JPH07211512A - Positive temperature coefficient thermistor - Google Patents

Positive temperature coefficient thermistor

Info

Publication number
JPH07211512A
JPH07211512A JP394294A JP394294A JPH07211512A JP H07211512 A JPH07211512 A JP H07211512A JP 394294 A JP394294 A JP 394294A JP 394294 A JP394294 A JP 394294A JP H07211512 A JPH07211512 A JP H07211512A
Authority
JP
Japan
Prior art keywords
temperature coefficient
positive temperature
coefficient thermistor
temperature
thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP394294A
Other languages
Japanese (ja)
Inventor
Yuichi Abe
雄一 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP394294A priority Critical patent/JPH07211512A/en
Publication of JPH07211512A publication Critical patent/JPH07211512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To provide a positive temperature coefficient thermistor whose positive resistance temperature coefficient just after Curie temperature is large and voltage dependency is low, in the positive temperature coefficient thermistor which is utilized for a switching element or constant-temperature heat generating body. CONSTITUTION:This thermistor element is made by adding 0.005-0.13mol of CaTiO3 to 1mol of barium titanate-based semiconductor ceramics composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、キュリー温度直後の正
の抵抗温度係数が大きいもので、温度補償装置等の各種
スイッチング素子あるいは定温発熱体として利用される
正特性サーミスタに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive temperature coefficient thermistor having a large positive temperature coefficient of resistance immediately after the Curie temperature and used as various switching elements such as a temperature compensator or a constant temperature heating element.

【0002】[0002]

【従来の技術】従来、チタン酸バリウムに希土類元素、
Bi,Sb等を添加して正特性サーミスタ素子を形成し
ていた。
2. Description of the Related Art Conventionally, barium titanate is added to rare earth elements,
Bi, Sb, etc. were added to form a positive temperature coefficient thermistor element.

【0003】[0003]

【発明が解決しようとする課題】上記従来の構成では、
キュリー温度直後の正の抵抗温度係数が小さく、例えば
定温発熱体として使用した場合、印加電圧が例えば22
0V以上の高電圧になると電圧依存性を有する。そのた
め、印加電圧によって正特性サーミスタ素子の発熱量が
異なり、使用する電圧によってサーミスタ素子を変えな
ければならないという問題点を有していた。
SUMMARY OF THE INVENTION In the above conventional configuration,
The positive temperature coefficient of resistance immediately after the Curie temperature is small, and when used as a constant temperature heating element, for example, the applied voltage is 22
It has a voltage dependency at a high voltage of 0 V or higher. Therefore, the amount of heat generated by the positive temperature coefficient thermistor element differs depending on the applied voltage, and the thermistor element must be changed depending on the voltage used.

【0004】本発明は上記問題点を解決するもので、キ
ュリー温度直後の正の抵抗温度係数の大きい正特性サー
ミスタを提供することを目的とするものである。
The present invention solves the above problems, and an object thereof is to provide a positive temperature coefficient thermistor having a large positive temperature coefficient of resistance immediately after the Curie temperature.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明の正特性サーミスタはサーミスタ素子をチタン
酸バリウム系半導体磁器組成物1モルに対して、CaT
iO3を0.05〜0.13モル添加したもので形成す
るものである。
In order to achieve this object, in the positive temperature coefficient thermistor of the present invention, the thermistor element is CaT based on 1 mol of the barium titanate-based semiconductor ceramic composition.
It is formed by adding 0.05 to 0.13 mol of iO 3 .

【0006】[0006]

【作用】この構成により、サーミスタ素子の結晶粒径が
均一で小さくなり、サーミスタ素子が緻密になる。その
結果キュリー温度直後の正の抵抗温度係数が大きく、電
圧依存性の小さい正特性サーミスタを得ることができ
る。
With this configuration, the crystal grain size of the thermistor element becomes uniform and small, and the thermistor element becomes dense. As a result, a positive temperature coefficient thermistor having a large positive temperature coefficient of resistance immediately after the Curie temperature and a small voltage dependence can be obtained.

【0007】[0007]

【実施例】【Example】

(実施例1)以下、本発明の一実施例について説明す
る。
(Embodiment 1) An embodiment of the present invention will be described below.

【0008】まず、チタン酸バリウム半導体磁器組成物
として、市販のBaCo3,TiO2,PbO,Y23
Al23,SiO2,Mn(No32及びCaTiO3
(化1)に示す組成となるように秤量し、(表1)に示
す試料No.1〜12の材料粉をそれぞれ1200g用意
した。
First, as a barium titanate semiconductor porcelain composition, commercially available BaCo 3 , TiO 2 , PbO, Y 2 O 3 ,
Al 2 O 3 , SiO 2 , Mn (No 3 ) 2 and CaTiO 3 were weighed so as to have the composition shown in (Chemical formula 1), and sample No. shown in (Table 1). 1200 g of the material powders 1 to 12 were prepared.

【0009】[0009]

【化1】 [Chemical 1]

【0010】[0010]

【表1】 [Table 1]

【0011】次に、試料No.1の材料粉と純水2lと直
径10mmのYTZボール3kgを10lのボールミルに入
れ、20時間湿式混合し、180メッシュパスした後1
50℃で乾燥した。その後、この混合物を粗砕して11
00℃で2時間仮焼したものと純水1lと直径10mmの
YTZボール3kgを10lのボールミルに入れ、20時
間湿式粉砕した後、150℃で乾燥した。次に、この粉
砕粉に5%ポリビニルアルコール水溶液を10wt%加
え、ライカイ機で5分間造粒した後、20メッシュパス
して、直径12mmの成形金型を用いて800kg/cm2
圧力でディスク形状に成形した。この成形体を300℃
/時の速度で1250℃まで昇温し、1250℃で3時
間焼成し、その後、150℃/時の降温速度で室温まで
徐冷した。次に、この焼結体の両面にアルミメタリコン
容射電極を設けて試料No.1を得た。同様にして、試料
No.2〜12を形成した。比較のために、(表1)に示
す試料No.13の組成の従来の正特性サーミスタを用意
した。
Next, the sample No. 1 material powder, 2 liters of pure water and 3 kg of YTZ balls having a diameter of 10 mm were put in a 10 liter ball mill, wet-mixed for 20 hours, passed through 180 mesh and then 1
It was dried at 50 ° C. Then, the mixture is crushed into 11
What was calcined at 00 ° C. for 2 hours, 1 liter of pure water and 3 kg of YTZ balls having a diameter of 10 mm were put in a 10 liter ball mill, wet pulverized for 20 hours, and then dried at 150 ° C. Next, 10% by weight of a 5% aqueous solution of polyvinyl alcohol was added to this pulverized powder, and the mixture was granulated for 5 minutes with a liquor machine, then passed through 20 mesh and a disk with a pressure of 800 kg / cm 2 was applied using a molding die having a diameter of 12 mm. It was molded into a shape. This molded body is 300 ° C
The temperature was raised to 1250 ° C. at a heating rate of 1 / hour, and the mixture was baked at 1250 ° C. for 3 hours, and then gradually cooled to room temperature at a cooling rate of 150 ° C./hour. Next, aluminum metallikon spray electrodes were provided on both surfaces of this sintered body, and sample No. Got 1. Similarly, sample
No. 2-12 were formed. For comparison, the sample No. shown in (Table 1). A conventional PTC thermistor having a composition of 13 was prepared.

【0012】これらの試料の抵抗温度係数を測定し、
(表1)に示す。抵抗温度係数は次のようにして測定し
た。まず室温から300℃までの温度変化に対する正特
性サーミスタの抵抗値を測定した。次に、抵抗値が室温
抵抗値の2倍になる温度をキュリー温度とし、キュリー
温度での抵抗値とキュリー温度+10℃での抵抗値を求
め、その抵抗値変化率を(数1)により算出し抵抗温度
係数とした。
The temperature coefficient of resistance of these samples was measured,
It shows in (Table 1). The temperature coefficient of resistance was measured as follows. First, the resistance value of the positive temperature coefficient thermistor with respect to the temperature change from room temperature to 300 ° C. was measured. Next, the temperature at which the resistance value is twice the room temperature resistance value is defined as the Curie temperature, and the resistance value at the Curie temperature and the resistance value at the Curie temperature + 10 ° C are obtained, and the resistance value change rate is calculated by (Equation 1). The temperature coefficient of resistance was used.

【0013】[0013]

【数1】 [Equation 1]

【0014】なお、通常はキュリー温度+30℃にて抵
抗温度係数を求めるが、本発明は、キュリー温度直後の
抵抗温度係数を大きくすることを目的としているためキ
ュリー温度+10℃にて抵抗温度係数を算出した。
Normally, the resistance temperature coefficient is obtained at the Curie temperature + 30 ° C., but since the present invention aims to increase the resistance temperature coefficient immediately after the Curie temperature, the resistance temperature coefficient is obtained at the Curie temperature + 10 ° C. It was calculated.

【0015】(表1)を見ても分かるように、試料No.
2〜11は試料No.13の従来のものと比べるとキュリ
ー温度直後の正の抵抗温度係数が向上している。更に、
図1に示すように電圧100V印加時と220V印加時
の正特性サーミスタの動作温度変化(T1−T2の幅)が
従来の動作温度変化(T3−T4の幅)よりも小さくな
り、ほぼ一定の発熱量を保つことができる。そのため従
来のように使用電圧によって正特性サーミスタを変える
必要がなく同じ素子を用いることができる。しかし、試
料No.1、試料No.12のようにCaTiO3の添加量
が0.05モル未満の場合や0.13モルを越えた場合
は抵抗温度係数は従来と変わらず小さい。
As can be seen from (Table 1), the sample No.
2 to 11 are sample numbers. Compared with the conventional example of No. 13, the positive temperature coefficient of resistance immediately after the Curie temperature is improved. Furthermore,
Figure 1 operating temperature change of the PTC thermistor when a voltage 100V is applied during and 220V is applied as shown in (a width of T 1 -T 2) is smaller than the conventional operating temperature change (range of T 3 -T 4) , It is possible to maintain an almost constant calorific value. Therefore, it is not necessary to change the positive temperature coefficient thermistor according to the used voltage as in the conventional case, and the same element can be used. However, sample No. 1, sample No. When the addition amount of CaTiO 3 is less than 0.05 mol or exceeds 0.13 mol as in No. 12, the temperature coefficient of resistance is small as in the conventional case.

【0016】なお、本実施例においてはCaTiO3
次のようにして作製した。まず、市販のCaCo3とT
iO2を1:1(モル比)の比率で混合したものを90
0g用意した。次に、これを10lのボールミルに入れ
純水2lと直径10mmのYZTボール3kgとを加え、2
0時間湿式粉砕した。その後、180メッシュパスし、
150℃で乾燥したものを粗砕し、1100℃で2時間
仮焼した。次に、仮焼粉を10lのボールミルに入れ、
純水1lと直径10mmのYZTボール3kgとを加え20
時間湿式粉砕して、150℃で乾燥した。その後、ライ
カイ機で3分間粗砕してCaTiO3を得た。しかし、
市販のCaTiO3を用いてもその効果は変わらない。
In this example, CaTiO 3 was manufactured as follows. First, commercially available CaCo 3 and T
90% of a mixture of iO 2 at a ratio of 1: 1 (molar ratio)
0g was prepared. Next, this is put in a 10-liter ball mill, 2 l of pure water and 3 kg of YZT balls having a diameter of 10 mm are added, and 2
It was wet-milled for 0 hours. After that, pass 180 mesh,
What was dried at 150 ° C was roughly crushed and calcined at 1100 ° C for 2 hours. Next, put the calcined powder in a 10 l ball mill,
Add 1 liter of pure water and 3 kg of YZT balls with a diameter of 10 mm, and add 20
It was wet-milled for an hour and dried at 150 ° C. Then, CaTiO 3 was obtained by coarsely crushing for 3 minutes with a Likai machine. But,
Even if a commercially available CaTiO 3 is used, the effect does not change.

【0017】[0017]

【発明の効果】以上のように本発明は、チタン酸バリウ
ム系半導体磁器組成物1モルに対し、CaTiO3
0.05〜0.13モル添加したもので正特性サーミス
タ素子を形成したものである。この構成により、サーミ
スタ素子の結晶粒径が均一で小さくなり、サーミスタ素
子が緻密になる。その結果、キュリー温度直後の正の抵
抗温度係数が大きく、電圧依存性の小さい正特性温度サ
ーミスタを提供することができる。
As described above, according to the present invention, the positive temperature coefficient thermistor element is formed by adding 0.05 to 0.13 mol of CaTiO 3 to 1 mol of the barium titanate-based semiconductor ceramic composition. is there. With this configuration, the crystal grain size of the thermistor element becomes uniform and small, and the thermistor element becomes dense. As a result, a positive temperature coefficient thermistor having a large positive resistance temperature coefficient immediately after the Curie temperature and a small voltage dependence can be provided.

【0018】また、本発明の正特性サーミスタ素子はキ
ュリー温度直後の正の抵抗温度係数が大きいので、電圧
を印加して安定電流に達するまでの減衰特性を向上させ
ることができる。
Further, since the positive temperature coefficient thermistor element of the present invention has a large positive temperature coefficient of resistance immediately after the Curie temperature, it is possible to improve the attenuation characteristic until a stable current is reached by applying a voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における正特性サーミスタの
抵抗値−温度特性図
FIG. 1 is a resistance value-temperature characteristic diagram of a positive temperature coefficient thermistor according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正特性サーミスタ素子と、前記正特性サ
ーミスタ素子の表面に設けた少なくとも一対の電極とを
備え、前記正特性サーミスタ素子は、チタン酸バリウム
系半導体磁器組成物1モルに対して、CaTiO3
0.05〜0.13モル添加したもので形成した正特性
サーミスタ。
1. A positive temperature coefficient thermistor element and at least a pair of electrodes provided on the surface of the positive temperature coefficient thermistor element, wherein the positive temperature coefficient thermistor element is based on 1 mol of a barium titanate-based semiconductor ceramic composition. A positive temperature coefficient thermistor formed by adding 0.05 to 0.13 mol of CaTiO 3 .
JP394294A 1994-01-19 1994-01-19 Positive temperature coefficient thermistor Pending JPH07211512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP394294A JPH07211512A (en) 1994-01-19 1994-01-19 Positive temperature coefficient thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP394294A JPH07211512A (en) 1994-01-19 1994-01-19 Positive temperature coefficient thermistor

Publications (1)

Publication Number Publication Date
JPH07211512A true JPH07211512A (en) 1995-08-11

Family

ID=11571186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP394294A Pending JPH07211512A (en) 1994-01-19 1994-01-19 Positive temperature coefficient thermistor

Country Status (1)

Country Link
JP (1) JPH07211512A (en)

Similar Documents

Publication Publication Date Title
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
JP2017178658A (en) Semiconductor ceramic composition and method for producing the same
JP3039511B2 (en) Semiconductor ceramic and semiconductor ceramic element
JPH07211512A (en) Positive temperature coefficient thermistor
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JP2679449B2 (en) Semiconductor porcelain having positive temperature coefficient of resistance and manufacturing method thereof
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP3196516B2 (en) Positive thermistor
JP2588951B2 (en) High temperature PTC thermistor and manufacturing method thereof
JPH07220902A (en) Barium titanate semiconductor ceramic
JPH0684605A (en) Positive characteristic thermister and production thereof
JP2940182B2 (en) Method for manufacturing semiconductor porcelain having positive temperature coefficient of resistance
JPH01143201A (en) Variable positive temperature coefficient resistance(ptcr) element
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JPH04144201A (en) Positive temperature coefficient thermistor and manufacture thereof
JP2015086104A (en) Semiconductor ceramic composition and manufacturing method thereof
JPH10212161A (en) Thermistor material having positive characteristic and its production
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JPH0684606A (en) Production of positive characteristic thermister
JPH09330805A (en) Positive characteristic thermistor and manufacture thereof
JPH07211511A (en) Positive temperature coefficient thermistor and its production
JP2000286104A (en) Manufacture of positive temperature coefficient thermistor
JPS6243947B2 (en)
JPH08162301A (en) Semiconductor porcelain having positive resistance temperature characteristic