JPH01143201A - Variable positive temperature coefficient resistance(ptcr) element - Google Patents

Variable positive temperature coefficient resistance(ptcr) element

Info

Publication number
JPH01143201A
JPH01143201A JP29891887A JP29891887A JPH01143201A JP H01143201 A JPH01143201 A JP H01143201A JP 29891887 A JP29891887 A JP 29891887A JP 29891887 A JP29891887 A JP 29891887A JP H01143201 A JPH01143201 A JP H01143201A
Authority
JP
Japan
Prior art keywords
temperature
ptcr
atomic
resistance
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29891887A
Other languages
Japanese (ja)
Inventor
Takamitsu Enomoto
榎本 隆光
Yoji Ueda
洋史 上田
Midori Kawahara
川原 みどり
Naoki Okada
直樹 岡田
Noboru Murata
昇 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP29891887A priority Critical patent/JPH01143201A/en
Publication of JPH01143201A publication Critical patent/JPH01143201A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To control freely the exothermic temperature variation range of an element, by causing its exothermic temperature to be adjustable by changing a working voltage of the element itself and determining even such temperature variation range at the manufacturing stage of its element. CONSTITUTION:Being basic materials having specific particle sizes of less than a submicron, barium titanate oxalate and strontium titanate oxalate comprise titanium oxide and antimony oxide as basic compositions and they are composed of an expression: (Ba1-x-ySbySrx)TiO3, provided that x<=0.35, y=0.001-0.1. When x is 0.35 or more, it is impossible to control temperature widths in a state that is more than a room temperature and when y is less than 0.001, it is unable to make its element semiconductive and further, when it is more than 0.1%, its element turns into insulated one and then, it is not preferable for the element to have such a state. Further, as to a burning temperature after the foregoing materials are mixed and reduced to powder, it is enough to have a temperature 1100 deg.C-1250 deg.C that is lower than by 50 deg.-100 deg.C than temperature which are prevailing in conventional process such as a dry or wet burning system. And then, as occasion demands, auxiliaries for sintering of SiO2 0.01-2.0 atomic %, BN 0.01-4.0 atomic %, TiO2 0.01-0.6 atomic % are added to the foregoing compositions. The resultant addition not only promotes sintering treatment but also contributes to the improvement of practical characteristics of PTCR obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は室温から 120℃までのキュリー点を幅広く
コントロールすることができる可変式PTCRのエレメ
ントに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a variable PTCR element that can control the Curie point over a wide range from room temperature to 120°C.

チタン酸バリウム系の半導体磁器(PTCサーミスター
)は正温度係数、すなわち温度が上がると抵抗値が増加
する性質(PTCR特性)を有しその特徴を利用して限
流素子、定温発熱体、モーターの起動装置、カラーテレ
ビの自動消磁装置等各種の用途に使用されている。
Barium titanate-based semiconductor porcelain (PTC thermistor) has a positive temperature coefficient, that is, the property that the resistance value increases as the temperature rises (PTCR property), and this property can be used to create current-limiting elements, constant temperature heating elements, and motors. It is used in a variety of applications, including as a starter device for televisions, and as an automatic degaussing device for color televisions.

(従来の技術) 従来チタン酸バリウムの基本組成物にLa−、Ce1Y
SNb等の希土類元素、旧、Sb、 Nb等の1種以上
を添加することにより正の抵抗温度特性を有する改良さ
れた半導体セラミックスを得、感熱素子、電流制御素子
などに利用されている。またBaTi0aのBaの一部
をpb等で置換することによって高温域におけるチタン
酸バリウム系半導体セラミックスとしての各種用途に供
されている。
(Prior art) Conventionally, the basic composition of barium titanate contains La-, Ce1Y.
By adding one or more rare earth elements such as SNb, Sb, Nb, etc., improved semiconductor ceramics with positive resistance-temperature characteristics are obtained and are used in heat-sensitive elements, current control elements, etc. Furthermore, by replacing a part of Ba in BaTi0a with PB or the like, it is used for various applications as barium titanate semiconductor ceramics in a high temperature range.

(発明が解決しようとする問題点) しかしこれらのセラミックスは、その抵抗変化が組成で
決定されるところのある一定の温度(キュリー点)での
み急激におこることから、感度の良いスイッチング素子
や定温発熱体としての用途が主であった。
(Problem to be solved by the invention) However, since the resistance change of these ceramics occurs suddenly only at a certain temperature (Curie point) determined by the composition, it is difficult to use sensitive switching elements or constant temperature. Its main use was as a heating element.

またPTCR素子自体が前述のように定温発熱体として
用いられていたので、温度を自在に変えるような器具に
関してはその素子の数を増加させることで対応しなけれ
ばならず、各種の温度に対応しようとするならば、その
温度に対応するだけの素子を必要としていた。
In addition, since the PTCR element itself was used as a constant temperature heating element as mentioned above, it was necessary to increase the number of elements for devices that could change the temperature freely, and it was necessary to cope with various temperatures. If they were to do so, they would need an element that could handle that temperature.

またニクロム線などでは電源より電圧をコントロールす
ることにより、ある程度の発熱温度幅をもたすことがで
きるが、PTCR発熱体では電圧がどのように変わって
も発熱温度は変わらないという特長を持っているために
その用途もごく限られたものとなっていた。
Also, with nichrome wire, etc., it is possible to have a certain range of heat generation temperature by controlling the voltage from the power supply, but with a PTCR heating element, the heat generation temperature does not change no matter how the voltage changes. Because of this, its uses were extremely limited.

(発明を解決するための手段) そこで本発明は、素子自体が電圧を変えることにより発
熱温度が変わるようにし、また、その温度幅も素子を作
成する段階で(添加物、焼成温度など)決定できれば、
低温域での有効な可変発熱体ができることに着想したも
のである。
(Means for Solving the Invention) Therefore, the present invention allows the element itself to change the heat generation temperature by changing the voltage, and also determines the temperature range (additives, firing temperature, etc.) at the stage of creating the element. if you can,
The idea was to create a variable heating element that is effective at low temperatures.

即ち、従来のPTCRパターン(キュリー点まで抵抗変
化があまりなくキュリー点以上で10〜107までの急
激な抵抗変化を示すパターン)よりもキュリー点以上で
の抵抗温度係数(立ち上がり曲線部の傾き)を小さくと
ることで、抵抗増加が、ある程度の温度幅をもってゆる
やかに行なわれているものを作成する。例えばSr系に
おいては、キュリー点より2〜300℃程度で抵抗増加
現象の終点が認められる。
In other words, the temperature coefficient of resistance (the slope of the rising curve) above the Curie point is lower than the conventional PTCR pattern (a pattern that shows a rapid resistance change of 10 to 107 above the Curie point without much change in resistance up to the Curie point). By making it small, a device is created in which the resistance increases gradually over a certain temperature range. For example, in the Sr system, the end point of the resistance increase phenomenon is observed at about 2 to 300°C below the Curie point.

また抵抗温度係数を小さくすることにより発熱温度幅を
大きくとることができるものである。
Furthermore, by reducing the temperature coefficient of resistance, the temperature range of heat generation can be increased.

かかる観点からこのPTCRの抵抗温度係数を小さくす
る具体的手段としては 1.1次粒子をサブミクロン以下の粒径例えば0.2〜
0.5μmという粒径をもつ、蓚酸塩粉末を原料粉とし
て用いる。
From this point of view, as a specific means to reduce the temperature coefficient of resistance of this PTCR, the primary particles have a particle size of submicron or less, for example, 0.2~
Oxalate powder with a particle size of 0.5 μm is used as the raw material powder.

2、焼成条件(温度、Ileating C4rcle
)を変えて焼結させる。
2. Firing conditions (temperature,
) and sinter it.

3、 5iOz 、BNSTiOzなどの焼結助剤を添
加する。
3. Add sintering aids such as 5iOz and BNSTiOz.

4、本焼成温度は1100〜1250℃で焼成を行なう
4. The main firing temperature is 1100 to 1250°C.

ものである。It is something.

そこで本発明における蓚酸塩分解法により作成した素子
(Ba 6.、IHSb 0.6HSr6.3) Ti
03と従来の酸化物混合系で作成した素子(同一組成)
のPTCR特性と発熱特性との関係を参考図ta+、(
blに基づき説明する。
Therefore, an element (Ba 6., IHSb 0.6HSr6.3) created by the oxalate decomposition method in the present invention
Elements made using 03 and conventional oxide mixed system (same composition)
The relationship between the PTCR characteristics and heat generation characteristics is shown in the reference diagram ta+, (
The explanation will be based on bl.

参考図からも判るように従来品のパターン(a)(bl
−1ではキュリー点(Tc)以上で急激に比抵抗が増加
するために電流が流れなくなる。また(bl−1に示す
ように電圧をいくら変えても一定の温度でしか発熱しな
くなる。ところが本発明素子のものはfat−2,3に
示すように、立ち上がりからある温度幅を持ってなだら
かに抵抗増加していく特性を持ち、このものは(bl−
2,3に示すように電圧を変えることによりその発熱温
度も変わっていくことが判る。
As you can see from the reference diagram, the pattern (a) (bl) of the conventional product
-1, the resistivity increases rapidly above the Curie point (Tc), so no current flows. In addition, (as shown in bl-1, no matter how much the voltage is changed, heat is generated only at a constant temperature. However, as shown in fat-2 and fat-3, the temperature of the device of the present invention is gentle with a certain temperature range from the rise. It has the property of increasing resistance as (bl-
As shown in 2 and 3, it can be seen that by changing the voltage, the heat generation temperature also changes.

また、2(焼成温度1200℃)と3(同温度1250
”C)を比べてみると、2のように抵抗温度係数が大き
いものなどその発熱温度幅は小さく((b)−2参照、
この型で50〜120’Cの範囲で発熱する。ただし電
圧は20〜100 Vと変えている。)なる。また3の
ように抵抗温度係数が小さいものほどその発熱温度幅は
太きく((b)−3参照、この型で 120〜230℃
の範囲で発熱する。)なることが判る。
In addition, 2 (firing temperature 1200℃) and 3 (same temperature 1250℃)
Comparing ``C)'', the temperature range of heat generation is small, such as those with a large resistance temperature coefficient like 2 (see (b)-2).
This type generates heat in the range of 50-120'C. However, the voltage was varied from 20 to 100 V. )Become. In addition, the smaller the temperature coefficient of resistance is, the wider the temperature range of heat generation (see (b)-3).
Generates heat in the range. ).

以下本発明を詳述する。The present invention will be explained in detail below.

本発明は前述の如くサブミクロン以下の特定粒径を持つ
基材としての蓚酸チタン酸バリウム、蓚酸チタン酸スト
ロンチウムに酸化チタン、酸化アンチモンを基本組成と
して(Ba1−x−y 5bySrx ) Tto 3
 X≦0.35、y = 0.001〜0.1からなる
もので、Xが0.35以上では室温以上でのコントロー
ルが不可能となり、yが0.001以下では半導体化で
きず0.1%以上では絶縁体となるので好ましくない。
As mentioned above, the present invention uses barium oxalate titanate, strontium oxalate titanate, titanium oxide, and antimony oxide as a base material having a specific particle size of submicron or less as a basic composition (Ba1-x-y 5bySrx) Tto 3
It is composed of X≦0.35 and y = 0.001 to 0.1. If X is 0.35 or more, it becomes impossible to control the temperature above room temperature, and if y is less than 0.001, it cannot be made into a semiconductor and 0. If it exceeds 1%, it becomes an insulator, which is not preferable.

また、混合粉砕後の焼成温度は従来の乾式法あるいは他
の湿式法に比べ50〜100℃低い1100〜1250
℃で十分である。また、必要により焼結助剤として、組
成物に対し5iOz 0.01〜2.0以下%、BN 
O,01〜4.0以下%、Ti020.01〜0.6以
下%を添加することで焼結促進と、得られるPTCRの
実用化特性向上に寄与する。
In addition, the firing temperature after mixing and pulverization is 1100-1250°C, which is 50-100°C lower than the conventional dry method or other wet method.
°C is sufficient. In addition, as a sintering aid if necessary, 5iOz 0.01 to 2.0% or less, BN
The addition of 0.01% to 4.0% or less of O and 0.01% to 0.6% of Ti contributes to promoting sintering and improving the practical characteristics of the resulting PTCR.

なお添加する焼結助剤の粒径は0.01μm〜数μm程
度のものが採用され、これら助剤の効果と相まってPT
CRエレメントの相対密度は80〜90%とある程度の
多孔性を有し好適なものとなる。
The particle size of the sintering aids to be added is approximately 0.01 μm to several μm, and together with the effects of these aids, the PT
The relative density of the CR element is preferably 80 to 90%, which is a certain degree of porosity.

このように本発明は、サブミクロン以下の主原料粉体と
焼結助剤を使用するため、本焼成温度は1100〜12
50℃程度である。該温度以上の焼成も可能であるか焼
結が進みすぎ緻密化により相対密度が上がりすぎるため
に素子の室温抵抗は低いものの温度上昇に対する抵抗変
化の殆ど少ないものか得られる。また、該温度以下の焼
成では焼結が不十分で相対密度が低くなり、焼結助剤の
効果で例え焼結したとしても室温抵抗がかなり高いもの
となり、実用的ではなくなる。
As described above, since the present invention uses submicron or smaller main raw material powder and sintering aid, the main firing temperature is 1100 to 12
The temperature is about 50°C. Either it is possible to sinter at a temperature higher than this temperature, or the sintering progresses too much and the relative density increases too much due to densification, so that although the room temperature resistance of the element is low, the resistance change with respect to temperature rise is almost negligible. Furthermore, if the material is fired at a temperature below this temperature, sintering will be insufficient and the relative density will be low, and even if sintering is achieved due to the effect of the sintering aid, the room temperature resistance will be quite high, making it impractical.

なお、添加する焼結助剤は実用化特性を改善する意味も
含めてSiO、BN、  TiO2などを使用するが5
iOzは通電試験などの実用化特性を向上し、Ti0z
はキュリー点を少し低くする傾向があるものの、キュリ
ー点付近での立ち上がり特性をブロードなものとする。
Note that SiO, BN, TiO2, etc. are used as sintering aids to improve practical properties.
iOz has improved practical characteristics such as current testing, and Ti0z
Although it tends to lower the Curie point a little, it makes the rise characteristics around the Curie point broader.

またBNを添加することにより抵抗温度係数は小さくな
り、PTCRエレメント自体の発熱温度域が広くなる。
Furthermore, by adding BN, the temperature coefficient of resistance becomes smaller, and the heat generation temperature range of the PTCR element itself becomes wider.

これらの添加物の相乗効果から、より立ち上がりがブロ
ードで抵抗温度係数(傾き)の小さいものが得られ、可
変式PTCRエレメントにとって良性性なものである。
The synergistic effect of these additives results in a broader rise and a smaller temperature coefficient of resistance (slope), which is benign for the variable PTCR element.

以下、本発明を実施例により説明するが、これらによっ
て限定されるものではない。
The present invention will be explained below with reference to Examples, but is not limited thereto.

実施例1 蓚酸塩法により製造した純度99.9%、平均粒径0.
2〜0.5 pmを有する主原料BaTi0 (C20
< ) z  ・4)+20.5rTiO(C204)
 2  ・4H20に、Sbz 03を半導体化材とし
て用い基本組成(Ba o、ses Sb O,OQ2
  Sr Q、3  ) TiO3となるように配合し
TiOzを0.02原子%添加しボールミルを用いて完
全に混合粉砕したのち、8顛φ×2fiの円板状に成形
圧約700kg/−で成形した。
Example 1 Produced by oxalate method, purity 99.9%, average particle size 0.
The main raw material BaTi0 (C20
< ) z ・4)+20.5rTiO(C204)
2 ・4H20, using Sbz 03 as a semiconductor material, the basic composition (Ba o, ses Sb O, OQ2
Sr Q, 3) It was blended to become TiO3, 0.02 atomic% of TiOz was added, and it was completely mixed and ground using a ball mill, and then molded into a disk shape of 8 pieces φ x 2fi at a molding pressure of about 700 kg/-. .

焼成は仮焼成として800℃で3時間ついで本焼成を1
200℃〜1350℃で行い常法に従い(成形体にオー
ミック性電極ペーストを塗布し500℃で焼付け)PT
CR素子を作成した。
Firing is pre-firing at 800℃ for 3 hours, then main firing for 1 time.
PT was carried out at 200°C to 1350°C according to the conventional method (applying ohmic electrode paste to the molded body and baking at 500°C).
A CR element was created.

得られた素子の焼成温度とPTCR特性との関係を第1
表およびff11図に示す。
The relationship between the firing temperature and the PTCR characteristics of the obtained device was determined as follows.
It is shown in the table and ff11 figure.

である。正式には、次式で表わされる。It is. Formally, it is expressed by the following formula.

T2 −Tt 第1図から判るように1300°C以上で焼結させると
室温抵抗は低いもののPTCR特性は出ない、一方12
00℃、1250°Cで焼成したものについては温度に
おける比抵抗値が4〜6桁と大きな変化を示しており、
抵抗温度係数も5.5〜6.7(%/℃)と電圧変化に
よる温度コントロールが可能である3〜8 (%/’C
)の範囲内にあり、これが3以下ではコントロールが悪
くなる。
T2 -Tt As can be seen from Figure 1, sintering at temperatures above 1300°C results in low room temperature resistance but no PTCR characteristics;
For those fired at 00°C and 1250°C, the specific resistance value shows a large change of 4 to 6 orders of magnitude depending on the temperature.
The temperature coefficient of resistance is 5.5 to 6.7 (%/°C), which allows temperature control by changing the voltage to 3 to 8 (%/'C).
), and if this is 3 or less, control becomes poor.

なお、この素子自体に一定電圧を印加したときの諸物性
を第2表に示す。
Table 2 shows various physical properties when a constant voltage is applied to this element itself.

第2表 また1200℃および1250 ’Cの焼結素子につい
て電圧と発熱温度との関係を第2図に示した。
Table 2 Also, FIG. 2 shows the relationship between voltage and heat generation temperature for sintered elements at 1200°C and 1250'C.

以上のことからPTCR特性の立ち上がり特性をなだら
かにし、抵抗温度係数を小さくすることで発熱温度が自
在に変化する可変式PTCRエレメントを作成すること
ができる。
From the above, it is possible to create a variable PTCR element whose heat generation temperature can be freely changed by smoothing the rise characteristics of the PTCR characteristics and reducing the temperature coefficient of resistance.

実施例2 実施例1と同一の基本組成に焼結助剤として、Ti0z
  (0,4原子%)、 5iOz  (0,6原子%
)、およびBN (0,6原子%)を夫々添加し同様に
焼成温度1200℃で焼成し得られた素子のPTCR特
性を調べた。その結果を第3図に示す。
Example 2 The same basic composition as Example 1, but with TiOz as a sintering aid.
(0.4 atomic%), 5iOz (0.6 atomic%
) and BN (0.6 atomic %) were respectively added and fired in the same manner at a firing temperature of 1200°C, and the PTCR characteristics of the resulting elements were investigated. The results are shown in FIG.

第3図からも判るように、各助剤の添加で夫々の特性値
のブロードな変化が認められる。
As can be seen from FIG. 3, broad changes in the characteristic values are observed with the addition of each auxiliary agent.

(発明の効果) 以上本発明の蓚酸塩使用により製造されるPTCR素子
は、その抵抗温度係数(fiJき)を自在に変えること
ができるため発熱温度幅を自由にコントロールでき、電
圧を変えることで発熱温度も変化する事故制御型発熱体
の製造が可能となるものである。
(Effects of the Invention) As described above, the PTCR element manufactured by using oxalate of the present invention can freely change its temperature coefficient of resistance (fiJ), so the heat generation temperature range can be freely controlled, and by changing the voltage. This makes it possible to manufacture an accident-controlled heating element whose heat generation temperature also changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第3図は実施例1および実施例2における
PTCR特性、第2図は実施例1の電圧と発熱温度特性
を示すグラフである。 また参考図は、従来法の酸化物混合系と本発明の蓚酸塩
使用のPTCR特性および電圧と発熱温度特性を示すグ
ラフである。 第1図 Temp(℃) 電圧(V) 第3図 手続補正書 昭和63年2月70日
1 and 3 are graphs showing the PTCR characteristics in Example 1 and Example 2, and FIG. 2 is a graph showing the voltage and heat generation temperature characteristics in Example 1. Reference figures are graphs showing the PTCR characteristics, voltage, and heat generation temperature characteristics of the conventional oxide mixed system and the present invention using oxalate. Figure 1 Temp (℃) Voltage (V) Figure 3 Procedural amendment document February 70, 1988

Claims (2)

【特許請求の範囲】[Claims] (1)主原料としての1次粒子がサブミクロン以下であ
る蓚酸チタン酸バリウム、蓚酸チタン酸ストロンチウム
に酸化チタン、酸化アンチモンを基本組成が(Ba_1
_−_x_−_ySb_ySr_x)TiO_3(x≦
0.35y=0.001〜0.1)となるよう混合粉砕
仮焼成したのち、本焼成することを特徴とする可変式P
TCRエレメント。
(1) The basic composition is barium oxalate titanate, whose primary particles are submicron or smaller as the main raw material, strontium oxalate titanate, titanium oxide, and antimony oxide (Ba_1
_−_x_−_ySb_ySr_x)TiO_3(x≦
0.35y = 0.001 to 0.1) after being mixed, crushed and pre-fired, and then main fired.
TCR element.
(2)助剤としてSiO_2、BN、TiO_2の少な
くとも1種以上を添加することを特徴とする特許請求の
範囲第1項記載の可変式PTCRエレメント。
(2) The variable PTCR element according to claim 1, wherein at least one of SiO_2, BN, and TiO_2 is added as an auxiliary agent.
JP29891887A 1987-11-28 1987-11-28 Variable positive temperature coefficient resistance(ptcr) element Pending JPH01143201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29891887A JPH01143201A (en) 1987-11-28 1987-11-28 Variable positive temperature coefficient resistance(ptcr) element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29891887A JPH01143201A (en) 1987-11-28 1987-11-28 Variable positive temperature coefficient resistance(ptcr) element

Publications (1)

Publication Number Publication Date
JPH01143201A true JPH01143201A (en) 1989-06-05

Family

ID=17865863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29891887A Pending JPH01143201A (en) 1987-11-28 1987-11-28 Variable positive temperature coefficient resistance(ptcr) element

Country Status (1)

Country Link
JP (1) JPH01143201A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04264702A (en) * 1991-02-19 1992-09-21 Sekisui Plastics Co Ltd Manufacture of barium titanate porcelain semiconductor
DE19818375A1 (en) * 1998-04-24 1999-11-04 Dornier Gmbh Positive temperature coefficient of resistance resistor
WO2012155900A3 (en) * 2011-05-18 2013-01-10 Forschungszentrum Jülich GmbH Method for producing a semiconductor ceramic material, semiconductor ceramic material and a semiconductor component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04264702A (en) * 1991-02-19 1992-09-21 Sekisui Plastics Co Ltd Manufacture of barium titanate porcelain semiconductor
DE19818375A1 (en) * 1998-04-24 1999-11-04 Dornier Gmbh Positive temperature coefficient of resistance resistor
US6144286A (en) * 1998-04-24 2000-11-07 Dornier Gmbh PTCR-resistor
WO2012155900A3 (en) * 2011-05-18 2013-01-10 Forschungszentrum Jülich GmbH Method for producing a semiconductor ceramic material, semiconductor ceramic material and a semiconductor component

Similar Documents

Publication Publication Date Title
JPH01143201A (en) Variable positive temperature coefficient resistance(ptcr) element
Kuwabara et al. Varistor characteristics in PTCR-type (Ba, Sr) TiO3 ceramics prepared by single-step firing in air
JP3554786B2 (en) Semiconductor ceramic, degaussing positive temperature coefficient thermistor, degaussing circuit, and method of manufacturing semiconductor ceramic
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JP2976702B2 (en) Semiconductor porcelain composition
JPH0426101A (en) Positive characteristic semiconductor magnetic device
JP3178083B2 (en) Barium titanate-based ceramic semiconductor and method for producing the same
JPH07220902A (en) Barium titanate semiconductor ceramic
JPH07277825A (en) Electric conductive ceramic
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JPH04144201A (en) Positive temperature coefficient thermistor and manufacture thereof
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JPH09330805A (en) Positive characteristic thermistor and manufacture thereof
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JPS5948521B2 (en) Method for manufacturing positive characteristic semiconductor porcelain
JPH04329601A (en) Ptc thermistor
JPH02106903A (en) High-temperature ptc thermistor and manufacture thereof
JPH0426102A (en) Positive characteristic semiconductor magnetic device
JPH07211512A (en) Positive temperature coefficient thermistor
JPH1072254A (en) Production of barium titanate-base semiconductor porcelain
JPH06181102A (en) Manufacture of ptc resistor
JP2000016866A (en) Production of barium titanate-based semiconductor material
JPH07211511A (en) Positive temperature coefficient thermistor and its production
JPH04280861A (en) Composition for barium titanate-based semiconductor porcelain and barium titanate-based semiconductor porcelain using the same composition
JPH06302402A (en) Positive temperature coefficient thermistor