JPH0684605A - Positive characteristic thermister and production thereof - Google Patents

Positive characteristic thermister and production thereof

Info

Publication number
JPH0684605A
JPH0684605A JP23185592A JP23185592A JPH0684605A JP H0684605 A JPH0684605 A JP H0684605A JP 23185592 A JP23185592 A JP 23185592A JP 23185592 A JP23185592 A JP 23185592A JP H0684605 A JPH0684605 A JP H0684605A
Authority
JP
Japan
Prior art keywords
mol
composition
temperature coefficient
positive temperature
coefficient thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23185592A
Other languages
Japanese (ja)
Inventor
Hiroshi Kuroshima
浩 黒島
Terumitsu Ichimori
照光 一森
Hiroyuki Shikama
浩之 四竈
Susumu Nakayama
享 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP23185592A priority Critical patent/JPH0684605A/en
Publication of JPH0684605A publication Critical patent/JPH0684605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain a positive characteristic thermister in which nominal zero load resistance is lowered without sacrifice of withstand voltage. CONSTITUTION:In the composition (Ba1-X-Y'SrX, CaY)aTibO3 or positive characteristic thermister(where. 0<=X<=0.3, 0<=Y<=0.3), quantity of barium is increased or quantity of titanium is decreased to set the ratio a:b at 1.0003:1-1.001:1 thus lowering withstand voltage as compared with a positive characteristic thermister having the ratio of a:b equal to 1:1 and obtaining a positive characteristic thermister having low nominal zero load resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正の抵抗温度特性(以
下、PTC特性と称す)を有するサーミスタに関し、公
称ゼロ負荷抵抗値(25℃における規格抵抗値)を小さ
くした正特性サーミスタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermistor having a positive resistance temperature characteristic (hereinafter referred to as PTC characteristic), and to a positive characteristic thermistor having a reduced nominal zero load resistance value (standard resistance value at 25 ° C.). Is.

【0002】[0002]

【従来の技術】チタン酸バリウムにY、Laなどの3価
の希土類金属元素やSb、或いはNb等の5価の遷移金
属元素を微量添加し焼成することによりキュリー点以上
においてPTC特性を示すことが知られている。この特
性を利用して、温度センサー、消磁回路用素子、過電流
防止回路用素子、自己温度制御発熱体など、様々な物に
使われている。このようなPTCサーミスタには、数多
くの規格値があり中でも公称ゼロ負荷抵抗値は重要な指
標となっている。
2. Description of the Related Art PTC characteristics above the Curie point are obtained by adding trivalent rare earth metal elements such as Y and La and pentavalent transition metal elements such as Sb or Nb to barium titanate and baking them. It has been known. Utilizing this characteristic, it is used in various objects such as temperature sensors, degaussing circuit elements, overcurrent prevention circuit elements, and self-temperature control heating elements. Among such PTC thermistors, there are many standard values, and the nominal zero load resistance value is an important index.

【0003】[0003]

【発明が解決しようとする課題】公称ゼロ負荷抵抗値を
減少させるために、Mn量やSi量を少なくする方法
や、還元性雰囲気で焼成する方法が行われているが、こ
れらの方法で作られた正特性サーミスタは、低抵抗では
あるが耐電圧が本来の値よりも低いという問題点があっ
た。本発明は、正特性サーミスタの耐電圧をできる限り
低下させずに、公称ゼロ負荷抵抗値を小さくする正特性
サーミスタの製造方法を提供することを目的とする。
In order to reduce the nominal zero load resistance value, a method of reducing the amount of Mn or Si, or a method of firing in a reducing atmosphere is used. The obtained positive temperature coefficient thermistor has a problem that the withstand voltage is lower than the original value although the resistance is low. It is an object of the present invention to provide a method for manufacturing a positive temperature coefficient thermistor that reduces the nominal zero load resistance value without reducing the withstand voltage of the positive temperature coefficient thermistor as much as possible.

【0004】[0004]

【課題を解決するための手段】本発明の正特性サーミス
タは、(Ba1-X-Y ,SrX ,CaYa Tib
3(ただし、0≦X≦0.3、0≦Y≦0.3であ
る。)で表されるバリウムとチタンとの複合酸化物を主
成分とする正特性サーミスタの組成物において、aとb
との比が1:1ではない正特性サーミスタであり、a:
bが1.3:1ないし1.1:1の比とすることが好ま
しい。
The positive temperature coefficient thermistor of the present invention is (Ba 1-XY , Sr X , Ca Y ) a Ti b O.
3 (where 0 ≦ X ≦ 0.3 and 0 ≦ Y ≦ 0.3) in the composition of the positive temperature coefficient thermistor containing the complex oxide of barium and titanium as the main component, b
Is a positive temperature coefficient thermistor whose ratio is not 1: 1, and a:
It is preferred that b has a ratio of 1.3: 1 to 1.1: 1.

【0005】また、本発明の正特性サーミスタの製造
は、あらかじめ原料の組成比を所定の比率となるように
調整して焼成する方法、もしくは(Ba1-X-Y ,Sr
X ,CaY )TiO3 (ただし、0≦X≦ 、0≦Y≦
である。)で表される(Ba1-X-Y ,SrX ,Ca
Y )とTiとが1:1である原料組成を1050〜12
00℃で仮焼を行った後に、仮焼粉末に対し、BaO、
BaCO3 、BaI2 、BaF2 、BaCl2 等のバリ
ウム化合物を0.03〜0.10モル%の範囲内で添加
して、1300〜1400℃で焼成して製造することが
できる。
The positive temperature coefficient thermistor of the present invention is manufactured by previously adjusting the composition ratio of the raw materials so that the composition ratio becomes a predetermined ratio, or by firing (Ba 1-XY , Sr).
X , Ca Y ) TiO 3 (where 0 ≦ X ≦, 0 ≦ Y ≦
Is. ) (Ba 1-XY , Sr X , Ca
The raw material composition in which Y ) and Ti are 1: 1 is from 1050 to 12
After calcination at 00 ° C, BaO,
It can be manufactured by adding a barium compound such as BaCO 3 , BaI 2 , BaF 2 , or BaCl 2 within a range of 0.03 to 0.10 mol% and firing at 1300 to 1400 ° C.

【0006】[0006]

【作用】チタン酸バリウム系の正特性サーミスタにおい
て、バリウムの割合を増加もしくはチタンの割合を減少
させることによって、公称ゼロ負荷抵抗値が小さく、耐
電圧の低下の少ない正特性サーミスタを得ることができ
る。
[Function] In a barium titanate-based positive temperature coefficient thermistor, a positive temperature coefficient thermistor having a small nominal zero load resistance value and a small decrease in withstand voltage can be obtained by increasing the ratio of barium or decreasing the ratio of titanium. .

【0007】[0007]

【実施例】以下、本発明の実施例について説明する。 実施例1 (Ba0.94,Ca0.02,Sr0.04)TiO3 の組成の原
料に混合物の1モルあたり、Nb25 を0.0005
モル、Sb23 を0.001モル、MnCO3 を0.
0007モル、SiO2 を0.005モルを添加した。
EXAMPLES Examples of the present invention will be described below. Example 1 Nb 2 O 5 was added in an amount of 0.0005 per mol of the raw material having a composition of (Ba 0.94 , Ca 0.02 , Sr 0.04 ) TiO 3.
Mol, Sb 2 O 3 0.001 mol, MnCO 3 0.
0007 mol and 0.002 mol of SiO 2 were added.

【0008】これをチタン酸バリウムの基本的な組成と
し、酸化チタンの量をそのままのもの、酸化チタンの量
を0.03モル%、0.05モル%、0.07モル%、
0.10モル%それぞれ減少させた組成を配合した後
に、ナイロン玉石を使用しゴムライニングボールミルに
て、湿式混練を行った。乾燥後、仮焼を行いボールミル
で湿式粉砕をし、さらに15%ポリビニールアルコール
水溶液を原料に対し10重量%添加して造粒を行った。
得られた造粒物を直径10mm、厚さ1mmの円板状に
1000kg/cm2 の圧力にて成形し、大気中にて、
1350℃で1時間の焼成を行った。これらの焼結体に
オーミック性銀電極を両面に焼き付けて、PTCサーミ
スタを製造し、恒温槽中において公称ゼロ負荷抵抗値を
マルチメータにて測定し、耐電圧は直流安定化電源を用
い常温にて測定を行ったその結果を表1に示す。
This is the basic composition of barium titanate, the amount of titanium oxide is as it is, the amount of titanium oxide is 0.03 mol%, 0.05 mol%, 0.07 mol%,
After blending the compositions each reduced by 0.10 mol%, wet kneading was performed in a rubber-lined ball mill using nylon boulders. After drying, calcination was performed, wet pulverization was performed by a ball mill, and 10% by weight of 15% polyvinyl alcohol aqueous solution was added to the raw material for granulation.
The obtained granules were molded into a disk shape having a diameter of 10 mm and a thickness of 1 mm at a pressure of 1000 kg / cm 2 , and then in the atmosphere,
Firing was performed at 1350 ° C. for 1 hour. Ohmic silver electrodes are baked on both sides of these sintered bodies to produce PTC thermistors, and the nominal zero load resistance value is measured with a multimeter in a thermostatic chamber. Table 1 shows the result of the measurement.

【0009】[0009]

【表1】 [Table 1]

【0010】公称ゼロ負荷抵抗値は酸化チタンの混合比
の減少によって、公称ゼロ負荷抵抗値は約16%の低下
したが、耐電圧は約7%低下したのみであった。
The nominal zero load resistance value was reduced by about 16%, but the withstand voltage was only reduced by about 7% due to the decrease in the mixing ratio of titanium oxide.

【0011】実施例2 (Ba0.94,Ca0.02,Sr0.04)TiO3 の組成の原
料に混合物の1モルあたり、Nb25 を0.0005
モル、Sb23 を0.001モル、MnCO3 を0.
0007モル、SiO2 を0.005モルを添加し、こ
れをチタン酸バリウムの基本的な組成とし、ナイロン玉
石を使用しゴムライニングボールミルにて、湿式混練を
行った。乾燥後、1150℃で仮焼を行い、仮焼粉にた
いしてバリウムの量が0.03モル%、0.05モル
%、0.07モル%、0.10モル%となるように、炭
酸バリウムを添加し、ボールミルにて、湿式にて混合粉
砕した後に、15%ポリビニールアルコール水溶液を原
料に対し10重量%添加して造粒を行った。得られた造
粒物を直径10mm、厚さ1mmの円板状に1000k
g/cm2 の圧力にて成形し、大気中にて、1350℃
で1時間の焼成を行い、実施例1と同様にして公称ゼロ
負荷抵抗値と耐電圧を測定し、その結果を表2に示す。
Example 2 0.0005 of Nb 2 O 5 was added per mol of the raw material having the composition of (Ba 0.94 , Ca 0.02 , Sr 0.04 ) TiO 3.
Mol, Sb 2 O 3 0.001 mol, MnCO 3 0.
Wet-kneading was performed by adding 0007 mol and 0.005 mol of SiO 2 to make this a basic composition of barium titanate and using nylon cobblestone in a rubber lining ball mill. After drying, calcination is performed at 1150 ° C., and barium carbonate is added to the calcined powder so that the amount of barium becomes 0.03 mol%, 0.05 mol%, 0.07 mol%, 0.10 mol%. The mixture was added and wet mixed and pulverized in a ball mill, and then 10% by weight of 15% polyvinyl alcohol aqueous solution was added to the raw material for granulation. The obtained granulated product is formed into a disk shape having a diameter of 10 mm and a thickness of 1 mm at 1000 k.
Molded at a pressure of g / cm 2 and in the air at 1350 ° C
After firing for 1 hour, the nominal zero load resistance value and withstand voltage were measured in the same manner as in Example 1, and the results are shown in Table 2.

【0012】[0012]

【表2】 [Table 2]

【0013】実施例1同様に、公称ゼロ負荷抵抗値の低
下に対して耐電圧の低下は小さかった。また、バリウム
源としてBaO、BaCO3 、BaI2 、BaF2 、B
aCl2 等を用いても同様な結果が得られ、またバリウ
ム源を仮焼前に添加して組成比を調整したものも同様で
あった。
As in Example 1, the decrease in withstand voltage was small with respect to the decrease in the nominal zero load resistance value. Further, as barium sources, BaO, BaCO 3 , BaI 2 , BaF 2 and B are used.
Similar results were obtained by using aCl 2 and the like, and the same was obtained when the composition ratio was adjusted by adding a barium source before calcination.

【0014】実施例3 (Ba0.76,Ca0.02,Sr0.22)TiO3 を主要成分
としY2 3 を0.0017モル、MnCO3 を0.0
007モル、SiO2 を0.017モル添加した組成
(組成A)のものと、主要成分を(Ba0.96,C
0.01,Sr0.22)TiO3 とし、半導体化剤にY2
3 を0.0017モル加え、他の添加物は実施例2と同
様の組成とした(組成B)、主要成分を(Ba0.94,C
0.02,Sr0.22)TiO3 とし、他の添加物は組成A
と同様とした組成(組成C)の各組成の原料を使用して
実施例1と同様にして正特性サーミスタを製造し、公称
ゼロ負荷抵抗値および耐電圧を測定し、その結果を表3
に示す。
Example 3 (Ba 0.76 , Ca 0.02 , Sr 0.22 ) TiO 3 as a main component Y 2 O 3 0.0017 mol, MnCO 3 0.0
007 mol, a composition containing 0.017 mol of SiO 2 (composition A), and (Ba 0.96 , C
a 0.01 , Sr 0.22 ) TiO 3 and Y 2 O as a semiconducting agent
0.0017 mol of 3 was added, the other additives had the same composition as in Example 2 (composition B), and the main components were (Ba 0.94 , C).
a 0.02 , Sr 0.22 ) TiO 3 , other additives are composition A
A positive temperature coefficient thermistor was manufactured in the same manner as in Example 1 by using the raw materials having the same composition (composition C) as in Example 1, the nominal zero load resistance value and the withstand voltage were measured, and the results are shown in Table 3.
Shown in.

【0015】[0015]

【表3】 [Table 3]

【0016】実施例4 実施例3の組成A、組成B、組成Cの各仮焼粉にBaC
3 を0.05mol%添加し、実施例2と同様にして
正特性サーミスタを製造し、公称ゼロ負荷抵抗値および
耐電圧を測定し、その結果を表4に示す。それぞれ添加
前の組成のものに比べて抵抗の低下率に比べて耐電圧の
低下率は小さかった。
Example 4 BaC was added to each of the calcined powders of composition A, composition B and composition C of example 3.
O 3 was added in an amount of 0.05 mol%, a positive temperature coefficient thermistor was manufactured in the same manner as in Example 2, the nominal zero load resistance value and the withstand voltage were measured, and the results are shown in Table 4. The rate of decrease in withstand voltage was smaller than the rate of decrease in resistance as compared with the composition before addition.

【0017】[0017]

【表4】 [Table 4]

【0018】[0018]

【発明の効果】本発明によれば、(Ba1-X-Y ,Sr
X ,CaYa Tib 3 (ただし、0≦X≦0.3、
0≦Y≦0.3である。)におけるa:bの比をバリウ
ムを増加、もしくはチタンを減少させることによって、
好ましくは、a:bが1.3:1ないし1.1:1の比
とすることにより、公称ゼロ負荷抵抗値が小さく、耐電
圧の低下が少ない正特性サーミスタを得ることができ
る。
According to the present invention, (Ba 1-XY , Sr
X , Ca Y ) a Ti b O 3 (where 0 ≦ X ≦ 0.3,
0 ≦ Y ≦ 0.3. ) By increasing the barium or decreasing the titanium, the ratio of a: b in
Preferably, by setting the ratio of a: b to 1.3: 1 to 1.1: 1, a positive temperature coefficient thermistor having a small nominal zero load resistance value and a small decrease in withstand voltage can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 チタン酸バリウム系の正特性サーミスタ
において、(Ba1-X-Y ,SrX ,CaYa Tib
3 (ただし、0≦X≦0.3、0≦Y≦0.3であ
る。)で表されるセラミックスの組成式のa:bの比を
1.0003:1ないし1.001:1とすることを特
徴とする正特性サーミスタ。
1. A barium titanate-based positive temperature coefficient thermistor comprising: (Ba 1-XY , Sr X , Ca Y ) a Ti b O
3 (where 0 ≦ X ≦ 0.3 and 0 ≦ Y ≦ 0.3), the a: b ratio of the composition formula of the ceramics is set to 1.0003: 1 to 1.001: 1. A positive temperature coefficient thermistor.
【請求項2】 チタン酸バリウム系の正特性サーミスタ
の製造方法において、Ba成分の増加もしくは、Ti成
分の減少によって(Ba1-X-Y ,SrX ,CaYa
b 3 (ただし、0≦X≦0.3、0≦Y≦0.3で
ある。)で表されるセラミックスの組成式のa:bの比
を1.0003:1ないし1.001:1とすることを
特徴とする正特性サーミスタの製造方法。
2. A method for manufacturing a barium titanate-based positive temperature coefficient thermistor, wherein (Ba 1-XY , Sr X , Ca Y ) a T is obtained by increasing the Ba component or decreasing the Ti component.
i b O 3 (where 0 ≦ X ≦ 0.3 and 0 ≦ Y ≦ 0.3) has a composition ratio of ceramics represented by a: b ratio of 1.0003: 1 to 1.001. 1. The method for manufacturing a positive temperature coefficient thermistor, wherein: 1.
【請求項3】 Ba成分の増加もしくは、Ti成分の減
少を、原料のバリウム化合物の増加、チタン化合物の減
少、もしくはa:bが1:1の仮焼粉にバリウム化合物
の添加することを特徴とする請求項2記載の正特性サー
ミスタの製造方法。
3. An increase in the Ba component or a decrease in the Ti component is characterized by increasing the barium compound as a raw material, decreasing the titanium compound, or adding the barium compound to the calcined powder in which a: b is 1: 1. The method for manufacturing a positive temperature coefficient thermistor according to claim 2.
JP23185592A 1992-08-31 1992-08-31 Positive characteristic thermister and production thereof Pending JPH0684605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23185592A JPH0684605A (en) 1992-08-31 1992-08-31 Positive characteristic thermister and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23185592A JPH0684605A (en) 1992-08-31 1992-08-31 Positive characteristic thermister and production thereof

Publications (1)

Publication Number Publication Date
JPH0684605A true JPH0684605A (en) 1994-03-25

Family

ID=16930079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23185592A Pending JPH0684605A (en) 1992-08-31 1992-08-31 Positive characteristic thermister and production thereof

Country Status (1)

Country Link
JP (1) JPH0684605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994024680A1 (en) * 1993-04-14 1994-10-27 Kabushiki Kaisha Komatsu Seisakusho Positive characteristic thermistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994024680A1 (en) * 1993-04-14 1994-10-27 Kabushiki Kaisha Komatsu Seisakusho Positive characteristic thermistor

Similar Documents

Publication Publication Date Title
JP6604653B2 (en) Semiconductor porcelain composition and method for producing the same
JPH0684605A (en) Positive characteristic thermister and production thereof
JP2014205585A (en) Semiconductor ceramic composition and method of producing the same
JP3196516B2 (en) Positive thermistor
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP2940182B2 (en) Method for manufacturing semiconductor porcelain having positive temperature coefficient of resistance
JPH07220902A (en) Barium titanate semiconductor ceramic
JPH11102802A (en) Positive temperature coefficient thermistor and its manufacture
JP3699195B2 (en) Positive characteristic semiconductor porcelain and manufacturing method thereof
JPH04311002A (en) Manufacture of semiconductor porcelain with positive temperature coefficient of resistance
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPH05267005A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH07211511A (en) Positive temperature coefficient thermistor and its production
JPH1092605A (en) Manufacture of positive temperature thermistor
JPH0653006A (en) Positive temperature coefficient thermistor and its manufacture
JPH09330805A (en) Positive characteristic thermistor and manufacture thereof
JPH07211512A (en) Positive temperature coefficient thermistor
JP2000286104A (en) Manufacture of positive temperature coefficient thermistor
JPH0684606A (en) Production of positive characteristic thermister
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JP2521862B2 (en) Dielectric porcelain composition
JP2677041B2 (en) Semiconductor porcelain with positive temperature coefficient of resistance
JPH11139870A (en) Barium titanate-base semiconductor porcelain
JPH1070008A (en) Manufacture of positive temperature coefficient thermistor