JPH06181102A - Manufacture of ptc resistor - Google Patents
Manufacture of ptc resistorInfo
- Publication number
- JPH06181102A JPH06181102A JP33261292A JP33261292A JPH06181102A JP H06181102 A JPH06181102 A JP H06181102A JP 33261292 A JP33261292 A JP 33261292A JP 33261292 A JP33261292 A JP 33261292A JP H06181102 A JPH06181102 A JP H06181102A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- ptc
- ptc resistor
- manufacturing
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermistors And Varistors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、PTC抵抗体の製造方
法に関し、特にその焼成工程における温度制御に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a PTC resistor, and more particularly to temperature control in its firing process.
【0002】[0002]
【従来の技術】従来、過電流を抑制する限流素子とし
て、大きなPTC(Positive Temperature Coefficien
t)効果をもつセラミックスのBaTiO3(チタン酸バリ
ウム)とV2O3(三酸化バナジウム)が知られている。2. Description of the Related Art Conventionally, a large PTC (Positive Temperature Coefficien) has been used as a current limiting element for suppressing overcurrent.
t) ceramics having the effect of BaTiO 3 (barium titanate) and V 2 O 3 (vanadium trioxide) are known.
【0003】このうち、BaTiO3は正特性サーミスタ
として弱電用には広く使われているが、室温抵抗が小さ
なものでは数Ω以上あってワットロスが大きい。Of these, BaTiO 3 is widely used as a positive temperature coefficient thermistor for weak current applications, but if it has a low room temperature resistance, it has several Ω or more and a large watt loss.
【0004】またPTC効果の出現は粒界の機構に関係
し、温度の上昇により粒界が高抵抗になる反面、吸収し
たエネルギーのために粒界破壊を起こしてしまう等の理
由により、電力用には不向きである。The appearance of the PTC effect is related to the mechanism of the grain boundary, and although the grain boundary has a high resistance due to the rise in temperature, the grain boundary breaks due to the absorbed energy and so on. Not suitable for.
【0005】一方、V2O3にCrを酸化物の形で添加
し、0≦x≦0.015の範囲で(V1-xCrx)2O3の組成と
するとPTC効果が得られることはよく知られている。On the other hand, when Cr is added to V 2 O 3 in the form of an oxide and the composition of (V 1-x Cr x ) 2 O 3 is within the range of 0 ≦ x ≦ 0.015, the PTC effect is not obtained. well known.
【0006】このようなV2O3系のPTC抵抗体はBa
TiO3に比較して比抵抗を四桁程度小さくできるが、セ
ラミックスとしては焼結性が悪く、大きな電流を流した
ときの耐熱衝撃性に問題がある。Such a V 2 O 3 PTC resistor is Ba
Although the specific resistance can be reduced by about four orders of magnitude as compared with TiO 3 , it has poor sinterability as a ceramic and has a problem in thermal shock resistance when a large current is applied.
【0007】そこで焼結助剤として各種金属を添加する
等の方法により、焼結性を向上することにより強度の向
上が行われている。Therefore, the strength is improved by improving the sinterability by a method such as adding various metals as a sintering aid.
【0008】[0008]
【発明が解決しようとする課題】しかし、V2O3系のP
TC抵抗体を製造する際は、V2O3セラミクス焼結助剤
として添加する金属の融点以上の温度で焼成する必要が
あるが、焼成時の温度パターンの違いによりセラミック
スの焼結性やセラミックスの持つPTC特性は大きく変
化する。However, the V 2 O 3 -based P
When manufacturing a TC resistor, it is necessary to fire at a temperature above the melting point of the metal added as a V 2 O 3 ceramics sintering aid, but due to the difference in the temperature pattern during firing, the sinterability of the ceramics and the ceramics The PTC characteristics possessed by the can vary greatly.
【0009】従って、適切な温度パターンで素子を焼結
させて良好な特性を有するPTC抵抗体を製造する技術
が求められている。Therefore, there is a demand for a technique for manufacturing a PTC resistor having good characteristics by sintering an element with an appropriate temperature pattern.
【0010】本発明は上記背景のもとになされたもので
あり、素子の焼成時における温度パターンを制御し、P
TC特性に優れたPTC抵抗体の製造方法を提供するこ
とを目的とする。The present invention has been made on the basis of the above-mentioned background, and controls the temperature pattern during firing of the device,
It is an object of the present invention to provide a method for manufacturing a PTC resistor having excellent TC characteristics.
【0011】[0011]
【課題を解決するための手段及び作用】上記課題を解決
するため、本発明は酸化バナジウムを主成分とする素子
の焼成を行う焼成工程を有するPTC抵抗体の製造方法
において、前記焼成工程の降温過程にて、素子転移温度
(PTC特性発現温度)前後の温度範囲での降温速度を
100(℃/h)未満としたことを特徴とするPTC抵
抗体の製造の方法を提供する。In order to solve the above problems, the present invention provides a method for manufacturing a PTC resistor having a baking step of baking an element containing vanadium oxide as a main component. Provided is a method for manufacturing a PTC resistor, characterized in that a temperature lowering rate in a temperature range around a device transition temperature (PTC characteristic expression temperature) is set to less than 100 (° C./h) in the process.
【0012】また、上記PTC抵抗体の製造方法におい
て、前記素子転移温度前後の温度範囲を300℃〜降温
過程終了温度とするとともに、その降温速度を略50
(℃/h)以下としたことを特徴とするPTC抵抗体の
製造方法も提供される。In the method of manufacturing the PTC resistor, the temperature range around the element transition temperature is set to 300 ° C. to the temperature at which the temperature lowering process ends, and the temperature lowering rate is set to about 50.
Also provided is a method for manufacturing a PTC resistor, which is (C / h) or less.
【0013】以下、本発明について更に詳細に説明す
る。The present invention will be described in more detail below.
【0014】上記焼成工程においては、良好な特性を得
るために素子の温度制御が重要であり、この温度制御を
良好に行うことにより、室温比抵抗が小さくPTC特性
に優れたPTC抵抗体が得られる。In the above firing step, temperature control of the device is important for obtaining good characteristics, and by performing this temperature control satisfactorily, a PTC resistor having a small room temperature specific resistance and excellent PTC characteristics can be obtained. To be
【0015】一般に、V2O3系のPTC素子においては
PTC発現温度(素子の転移点;通常は150℃〜20
0℃)にて格子定数の変化が起こる。この転移点前後で
素子の急熱や急冷を行うと熱歪みが結晶粒界に集中して
マイクロクラックが発生し、比抵抗、特に室温比抵抗の
上昇を招き、PTC特性を低下させてしまう。Generally, in a V 2 O 3 -based PTC element, the PTC expression temperature (transition point of the element; usually 150 ° C. to 20 ° C.)
The lattice constant changes at 0 ° C. When the device is rapidly heated or cooled around this transition point, thermal strain concentrates on the crystal grain boundaries to generate microcracks, which increases the specific resistance, particularly room temperature specific resistance, and deteriorates the PTC characteristics.
【0016】本発明においては素子の転移点前後におけ
る温度範囲にて、素子の冷却速度を100℃未満とする
ことにより熱歪みの集中を緩和してマイクロクラックの
発生を抑制している。In the present invention, the concentration of thermal strain is relaxed and the generation of microcracks is suppressed by setting the cooling rate of the element to less than 100 ° C. in the temperature range around the transition point of the element.
【0017】なお、上記素子転移点は150℃〜200
℃程度であり、上記転移点前後における温度範囲として
は、例えば150〜200℃、好ましくは300℃〜降
温過程終了温度(又は室温)とすることが挙げられる。The element transition point is 150 ° C. to 200 ° C.
The temperature range around the transition point is, for example, 150 to 200 ° C., preferably 300 ° C. to the temperature lowering process end temperature (or room temperature).
【0018】また、上記温度範囲における降温速度は、
通常の降温速度より小さくすることが好ましく、例えば
100℃/hr未満、好ましくは略50℃/hr以下と
する。The rate of temperature decrease in the above temperature range is
It is preferable to set the temperature lower than the normal temperature lowering rate, for example, less than 100 ° C./hr, preferably about 50 ° C./hr or less.
【0019】上記のように素子の転移点前後における温
度範囲にて素子の冷却速度を100℃未満とすることに
より、熱歪みの集中が緩和されてマイクロクラックの発
生が抑制され、良好なPTC特性を有するPTC抵抗体
が得らえる。By setting the cooling rate of the element to less than 100 ° C. in the temperature range around the transition point of the element as described above, the concentration of thermal strain is relaxed, the generation of microcracks is suppressed, and good PTC characteristics are obtained. A PTC resistor having is obtained.
【0020】[0020]
【実施例】本実施例においては種々の温度パターンにて
PTC抵抗体の焼成を行ってその特性を調べた。EXAMPLE In this example, the PTC resistor was fired in various temperature patterns to examine its characteristics.
【0021】まず、焼成を行う成形体を製造する。この
成形体は種々の方法により得られるが、本実施例におい
ては下記(a)工程にて得られる成形体を用いた。First, a molded body to be fired is manufactured. This molded product can be obtained by various methods, but in this example, the molded product obtained in the following step (a) was used.
【0022】(a):V2O3とCr2O3みをCrの固溶後
に(V0・996Cr0・004)2O3となるような配合比に秤量
し、24時間アルコール中で湿式粉砕混合を行い、乾燥
後、得られた粉末を水素気流中1200℃に於いて3時間仮
焼を行う。こうして得られた仮焼粉末に、鉄換算量が粉
体量の10wt%となるような鉄微粉末(平均粒径8μ)を加
えてアルコール中で12時間湿式粉砕混合し、乾燥後得ら
れた粉末に有機バインダーを加えて1.5ton/cm2の圧力で
加圧成形を行い、成形体を得る。(A): V 2 O 3 and Cr 2 O 3 are weighed in a mixing ratio such that (V 0 · 996 Cr 0 · 004 ) 2 O 3 is obtained after solid solution of Cr, and the mixture is placed in alcohol for 24 hours. After wet pulverizing and mixing with, and drying, the obtained powder is calcined in a hydrogen stream at 1200 ° C. for 3 hours. To the calcined powder thus obtained, iron fine powder (average particle size 8μ) was added so that the iron equivalent amount was 10 wt% of the powder amount, wet-milled and mixed in alcohol for 12 hours, and obtained after drying. An organic binder is added to the powder and pressure molding is performed at a pressure of 1.5 ton / cm 2 to obtain a molded body.
【0023】次に、上記成形体を用いて図1に示す温度
パターンにて水素気流中で焼成を行い、(V0・996Cr
0・004)2O3セラミックス抵抗体試料1を得た。また、従
来例として図2に示される従来の温度パターンにて焼成
を行い、これを比較例1とした。Next, using the above-mentioned molded body, firing is carried out in a hydrogen stream in the temperature pattern shown in FIG. 1 to obtain (V 0 .996 Cr
0.004 ) 2 O 3 ceramic resistor sample 1 was obtained. Further, as a conventional example, firing was performed in the conventional temperature pattern shown in FIG.
【0024】図1に示されるように、本実施例に係る試
料1は焼成した素子の冷却過程において、素子の転移点
付近前後(300℃〜室温)の降温速度を50℃/hr
と小さくしている。これに対し、比較例1においては素
子の転移点付近にても降温速度を100℃/hrにして
いる。As shown in FIG. 1, in the sample 1 according to this example, in the cooling process of the fired element, the temperature decreasing rate before and after the transition point of the element (300 ° C. to room temperature) was 50 ° C./hr.
And made small. On the other hand, in Comparative Example 1, the temperature lowering rate is 100 ° C./hr even near the transition point of the device.
【0025】上記試料1、及び比較例1の比抵抗値を表
1に示す。Table 1 shows the specific resistance values of Sample 1 and Comparative Example 1.
【0026】[0026]
【表1】 [Table 1]
【0027】また、これら試料における温度と比抵抗値
との相関を表すグラフを図3に示す。図3においてA
線,B線はそれぞれ試料1、比較例1の温度に対する比
抵抗を表す。FIG. 3 is a graph showing the correlation between the temperature and the specific resistance value of these samples. In FIG.
The line and the line B represent the specific resistance with respect to the temperature of Sample 1 and Comparative Example 1, respectively.
【0028】この図に示されるように、比較例は室温付
近での比抵抗が高いのに対し、試料1においては室温付
近での比抵抗が低く、また120℃近辺から急激に比抵
抗が高くなっており、良好なPTC特性が得られている
ことがわかる。As shown in this figure, the comparative example has a high specific resistance near room temperature, whereas the sample 1 has a low specific resistance near room temperature, and the specific resistance rapidly increases from around 120 ° C. It can be seen that good PTC characteristics are obtained.
【0029】[0029]
【発明の効果】以上説明したように、本発明によれば素
子の焼成の降温過程において素子の転移点付近での降温
速度を小さくしている。As described above, according to the present invention, the temperature lowering rate near the transition point of the element is reduced in the temperature lowering process during firing of the element.
【0030】従って熱歪みによる粒界破壊等が抑制さ
れ、室温比抵抗が低く良好なPTC特性を有するPTC
抵抗体が得られる。Therefore, the PTC having a good PTC characteristic with a low room temperature specific resistance in which grain boundary destruction due to thermal strain is suppressed.
A resistor is obtained.
【図1】本発明の一実施例に係る焼成温度パターンの説
明図FIG. 1 is an explanatory diagram of a firing temperature pattern according to an embodiment of the present invention.
【図2】従来例に係る焼成温度パターンの説明図FIG. 2 is an explanatory diagram of a firing temperature pattern according to a conventional example.
【図3】各素子の温度に対する比抵抗の相関を示すグラ
フFIG. 3 is a graph showing the correlation of the specific resistance with respect to the temperature of each element.
Claims (2)
成を行う焼成工程を有するPTC抵抗体の製造方法にお
いて、 前記焼成工程の降温過程にて、素子転移温度(PTC特
性発現温度)前後の温度範囲での降温速度を100(℃
/h)未満としたことを特徴とするPTC抵抗体の製造
の方法。1. A method of manufacturing a PTC resistor having a firing step of firing an element containing vanadium oxide as a main component, comprising: a temperature around an element transition temperature (PTC characteristic expression temperature) in the temperature decreasing step of the firing step. The temperature decrease rate in the range is 100 (℃
/ H), the method for producing a PTC resistor.
において、 前記素子転移温度前後の温度範囲を300℃〜降温過程
終了温度とするとともに、その降温速度を略50(℃/
h)以下としたことを特徴とするPTC抵抗体の製造方
法。2. The method of manufacturing a PTC resistor according to claim 1, wherein a temperature range around the element transition temperature is set to 300 ° C. to a temperature lowering process end temperature, and the temperature lowering rate is approximately 50 (° C. /
h) A method of manufacturing a PTC resistor, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33261292A JPH06181102A (en) | 1992-12-14 | 1992-12-14 | Manufacture of ptc resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33261292A JPH06181102A (en) | 1992-12-14 | 1992-12-14 | Manufacture of ptc resistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06181102A true JPH06181102A (en) | 1994-06-28 |
Family
ID=18256896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33261292A Pending JPH06181102A (en) | 1992-12-14 | 1992-12-14 | Manufacture of ptc resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06181102A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0718143A1 (en) * | 1994-12-21 | 1996-06-26 | Kabushiki Kaisha Toshiba | Electric vehicle control system |
US6582647B1 (en) * | 1998-10-01 | 2003-06-24 | Littelfuse, Inc. | Method for heat treating PTC devices |
-
1992
- 1992-12-14 JP JP33261292A patent/JPH06181102A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0718143A1 (en) * | 1994-12-21 | 1996-06-26 | Kabushiki Kaisha Toshiba | Electric vehicle control system |
US6582647B1 (en) * | 1998-10-01 | 2003-06-24 | Littelfuse, Inc. | Method for heat treating PTC devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5844507B2 (en) | Method for producing semiconductor porcelain composition and heater using semiconductor porcelain composition | |
JPH06181102A (en) | Manufacture of ptc resistor | |
JP2016219467A (en) | Ptc thermistor member and ptc thermistor element | |
JPH0661007A (en) | Manufacture of ptc resistor | |
JP2588951B2 (en) | High temperature PTC thermistor and manufacturing method thereof | |
JPH07277825A (en) | Electric conductive ceramic | |
JP3598177B2 (en) | Voltage non-linear resistor porcelain | |
JPH04245401A (en) | Manufacture of semiconductor porcelain with positive temperature coefficient of resistance | |
JPH0661006A (en) | Manufacture of ptc resistor | |
JPH08321404A (en) | Batio3-based thermistor and its production | |
JPH0338802A (en) | Manufacture of positive temperature coefficient semiconductor porcelain | |
JPH01143201A (en) | Variable positive temperature coefficient resistance(ptcr) element | |
JPH04337601A (en) | Manufacture of ptc resistance element | |
JPH05135913A (en) | Manufacture of oxide semiconductor for thermistor | |
JPH02174201A (en) | Manufacture of positive temperature coefficient semiconductor porcelain | |
JPH05135906A (en) | Manufacture of ptc resistor | |
JPH0555005A (en) | Manufacture of ptc resistance element | |
JPH07211512A (en) | Positive temperature coefficient thermistor | |
JPH0684606A (en) | Production of positive characteristic thermister | |
JPS62252008A (en) | Manufacture of microwave dielectric material | |
JP3624975B2 (en) | PTC thermistor material and manufacturing method thereof | |
JPH05267007A (en) | Manufacture of ptc resistance element | |
JPH0963810A (en) | Manufacture of current limiter element | |
JPH03103357A (en) | Preparation of ptc ceramic | |
JPH0567504A (en) | Manufacture of ptc resistance element |