Al 2 O 3 are used. The raw material added with is calcined, then MnTiO 3 is added to the raw material and crushed, and then the raw material is molded and fired to obtain a sintered body, and then at least a pair of electrodes is formed on the surface of the sintered body. This is a method of manufacturing a characteristic thermistor to be formed, and Mn can be localized near the grain boundary, so that a positive characteristic thermistor having a high PTC effect can be obtained.

【0009】請求項4に記載の発明は、粉砕後のMnT
iO3の平均粒子径をDB、MnTiO3以外の原料の平
均粒子径をDAとすると、DA/DBが0.5〜1.0と
なるようにする請求項3に記載の正特性サーミスタの製
造方法であり、粒内成分とMnTiO3との反応が抑制
され、より低抵抗でPTC効果の大きな正特性サーミス
タを得ることが出来る。
The invention according to claim 4 is the MnT after pulverization.
The average particle size of iO 3 is D B , and the average particle size of raw materials other than MnTiO 3 is D A , D A / D B is set to 0.5 to 1.0. This is a method of manufacturing a characteristic thermistor, in which the reaction between intragranular components and MnTiO 3 is suppressed, and a positive temperature coefficient thermistor having a lower resistance and a large PTC effect can be obtained.

【0010】請求項5に記載の発明は、MnTiO3
添加量は、主成分100モルに対して0.03〜0.2
モルである請求項3に記載の正特性サーミスタの製造方
法であり、比抵抗が極端に大きくなるのを防ぎ、十分な
PTC特性を得ることができる。
According to a fifth aspect of the present invention, the amount of MnTiO 3 added is 0.03 to 0.2 with respect to 100 mol of the main component.
The method for producing a positive temperature coefficient thermistor according to claim 3, wherein the molar ratio is molar, and it is possible to prevent the specific resistance from becoming extremely large and obtain sufficient PTC characteristics.

【0011】以下本発明の実施の形態について説明す
る。 (実施の形態1)まず、(Ba0.68Pb0.22Ca0.10
TiO3+0.002Y23+0.01Al23+0.
02SiO2+MnTiO3の組成となるようにBaCO
3,PbO,CaCO3,TiO2,Y23,Al23
SiO2をそれぞれ秤量し、MnTiO3については主成
分(Ba0.68Pb0.22Ca0.10)TiO3 1molに対
して(表1)のように秤量し、ボールミルにて湿式混合
する。
An embodiment of the present invention will be described below. (Embodiment 1) First, (Ba 0.68 Pb 0.22 Ca 0.10 )
TiO 3 + 0.002Y 2 O 3 + 0.01Al 2 O 3 +0.
02CO 2 + MnTiO 3 so that the composition is BaCO
3 , PbO, CaCO 3 , TiO 2 , Y 2 O 3 , Al 2 O 3 ,
Each SiO 2 is weighed, and for MnTiO 3 , 1 mol of the main component (Ba 0.68 Pb 0.22 Ca 0.10 ) TiO 3 is weighed as shown in (Table 1) and wet-mixed with a ball mill.

【0012】[0012]

【表1】 [Table 1]

【0013】次にこの混合物を乾燥した後、1050℃
で2時間仮焼する。その後再びボールミルにて湿式粉砕
し、乾燥する。次にこの乾燥粉砕粉にポリビニルアルコ
ールからなるバインダーを添加、造粒し、1平方センチ
メートル当たり800kgの圧力で直径20mm、厚さ2.
5mmの円板状に成形した。次に1300℃で2時間本焼
成を行い、焼結体を得た。この焼結体にNiメッキを形
成した後、銀ペーストを印刷塗布、焼付けし、電極とし
た。次に、このように作製した試料の評価として室温抵
抗値R25、抵抗温度係数α、耐電圧VBDの測定を行っ
た。その結果を(表1)に示した。
Next, after drying this mixture,
And calcine for 2 hours. After that, it is wet-milled again with a ball mill and dried. Next, a binder made of polyvinyl alcohol was added to this dry pulverized powder and granulated, and the pressure was 800 kg per square centimeter, the diameter was 20 mm, and the thickness was 2.
It was molded into a 5 mm disk shape. Next, main firing was performed at 1300 ° C. for 2 hours to obtain a sintered body. After Ni plating was formed on this sintered body, a silver paste was applied by printing and baked to form an electrode. Next, the room temperature resistance value R 25 , the temperature coefficient of resistance α, and the withstand voltage V BD were measured as the evaluation of the sample thus manufactured. The results are shown in (Table 1).

【0014】ここで、抵抗温度係数は次式に従い求め
た。 〔In(R2/R1)/(T2−T1)〕×100(%/
℃) 但し、R1,T1;R25の2倍の抵抗値およびその時の温
度 R2,T2;(T1+30)℃の抵抗値およびその温度 である。
Here, the temperature coefficient of resistance was determined according to the following equation. [In (R 2 / R 1) / (T 2 -T 1) ] × 100 (% /
However, R 1 and T 1 ; resistance value twice that of R 25 and temperature at that time R 2 and T 2 ; resistance value of (T 1 +30) ° C. and temperature thereof.

【0015】(表1)から明らかなように、MnTiO
3の添加量が本発明の請求の範囲内である試料番号3〜
7は、室温抵抗値が低く、抵抗温度係数が大きくしかも
耐電圧が大きいことが認められる。逆に本発明の請求の
範囲外である試料番号1,2,8および9は室温抵抗値
が高く、抵抗温度係数の向上も認められない。
As is clear from (Table 1), MnTiO
Amount of 3 Sample No. 3 is within the scope of the present invention
No. 7 has a low room temperature resistance value, a large resistance temperature coefficient, and a large withstand voltage. On the contrary, Sample Nos. 1, 2, 8 and 9 which are outside the scope of claims of the present invention have high room temperature resistance values, and no improvement in the temperature coefficient of resistance is observed.

【0016】(実施の形態2)(実施の形態1)と同様
の組成となるように原料を配合しボールミルにて湿式混
合する。但し、この時MnTiO3は配合から除外す
る。次にこの混合物を乾燥した後1050℃で2時間仮
焼した。さらにこの仮焼粉にMnTiO3を主成分(B
0.68Pb0.22Ca0.10)TiO3 1molに対して
(表2)に示した添加量にて添加しボールミルにて湿式
混合した。
(Embodiment 2) Raw materials are blended so as to have the same composition as in Embodiment 1 and wet mixed in a ball mill. However, at this time, MnTiO 3 is excluded from the composition. Next, the mixture was dried and calcined at 1050 ° C. for 2 hours. Furthermore, MnTiO 3 is the main component (B
a 0.68 Pb 0.22 Ca 0.10 ) TiO 3 (1 mol) was added at the addition amount shown in (Table 2) and wet-mixed with a ball mill.

【0017】[0017]

【表2】 [Table 2]

【0018】このときの仮焼粉砕粉の平均粒子径を
A、MnTiO3の平均粒子径をDBとした。
The average particle size of the calcined powder at this time was D A , and the average particle size of MnTiO 3 was D B.

【0019】ここで、DAとDBとの比DA/DBを(表
2)のようになるように粉砕時間にて調整した。さらに
この粉砕粉を(実施の形態1)と同様な方法で造粒、成
形、焼成し電極を形成した。次に、このように作製され
た試料の各種の電気特性を測定する。その抵抗温度特性
より(実施の形態1)と同様にR25,α,VBDを評価す
る。その評価結果を(表2)に示した。
[0019] was prepared in this case, D A and D B and the ratio D A / D B (Table 2) grinding time so as to become a. Further, this pulverized powder was granulated, molded and fired in the same manner as in (Embodiment 1) to form an electrode. Next, various electrical characteristics of the sample thus manufactured are measured. From the resistance temperature characteristics, R 25 , α, and V BD are evaluated in the same manner as in (Embodiment 1). The evaluation results are shown in (Table 2).

【0020】(表2)より明らかなように、MnTiO
3を仮焼後に添加することにより、室温抵抗値が低く、
耐電圧の高い正特性サーミスタを得ることが出来るが、
試料番号10,16のようにMnTiO3の添加量が本
発明の請求の範囲外であるとその効果は認められない。
一方、DA/DBが0.5〜1.0の範囲内である試料番
号18〜20においては、試料番号11〜15、17、
21のようにMnTiO3の量を規定したものよりもさ
らに室温抵抗値が低く耐電圧の高い正特性サーミスタを
得ることが出来る。
As is clear from (Table 2), MnTiO
By adding 3 after calcination, the room temperature resistance value is low,
It is possible to obtain a positive temperature coefficient thermistor with high withstand voltage,
If the amount of MnTiO 3 added is outside the scope of the claims of the present invention as in Sample Nos. 10 and 16, the effect is not recognized.
On the other hand, in sample numbers 18 to 20 in which D A / D B is within the range of 0.5 to 1.0, sample numbers 11 to 15 and 17,
It is possible to obtain a positive temperature coefficient thermistor which has a lower room temperature resistance value and a higher withstand voltage than those in which the amount of MnTiO 3 is specified as in No. 21.

【0021】以上(実施の形態1)および(実施の形態
2)のように、本発明の正特性サーミスタの製造方法を
用いることにより、室温での抵抗値が低く、抵抗温度係
数が大きく耐電圧の高い素子を得ることができる。
As described above (Embodiment 1) and (Embodiment 2), by using the method for manufacturing the positive temperature coefficient thermistor of the present invention, the resistance value at room temperature is low, the temperature coefficient of resistance is large, and the withstand voltage is high. It is possible to obtain a device with high efficiency.

【0022】また(実施の形態1,2)においては、半
導体化元素として、Y23を用いたが、他の希土類元素
あるいはNb,Sb,Biの酸化物の中から少なくとも
一種類を用いることにより同等の効果が得られるもので
ある。
In the first and second embodiments, Y 2 O 3 is used as the semiconductor element, but at least one of other rare earth elements or oxides of Nb, Sb and Bi is used. As a result, the same effect can be obtained.

【0023】なお、本発明における半導体化元素量は主
成分100モルに対して0.1〜0.4モル、SiO2
量は1〜5モル、Al23量は0.05〜0.2モルの
範囲で添加するのが好ましい。なぜなら、これらの範囲
外であると室温での抵抗値が大きく上昇したり、抵抗温
度係数が低くなるため本発明の目的が達成されないため
である。
The amount of semiconducting element in the present invention is 0.1 to 0.4 mol based on 100 mol of the main component, SiO 2
The amount is preferably 1 to 5 mol, and the Al 2 O 3 amount is preferably 0.05 to 0.2 mol. This is because if the temperature is outside these ranges, the resistance value at room temperature greatly increases or the temperature coefficient of resistance decreases, so that the object of the present invention cannot be achieved.

【0024】[0024]

【発明の効果】以上の説明より明らかなように、本発明
は、チタン酸バリウムまたはその固溶体を主成分とし副
成分として希土類元素あるいはNb,Sb,Biの酸化
物のうち少なくとも一種類とSiO2とAl23および
MnTiO3が添加されてなる組成物で、その製造方法
において特に、MnTiO3を仮焼後に添加混合させ、
さらに仮焼粉砕粉とMnTiO3の平均粒子径の比が
0.5〜1.0となるようにコントロールし正特性サー
ミスタを形成するものである。その結果、室温での抵抗
値が低く、かつ耐電圧の高い正特性サーミスタを得るこ
とができ、製品の小型化や高電力回路への応用が期待で
きるためその工業的価値は大きい。
As is apparent from the above description, the present invention is based on barium titanate or its solid solution as a main component and at least one of rare earth elements or oxides of Nb, Sb, and Bi as a secondary component and SiO 2 And Al 2 O 3 and MnTiO 3 are added, and in the manufacturing method thereof, in particular, MnTiO 3 is added and mixed after calcination,
Further, a positive temperature coefficient thermistor is formed by controlling the ratio of the average particle size of the calcined pulverized powder to MnTiO 3 to be 0.5 to 1.0. As a result, it is possible to obtain a positive temperature coefficient thermistor having a low resistance value at room temperature and a high withstand voltage, and it is expected that the product can be miniaturized and applied to a high power circuit, so that its industrial value is great.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 チタン酸バリウム又はその固溶体からな
る主成分に、副成分として、希土類元素あるいはNb,
Sb,Biの酸化物のうち少なくとも一種類、さらにS
iO2,Al23,MnTiO3とを含有させた素子と、
この素子の表面に形成した少なくとも一対の電極とを備
えた正特性サーミスタ。
1. A main component comprising barium titanate or a solid solution thereof, a rare earth element or Nb,
At least one of oxides of Sb and Bi, and S
an element containing iO 2 , Al 2 O 3 and MnTiO 3 ,
A positive temperature coefficient thermistor comprising at least a pair of electrodes formed on the surface of this element.
【請求項2】 MnTiO3は、主成分100モルに対
して0.03〜0.2モル含有させた請求項1に記載の
正特性サーミスタ。
2. The positive temperature coefficient thermistor according to claim 1, wherein MnTiO 3 is contained in an amount of 0.03 to 0.2 mol based on 100 mol of the main component.
【請求項3】 チタン酸バリウムを有する主成分に、副
成分として希土類元素あるいはNb,Sb,Biの酸化
物の中から少なくとも一種類と、SiO2,Al23
添加した原料を仮焼し、次にこの原料にMnTiO3
添加して粉砕し、次いでこの原料を成形、焼成して焼結
体を得、その後この焼結体表面に少なくとも一対の電極
を形成する正特性サーミスタの製造方法。
3. A raw material obtained by adding SiO 2 and Al 2 O 3 to a main component containing barium titanate and at least one of rare earth elements or oxides of Nb, Sb and Bi as auxiliary components, and SiO 2 and Al 2 O 3 . Then, MnTiO 3 is added to this raw material and pulverized, and then this raw material is molded and fired to obtain a sintered body, and thereafter, a positive temperature coefficient thermistor in which at least a pair of electrodes is formed on the surface of this sintered body Method.
【請求項4】 粉砕後のMnTiO3の平均粒子径を
B、MnTiO3以外の原料の平均粒子径をDAとする
と、DA/DBが0.5〜1.0となるようにする請求項
3に記載の正特性サーミスタの製造方法。
4. When the average particle size of MnTiO 3 after pulverization is D B and the average particle size of raw materials other than MnTiO 3 is D A , D A / D B becomes 0.5 to 1.0. The method for manufacturing a positive temperature coefficient thermistor according to claim 3.
【請求項5】 MnTiO3の添加量は、主成分100
モルに対して0.03〜0.2モルである請求項3に記
載の正特性サーミスタの製造方法。
5. The addition amount of MnTiO 3 is 100
The method for producing a positive temperature coefficient thermistor according to claim 3, wherein the molar ratio is 0.03 to 0.2 mol.
JP8148813A 1996-06-11 1996-06-11 Positive characteristic thermistor and manufacture thereof Pending JPH09330805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8148813A JPH09330805A (en) 1996-06-11 1996-06-11 Positive characteristic thermistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8148813A JPH09330805A (en) 1996-06-11 1996-06-11 Positive characteristic thermistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09330805A true JPH09330805A (en) 1997-12-22

Family

ID=15461295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8148813A Pending JPH09330805A (en) 1996-06-11 1996-06-11 Positive characteristic thermistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09330805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19908444B4 (en) * 1998-02-27 2008-05-29 Denso Corp., Kariya Method for producing a thermistor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19908444B4 (en) * 1998-02-27 2008-05-29 Denso Corp., Kariya Method for producing a thermistor element

Similar Documents

Publication Publication Date Title
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
JPH09330805A (en) Positive characteristic thermistor and manufacture thereof
JP4058140B2 (en) Barium titanate semiconductor porcelain
JP2976702B2 (en) Semiconductor porcelain composition
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH1092605A (en) Manufacture of positive temperature thermistor
JPS6243522B2 (en)
JPH11102802A (en) Positive temperature coefficient thermistor and its manufacture
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JPH0212001B2 (en)
JPH1070008A (en) Manufacture of positive temperature coefficient thermistor
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPH1070009A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH10152372A (en) Barium titanate-based semiconductor porcelain and its production
JPH11116326A (en) Thermistor with positive characteristic and its production
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JP2521862B2 (en) Dielectric porcelain composition
JPH10135006A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH07211511A (en) Positive temperature coefficient thermistor and its production
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JPH1197212A (en) Positive temperature coefficient thermistor and method for manufacturing it
JPH1092604A (en) Positive temperature coefficient thermistor and its manufacture
JPH0684605A (en) Positive characteristic thermister and production thereof
JPH10294202A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH10289805A (en) Production positive characteristic thermistor