JPH0338802A - Manufacture of positive temperature coefficient semiconductor porcelain - Google Patents

Manufacture of positive temperature coefficient semiconductor porcelain

Info

Publication number
JPH0338802A
JPH0338802A JP1175312A JP17531289A JPH0338802A JP H0338802 A JPH0338802 A JP H0338802A JP 1175312 A JP1175312 A JP 1175312A JP 17531289 A JP17531289 A JP 17531289A JP H0338802 A JPH0338802 A JP H0338802A
Authority
JP
Japan
Prior art keywords
atmosphere
semiconductor
oxidation treatment
firing
semiconductor porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1175312A
Other languages
Japanese (ja)
Inventor
Makoto Hori
誠 堀
Yasuhiro Oya
康裕 大矢
Akio Nara
奈良 昭夫
Toshiki Sawake
佐分 淑樹
Naoya Nunogaki
布垣 尚哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP1175312A priority Critical patent/JPH0338802A/en
Publication of JPH0338802A publication Critical patent/JPH0338802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To lower a resistivity by a method wherein a composition of a specific barium titanate-based semiconductor is baked in a neutral atmosphere and/or a reducing atmosphere of N2, Ar, H2 or the like, or the composition is baked in the air and, after that, is heat-treated in the neutral atmosphere and/or the reducing atmosphere and, after that, a heating and oxidation treatment is executed. CONSTITUTION:A composition of a barium titanate-based semiconductor containing an element to form a semiconductor such as Y, La, Nb or the like is baked in a neural atmosphere and/or a reducing atmosphere of N2, Ar, H2 or the like; or the composition is baked in the air and, after that, it heat-treated in the neutral atmosphere and/or the reducing atmosphere; after that, a heating and oxidation treatment is executed at 800 deg.C or higher. When an oxidation treatment temperature is less than 800 deg.C, a positive temperature coefficient semiconductor porcelain provided with a resitivity and a resistance ratio is difficult to obtain; on the other hand, even when the temperature exceeds 1200 deg.C, an effect corresponding to the temperature is difficult to obtain. Thereby, it is possible to obtain the positive temperature coefficient semiconductor porcelain whose resistivity at room temperature is low and which is provided with an excellent PTC characteristic.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、チタン酸バリウム系半導体を用いた比抵抗の
低い正特性半導体磁器の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing positive characteristic semiconductor ceramics with low resistivity using barium titanate-based semiconductors.

〔従来技術〕[Prior art]

チタン酸バリウム系半導体磁器は、チタン酸バリウム系
を主成分とし、これにY、La、5eCe、Ga等の希
土類元素、或いはNb、Ta等の遷移元素などの半導体
化元素を添加混合して高温で加熱焼結したものが知られ
ている。このチタン酸バリウム系半導体磁器は5キj、
−り一点で電気抵抗値が急激に変化する。いわゆる正特
性(PTC特性)を有する。
Barium titanate-based semiconductor porcelain has barium titanate as its main component, and is mixed with semiconducting elements such as rare earth elements such as Y, La, 5eCe, and Ga, or transition elements such as Nb and Ta, and heated to high temperatures. It is known that the material is heated and sintered. This barium titanate-based semiconductor porcelain is 5 kg,
-The electrical resistance value changes rapidly at one point. It has so-called positive characteristics (PTC characteristics).

しかして 」二記正特性半導体磁器は、固相反応により
製造するのが一般的である。即ち1例えば原料粉末であ
る13 a CO2,T i O□、 Y203S i
 02 、 A N20.、MnO2を混合し、仮焼、
粉砕1造粒、戒形、焼戒するものである。また、共沈法
やアルコキシド法による製造方法も試みられている。し
かし、これらは、いずれの方法を用いてもその比抵抗は
5Ω・Cl11が限界であった。
However, semiconductor porcelain with the positive characteristics described in item 2 is generally manufactured by solid phase reaction. That is, 1, for example, raw material powder 13 a CO2, T i O□, Y203S i
02, AN20. , MnO2 is mixed and calcined,
Grinding, 1 granulation, forming a precept, and burning a precept. Further, production methods using a coprecipitation method and an alkoxide method have also been attempted. However, no matter which method is used, the limit of the specific resistance is 5Ω·Cl11.

後述するごとく、正特性半導体磁器は成可く低い比抵抗
のものが要求されている。
As will be described later, positive characteristic semiconductor ceramics are required to have as low a resistivity as possible.

また、特公昭4,H134によれば、半導体化元素を添
加していないチタン酸バリウム系組成物について、前記
の焼成をNz、Ar等の中性雰囲気中で行い、その後焼
成温度よりも少し低い酸化性雰囲気中でエージングする
製造方法が開示されている。しかし、このものも25°
Cにおける比抵抗が、低いものでも約100Ω・cmを
示している。
Furthermore, according to Japanese Patent Publication No. 4, H134, for barium titanate-based compositions to which no semiconductor element is added, the above-mentioned calcination is performed in a neutral atmosphere such as Nz or Ar, and then the temperature is slightly lower than the calcination temperature. A manufacturing method is disclosed that involves aging in an oxidizing atmosphere. However, this one is also 25°
The specific resistance at C is about 100 Ω·cm even if it is low.

一方、比抵抗の小さい正特性半導体磁器を製造する方法
として、前記成形の後に大気中焼成を行い、Nz 、A
r、Hz等の中性又は還元雰囲気中において還元処理を
行い2次いで大気中で再酸化処理をする方法もある。ま
た、上記成形の後に前記還元雰囲気中において還元焼成
を行い9次いで大気中で再酸化する方法もある。
On the other hand, as a method for manufacturing positive characteristic semiconductor porcelain with low specific resistance, firing is performed in the atmosphere after the above-mentioned molding, and Nz, A
There is also a method in which reduction treatment is performed in a neutral or reducing atmosphere such as r, Hz, etc., and then reoxidation treatment is performed in the atmosphere. There is also a method in which after the above molding, reduction firing is performed in the reducing atmosphere and then reoxidation is performed in the atmosphere.

しかしながら、第4図に示すごとく、比抵抗とPTC特
性〔抵抗比(桁)〕とは相関関係があり。
However, as shown in FIG. 4, there is a correlation between specific resistance and PTC characteristics [resistance ratio (digits)].

比抵抗の低い正特性半導体磁器を得ようとするとPTC
特性が悪化し、一方PTC特性の高いものを得ようとす
ると比抵抗が大きくなってしまうという性質がある。
When trying to obtain positive characteristic semiconductor porcelain with low resistivity, PTC
The characteristics deteriorate, and on the other hand, if one attempts to obtain high PTC characteristics, the specific resistance increases.

そして、同図に示すごとく2通常の正特性半導体磁器は
、比抵抗が約10Ω・Cll1でPTC特性を示す抵抗
比が4〜5桁である。そして、これを還元焼成処理する
と比抵抗0.1〜1Ω・cmとなるが抵抗比が0〜1桁
程度に低下してしまう。またこのものを大気中で再酸化
処理すると抵抗比が上昇するが、−力比抵抗も高くなっ
てしまう。
As shown in the figure, the normal positive characteristic semiconductor porcelain has a specific resistance of about 10 Ω·Cll1 and a resistance ratio of 4 to 5 digits that exhibits PTC characteristics. When this is subjected to reduction firing treatment, the specific resistance becomes 0.1 to 1 Ω·cm, but the resistance ratio decreases to about 0 to 1 digit. Furthermore, if this material is reoxidized in the atmosphere, the resistance ratio will increase, but the negative force specific resistance will also increase.

また、正特性半導体磁器(PTCサーミスタ)の導電機
構については、3d電子のホッピング伝導説など種々の
説があるが、酸素欠陥の生成に伴う自由電子の生成によ
る説(酸化・還元の非平衡構造)が一般である。ところ
で、正特性半導体磁器の抵抗は、バルクと粒界の和によ
って表わされるが、一般にキューリー温度(Tc)以下
の温度に於いてはバルクの抵抗が、Tc以上の温度に於
いては粒界の抵抗が、それぞれ支配的であることが知ら
れている。そして、今日の正特性半導体磁器の低比抵抗
化に関しては、常温比抵抗を支配するバルクの制御が重
要である。
In addition, there are various theories regarding the conduction mechanism of positive characteristic semiconductor ceramics (PTC thermistors), including the 3D electron hopping conduction theory. ) is common. Incidentally, the resistance of positive characteristic semiconductor porcelain is expressed by the sum of the bulk and grain boundaries, but generally, at temperatures below the Curie temperature (Tc), the resistance of the bulk increases, and at temperatures above Tc, the resistance of the grain boundaries increases. It is known that each resistance is dominant. In order to lower the resistivity of today's positive characteristic semiconductor ceramics, it is important to control the bulk that governs the resistivity at room temperature.

さて、正特性半導体磁器の常温比抵抗は一般に次の様に
表される。
Now, the room temperature resistivity of positive characteristic semiconductor porcelain is generally expressed as follows.

ρPTc′、ρbulk−1/ 〔ND  ’ e ・
u )(ND:ドナー密度、e:電子の電荷。
ρPTc′, ρbulk−1/ [ND′ e・
u) (ND: donor density, e: electron charge.

μ二易動度) 従って、正特性半導体磁器の抵抗は、ドナー密度、即ち
バルク内の酸素欠陥の濃度に依存しており、低比抵抗の
ものを得るためには、酸素欠陥の濃度を高める必要があ
る。
μ2 mobility) Therefore, the resistance of positive characteristic semiconductor ceramics depends on the donor density, that is, the concentration of oxygen vacancies in the bulk, and in order to obtain a low resistivity, the concentration of oxygen vacancies must be increased. There is a need.

故に、該正特性半導体磁器を中性・還元雰囲気中にて焼
成、或いは熱処理することにより、酸素欠陥濃度を高め
低比抵抗化することが可能であるが、PTC特性が発現
する粒界迄もが還元されてしまい、PTC特性が消失、
或いは低下する問題を新たに生じる。
Therefore, by firing or heat-treating the positive characteristic semiconductor porcelain in a neutral/reducing atmosphere, it is possible to increase the oxygen defect concentration and lower the resistivity. is reduced, and the PTC properties disappear.
Or new problems arise.

[解決しようとする課題] 以上のごとく、前述の特許公報や第4図に示されるごと
く、再酸化することにより粒界を酸化しバルクのみを選
択的に還元させ低比抵抗とすることが試みられている。
[Problem to be solved] As described above, as shown in the above-mentioned patent publication and Figure 4, an attempt was made to oxidize the grain boundaries by reoxidizing and selectively reduce only the bulk to achieve a low resistivity. It is being

しかし、PTC特性と比抵抗とは相関があり、低比抵抗
化によりPTC特性が悪化する為、比抵抗が低く PT
C特性に優れた正特性半導体磁器を得ることは困難であ
る。
However, there is a correlation between PTC characteristics and resistivity, and lowering the resistivity worsens the PTC characteristics, resulting in low resistivity.
It is difficult to obtain positive characteristic semiconductor porcelain with excellent C characteristics.

また、上記のごとく低比抵抗で優れたPTC特性を有す
る正特性半導体磁器を得ることが困難なため、該磁器素
子そのものの形状を大きく、かつ素子厚みを薄<シたり
、また複数の磁器素子を並列接続して用いる方法も採ら
れている。しかし。
In addition, as mentioned above, it is difficult to obtain positive characteristic semiconductor porcelain that has low resistivity and excellent PTC characteristics. A method has also been adopted in which two are connected in parallel. but.

この様な使用方法は、正特性半導体磁器を過電流保護装
置やモータ起動用素子に応用する場合には。
This method of use is applicable when applying positive characteristic semiconductor porcelain to overcurrent protection devices and motor starting elements.

使用環境や配置スペース上の制約があり、また大幅なコ
ストアップを招く。
There are restrictions on the usage environment and placement space, and it also causes a significant increase in cost.

本発明は、かかる問題点に鑑み、常温における比抵抗が
低く、優れたPTC特性を有する正特性半導体磁器の製
造方法を提供しようとするものである。
In view of these problems, the present invention seeks to provide a method for manufacturing positive characteristic semiconductor ceramics having low specific resistance at room temperature and excellent PTC characteristics.

〔課題の解決手段〕[Means for solving problems]

本発明は、Y、La、Nb等の半導体化元素を含有した
チタン酸バリウム系半導体の組成物を。
The present invention provides a barium titanate semiconductor composition containing semiconductor elements such as Y, La, and Nb.

N2 、Ar、Hz等の中性および/または還元雰囲気
中で焼成した後、或いは上記組成物を大気中焼成後に中
性および/または還元雰囲気中で熱処理した後、800
℃以上において加熱酸化処理を行なうことを特徴とする
特性半導体磁器の製造方法にある。
After firing in a neutral and/or reducing atmosphere such as N2, Ar, Hz, etc., or after firing the above composition in the air and heat-treating it in a neutral and/or reducing atmosphere,
A method for producing characteristic semiconductor porcelain characterized by carrying out a heating oxidation treatment at a temperature of 0.degree. C. or higher.

本発明において注目すべきことは、焼成体を800℃以
上の高温度下において加熱酸化処理することである。こ
の加熱酸化処理を施すことによって、PTC特性を悪化
さ−Uることなく、低い比抵抗の正特性半導体磁器を得
ることができるのである。
What should be noted in the present invention is that the fired body is subjected to heat oxidation treatment at a high temperature of 800° C. or higher. By performing this thermal oxidation treatment, it is possible to obtain a positive characteristic semiconductor ceramic having a low specific resistance without deteriorating the PTC characteristics.

しかして、かかる加熱酸化処理は1例えば大気中などの
酸素雰囲気下において、高温に加熱することにより行な
う。この酸素雰囲気は、大気[1コの他、酸素雰囲気炉
や酸素11 I Pを用いて、酸素ガスとAr、Nzな
との中性ガス等との7昆合ガスにより形成すること、更
に、これらの加圧ガス雰囲気とすることもできる。
Therefore, such thermal oxidation treatment is performed by heating to a high temperature in an oxygen atmosphere such as in the air. This oxygen atmosphere is formed by a combination gas of oxygen gas and a neutral gas such as Ar or Nz using an oxygen atmosphere furnace or an oxygen atmosphere furnace, in addition to the atmosphere [1]. These pressurized gas atmospheres can also be used.

また、」二記酸化処理温度は800°C以上とする。Further, the oxidation treatment temperature described in "2" shall be 800°C or higher.

a o o ’c未満では、」二記比)1(抗及び抵抗
比を有する正特性半導体磁器が得難い。一方、1200
’cを越えてもそれに見合う効果は得難い。
If it is less than a o o 'c, it is difficult to obtain a positive characteristic semiconductor porcelain having a resistance ratio of 1 (double ratio).On the other hand, 1200
Even if it exceeds 'c, it is difficult to obtain a commensurate effect.

また、処理時間は0.5〜8時間とすることが好ましい
。0.5時間未満では上記比抵抗及び抵抗比を得難く、
一方、8時間を越えてもそれに見合う効果は得難い。
Further, the treatment time is preferably 0.5 to 8 hours. If it is less than 0.5 hours, it is difficult to obtain the above specific resistance and resistance ratio,
On the other hand, even if it exceeds 8 hours, it is difficult to obtain a commensurate effect.

次に、前記チタン酸バリウム系半導体の組成物は、チタ
ン酸バリウム系のものを用い、前記したY、La、Ce
、Nb、Ta等の半導体化元素を含有していることが好
ましい、また、半導体化元素は、実施例に示すごとく1
通常はY2O3等の酸化物として添加する。しかし Y
(1゜ Y(NO3)、l−a C(!yなど、仮焼や
大気焼成の際に酸化物を形成する化合物の状態で加える
こともできる。また、半導体化元素は1種又は2種以上
(例えば、Y−Nb  Y−La  La−Taの同時
添加)添加する。
Next, as the barium titanate-based semiconductor composition, a barium titanate-based semiconductor is used, and the above-mentioned Y, La, Ce
, Nb, Ta, and other semiconductor-forming elements are preferably contained.
It is usually added as an oxide such as Y2O3. But Y
(1° Y (NO3), l-a C (! or more (for example, simultaneous addition of Y-Nb Y-La La-Ta).

また、S i 02 ANz 03等の焼結助剤につい
ては、成可く少ない方が良く、無添加とすることが好ま
しい。これは、焼結助剤の添加番こより粒界に析出した
液相成分によって、還元、再酸化が妨げられる恐れがあ
るからである。また、キューリー温度(Tc)やPTC
特性を制御するため Pb、Sr、Ca、Zn  Sn
、Mn  Fe  Cu笠の元素を添加することもでき
る。
Further, as for the sintering aid such as S i 02 ANz 03, it is better to use as little as possible, and it is preferable that no additive is added. This is because reduction and reoxidation may be hindered by liquid phase components precipitated at grain boundaries due to the addition of the sintering aid. In addition, Curie temperature (Tc) and PTC
To control properties Pb, Sr, Ca, Zn Sn
, Mn, Fe, Cu, etc. may also be added.

また1本発明で用いる正特性半導体磁器は、成可く多孔
質(ポーラス)で1粒径が均一であることが好ましい。
Further, it is preferable that the positive characteristic semiconductor porcelain used in the present invention is porous and has a uniform grain size.

これは、多孔質でかつ均一粒径の場合には、還元、加熱
酸化処理が円滑に進行し結晶毎のバラツキが小さくなる
からである。
This is because when the grains are porous and have a uniform particle size, reduction and heating/oxidation treatments proceed smoothly and variations among crystals are reduced.

また、成層体の焼成は中性および/または還元雰囲気中
で行なう。かかる雰囲気としては、N2Ar、N2.こ
れらの混合ガスがある。また焼成の温度は1250〜1
350°Cとすることが好ましい。1250°C未満で
は焼成が困難であり一方1350°Cを越えると比抵抗
が増大するおそれがある。なお、成層体は B a C
Ch  T i 02等の原料粉末を5例えば混合、仮
焼、粉砕、造粒した後、所望形状に成形したものである
Further, the laminated body is fired in a neutral and/or reducing atmosphere. Such atmospheres include N2Ar, N2. There is a mixture of these gases. Also, the firing temperature is 1250~1
The temperature is preferably 350°C. If the temperature is lower than 1250°C, firing is difficult, while if the temperature exceeds 1350°C, the resistivity may increase. In addition, the stratified body is B a C
For example, raw material powder such as Ch T i 02 is mixed, calcined, crushed, and granulated, and then molded into a desired shape.

次に、上記方法は、焼成を中性および/または還元雰囲
気中で行なう場合について述べたが、該焼成は大気中で
行い、その後中性および/または還元雰囲気中で熱処理
(還元処理)を行い、然る後前記のごとく加熱酸化処理
を行なう方法を採用することもできる。
Next, the above method has been described in which firing is performed in a neutral and/or reducing atmosphere, but the firing is performed in the air, and then heat treatment (reduction treatment) is performed in a neutral and/or reducing atmosphere. It is also possible to adopt a method in which a heating oxidation treatment is then carried out as described above.

この場合、上記大気中焼成は、1280〜14oo’c
で行なう。また、中性および/または還元雰囲気中での
熱処理は1900〜1300 ’Cで前記と同様の雰囲
気を用いて行なう。なお、加熱酸化処理は前記方法と同
様である。
In this case, the above-mentioned atmospheric firing is performed at 1280 to 14 oo'c.
Let's do it. Further, the heat treatment in a neutral and/or reducing atmosphere is carried out at 1900 to 1300'C using the same atmosphere as above. Note that the heating oxidation treatment is the same as the method described above.

また3本発明においては、前記焼成又は熱処理により得
られたチタン酸バリウム系磁器焼結体(B a T i
 03−X)は、相対密度が80〜97%であることが
好ましい。
In addition, in the third invention, barium titanate-based porcelain sintered body (B a Ti
03-X) preferably has a relative density of 80 to 97%.

該相対密度が97%を超えるm密な焼結体はこれを次工
程で加熱酸化処理に付しても、酸素の拡散が遅く、長時
間の処理を必要とする。そのため、焼成体の表面の酸化
が進行し過ぎて、PTCの常温抵抗が増大するおそれが
ある。
Even if the m-dense sintered body having a relative density of more than 97% is subjected to a heating oxidation treatment in the next step, oxygen diffusion is slow and the treatment requires a long time. Therefore, the oxidation of the surface of the fired body may progress too much, and the room temperature resistance of the PTC may increase.

一方1相対密度が80%未満では、PTC特性は向上す
るが1焼結体の強度が低く、また比抵抗が大きくなるお
それがある。
On the other hand, if the 1 relative density is less than 80%, the PTC properties will improve, but the strength of the 1 sintered body will be low, and the specific resistance may increase.

なお、上記相対密度の調整は、製造工程中において前記
仮焼、粉砕の後に、カーボン等の可燃物を添加して1造
粒し、成形後の予備焼成時にこれを燃焼させた後1本焼
成することなどにより行う。
The above relative density can be adjusted by adding combustible material such as carbon to make one granule after the above-mentioned calcination and pulverization in the manufacturing process, burning it during pre-firing after molding, and then firing one granule. To do something, such as by doing something.

上記のごとく、相対密度を上記範囲とすることにより5
加熱酸化処理を迅速かつ均一に行うことができ、比抵抗
が低く優れたPTC特性を有する正特性半導体磁器を得
ることができる。
As mentioned above, by setting the relative density within the above range,
The thermal oxidation treatment can be performed quickly and uniformly, and positive characteristic semiconductor porcelain having low resistivity and excellent PTC characteristics can be obtained.

また9本発明においては、前記雰囲気中での焼成又は熱
処理により得たチタン酸バリウム系磁器は、そのBサイ
ト原子(Ti)とAサイト原子(例えばBa、Pb、S
r)とのモル比B/A(1’ i / B a )が1
.00〜1.08の範囲であることが好ましい。これに
より、比抵抗が低くPTC特性に優れた正特性半導体磁
器を得ることができる。
In addition, in the present invention, the barium titanate ceramic obtained by firing or heat treatment in the above atmosphere has its B site atoms (Ti) and A site atoms (e.g. Ba, Pb, S
molar ratio B/A (1' i / B a ) with r) is 1
.. The range is preferably from 00 to 1.08. This makes it possible to obtain positive characteristic semiconductor porcelain with low resistivity and excellent PTC characteristics.

即ち、B/A (Ti/Ba)が1.00未満の場合、
又は1.08を超える場合には、比抵抗が大きくなるお
それがある。ここに、上記B/A(′「i/Ba)は、
Aサイド原子即ちBa化合物(例えばBaC05)に対
するBサイト原子即ちTI化合物(例えばTiO□)の
モル比である。
That is, when B/A (Ti/Ba) is less than 1.00,
Or, if it exceeds 1.08, the specific resistance may become large. Here, the above B/A ('"i/Ba)" is
It is the molar ratio of B-site atoms, ie, TI compound (eg, TiO□), to A-side atoms, ie, Ba compound (eg, BaC05).

更に1本発明においては、前記半導体化元素はチタン酸
バリウム(BaTi03 )100モルに対して、下記
の範囲で添加することが好ましい。
Furthermore, in the present invention, it is preferable that the semiconductor element is added to 100 moles of barium titanate (BaTi03) in the following range.

この範囲外では、加熱酸化処理によって、比抵抗が上昇
するおそれがある。
Outside this range, the specific resistance may increase due to heat oxidation treatment.

Y:0.02〜1.2モル La : 0.02〜1.0モル Ce : 0.02〜0.8モル Nb:0.02〜1,0モル Ta :0.02〜1.0モル これらの半導体化元素は、1種又は2種以上添加する。Y: 0.02 to 1.2 mol La: 0.02 to 1.0 mol Ce: 0.02 to 0.8 mol Nb: 0.02 to 1.0 mol Ta: 0.02 to 1.0 mol One or more of these semiconductor-forming elements are added.

〔作用及び効果〕[Action and effect]

本発明においては、前記のごとく、最終的に加熱酸化処
理を行い、正特性半導体磁器製品としている。
In the present invention, as described above, a final thermal oxidation treatment is performed to obtain a positive characteristic semiconductor ceramic product.

そのため、優れたPTC特性を有すると共に低い比抵抗
を有する正特性半導体磁器を得ることができる。
Therefore, a positive characteristic semiconductor ceramic having excellent PTC characteristics and low resistivity can be obtained.

また、該正特性半導体磁器は、比抵抗が低いため、小型
形状としても、所望する抵抗値が得られると共に、自己
発熱(電圧降下)の低減が可能となる。そのため1例え
ば無風状態でも使用可能な過電流保護装置の作製など、
設計の自由度が向りする。更には、応用製品の小型化が
可能となりコストダウンを図ることができる。
Further, since the positive characteristic semiconductor ceramic has a low specific resistance, a desired resistance value can be obtained even in a small size, and self-heating (voltage drop) can be reduced. Therefore, 1. For example, creating an overcurrent protection device that can be used even in windless conditions.
Greater freedom in design. Furthermore, it is possible to downsize the applied product and reduce costs.

〔実施例〕〔Example〕

第1実施例 チタン酸バリウム系半導体の組成物を中性・還元雰囲気
中にて還元焼成し、又は大気中焼成後上記雰囲気中にて
還元処理して9種々の相対密度を有する焼結体を作った
。そしてその後該焼鮎体について加熱酸化処理を行い、
正特性半導体磁器を製造した。そして、該磁器について
、その特性を評価した。
1st Example A barium titanate-based semiconductor composition was reduced and fired in a neutral, reducing atmosphere, or fired in the air and then subjected to reduction treatment in the above atmosphere to produce 9 sintered bodies with various relative densities. Had made. Then, the roasted sweetfish body is subjected to heat oxidation treatment,
Positive characteristic semiconductor porcelain was manufactured. Then, the characteristics of the porcelain were evaluated.

上記組成物、還元焼成又は大気焼成後還元処理相対密度
、加熱酸化処理の条件、及び得られた正特性半導体磁器
の20°Cにおける比抵抗(ρ2゜Ω・cm)、PTC
特性(抵抗比△R1桁)、更に良否判定につき第1表に
示した。
The above composition, the relative density of the reduction treatment after reduction firing or atmospheric firing, the conditions of the heating oxidation treatment, the specific resistance (ρ2゜Ω・cm) at 20°C of the obtained positive characteristic semiconductor porcelain, and the PTC
The characteristics (resistance ratio ΔR 1 digit) and the quality judgment are shown in Table 1.

該良否判定は、20′Cにおける比抵抗が5Ω・Cm以
下、PTC特性ΔRが3桁以上の両者を満足するものを
3合格(同表の○印)基準とした。
The pass/fail judgment was based on 3 passes (○ mark in the same table), which satisfied both of the specific resistance at 20'C of 5 Ω·Cm or less and the PTC characteristic ΔR of 3 digits or more.

しかして、上記磁器の製造に当たっては、まずBaCO
5100モルに対し、Ti01を101モル、Yz O
’sを0.2モル加え、ZrO,玉石を用いたボールミ
ル中で純水を加えて、20時時間式混合した。
However, in manufacturing the above porcelain, first of all, BaCO
5100 mol, 101 mol of Ti01, YzO
0.2 mol of 's was added, pure water was added in a ball mill using ZrO and cobblestones, and the mixture was mixed for 20 hours.

その後、150°C524時間で乾燥した後9さらに大
気中で1000°C,4時間の仮焼を行い。
After that, it was dried at 150°C for 524 hours, and then calcined in the air at 1000°C for 4 hours.

チタン酸バリウム系半導体の仮焼粉体を得た。この仮焼
粉体は1通常の方法を用いて湿式粉砕し。
A calcined powder of barium titanate-based semiconductor was obtained. This calcined powder was wet-pulverized using a conventional method.

カーボン粉末を加え、造粒・成形して成形体とし。Add carbon powder, granulate and mold to form a compact.

大気中加熱を行なった。その後、該成形体を、第1表に
示す中性および/または還元雰囲気中、高温下で、1時
間の還元焼成を行い、還元焼結体を得た(Nα1〜11
)。
Heating was performed in the air. Thereafter, the compact was subjected to reduction firing for 1 hour at high temperature in a neutral and/or reducing atmosphere shown in Table 1 to obtain a reduced sintered compact (Nα1-11
).

又は、上記成形体を大気中焼成し1次いで第1表に示す
上記雰囲気中で還元処理を行い、還元焼結体を得た(N
[L12〜14)。
Alternatively, the above molded body was fired in the atmosphere and then subjected to a reduction treatment in the atmosphere shown in Table 1 to obtain a reduced sintered body (N
[L12-14).

このようにして得た還元焼成体は2第1表に示すごとく
1種々の相対密度を有する。この相対密度は、上記湿式
粉砕の後に、該粉砕物(乾燥物換算)にO〜20wL%
のカーボン粉末を加え2造粒、戒形後、カーボン除去の
ため1100°C大気中で予備焼成することにより形成
させた。大気加熱後は、還元焼成又は大気中焼成、還元
処理を行った。
The reduced sintered bodies thus obtained have various relative densities as shown in Table 2. This relative density is O to 20wL% of the pulverized product (in terms of dry matter) after the above wet pulverization.
Carbon powder was added thereto, granulated and shaped, and then pre-fired at 1100°C in the atmosphere to remove carbon. After heating in the atmosphere, reduction firing, firing in the atmosphere, and reduction treatment were performed.

次に、この還元焼結体を第1表に示す条件下において、
加熱酸化処理した。これにより、半導体磁器を得た。
Next, this reduced sintered body was processed under the conditions shown in Table 1.
Heat oxidation treatment was performed. As a result, semiconductor porcelain was obtained.

また2 この半導体磁器の端面を研摩し、オーミックA
g電極、カバーAg電極を塗布した後に525’C,1
0分間の焼付を行った。そして、20°Cにおける比抵
抗(ρ2o)、及びPTC特性〔ΔR(=log Rm
ax/Rmin))を評価した。
2. Polish the end face of this semiconductor porcelain to create an ohmic A
After applying g electrode and cover Ag electrode, 525'C, 1
Baking was performed for 0 minutes. Then, the specific resistance (ρ2o) and PTC characteristics [ΔR (=log Rm
ax/Rmin)) was evaluated.

また、比較のため、第1表に示すごとく、中性・還元雰
囲気焼成も加熱酸化処理もしないもの(No、CI )
 、加熱酸化処理をしないもの(No、C2)、相対密
度が小さいか又は大きい比較例(N。
In addition, for comparison, as shown in Table 1, a product that was neither fired in a neutral/reducing atmosphere nor heated and oxidized (No, CI)
, those without heat oxidation treatment (No, C2), comparative examples with low or high relative density (N).

C3,C4,C5,C6)についても同様の測定を行な
った。なお、還元焼成又は還元熱処理時間は、前記と同
様1時間であった。
Similar measurements were also carried out for C3, C4, C5, C6). Note that the reduction firing or reduction heat treatment time was 1 hour as described above.

第1表より知られるごとく9本発明品は比抵抗4.6Ω
・cm以下でかつPTC特性3桁以上という優れた性能
を有している。
As can be seen from Table 1, the specific resistance of the 9th invention product is 4.6Ω.
・It has excellent performance with a PTC characteristic of 3 digits or more and less than cm.

これに対して、第1表より知られるごとく、還元焼成も
加熱酸化処理もしないもの(No、 C1,)は高い比
抵抗を有している。また、還元焼成はしたが加熱酸化処
理をしなかったもの(No、C2)は比抵抗は非常に低
いもののPTC特性が極めて悪い。
On the other hand, as is known from Table 1, those that were not subjected to reduction firing or heat oxidation treatment (No, C1,) had a high specific resistance. In addition, those that were subjected to reduction firing but not heat oxidation treatment (No. C2) had very low resistivity but extremely poor PTC characteristics.

また、C3は加熱酸化処理を行っているが、相対密度が
小さいため、比抵抗が高い。また、比較例のNo、 C
4、C5、C6は、その相対密度が大きいか小さいため
、PTC特性が小さいか又は比抵抗が大きい。
Furthermore, although C3 has been subjected to heat oxidation treatment, its relative density is low, so its specific resistance is high. In addition, comparative example No. C
4, C5, and C6 have a large or small relative density, and therefore have a small PTC characteristic or a large specific resistance.

また 第1表のNo、 4に示す本発明にかかる半導体
磁器につき、そのPTC特性を第1図に曲線N04で示
した。また、比較のため、No、C1に示す従来品、N
o、C4に示す比較測高につき同図に曲線 No、CI又はC4で示した。
Further, the PTC characteristics of the semiconductor ceramics according to the present invention shown in No. 4 in Table 1 are shown in FIG. 1 by curve N04. Also, for comparison, conventional products shown in No., C1, N
The comparative height measurement shown in C4 is indicated by curve No., CI or C4 in the figure.

同図より知られるごとく5本発明品は低い比抵抗と、優
れたPTC特性を有することが分る。
As can be seen from the figure, the product of the present invention has low resistivity and excellent PTC characteristics.

第2実施例 第2表に示すごと<、Bサイト原子/Aサイト原子(T
i/Ba、Pb、Sr)の比率を種々に変えて、第1実
施と同様にして、正特性半導体磁器を製造し、特性の評
価を行った。上記B/A(Ti/Ba、Pb、Sr)比
率は BaC0:+に対するTt○2のモル比である。
Second Example As shown in Table 2, <, B site atom/A site atom (T
Positive characteristic semiconductor ceramics were manufactured in the same manner as in the first embodiment with various ratios of i/Ba, Pb, Sr) and their characteristics were evaluated. The above B/A (Ti/Ba, Pb, Sr) ratio is the molar ratio of Tt○2 to BaC0:+.

なお1本例においては、第1実施例で示した粉砕物への
カーボン添加、該カーボン除去の予備焼成は行っていな
い。
In this example, addition of carbon to the pulverized material and preliminary firing to remove the carbon as shown in the first example were not performed.

第2表には、磁器組成物の各成分のモル量、製法(還元
焼成、大気焼威後還元処理、及び加熱酸化処理)、得ら
れた半導体磁器の特性1判定等を第1表と同様に示した
Table 2 shows the molar amount of each component of the porcelain composition, the manufacturing method (reduction firing, reduction treatment after atmospheric firing, and heating oxidation treatment), the characteristics 1 judgment of the obtained semiconductor porcelain, etc., as in Table 1. It was shown to.

第2表より知られるごとく2本発明にかかるN(L21
〜38の半導体磁器は いずれも4.9Ωan以下とい
う低い比抵抗で、かつ3.1桁以上という優れたPTC
特性を示している。
As is known from Table 2, N (L21
~38 semiconductor porcelains all have a low specific resistance of 4.9Ωan or less, and an excellent PTC of 3.1 orders of magnitude or more.
It shows the characteristics.

これに比して、従来例に関しては NoC21は大気焼
成のみのため、比抵抗が高く、またNo、 C22は加
熱酸化処理をしていないためPTC46性が極めて悪い
。また、比較例Gこ関しては、C2324はB/A (
T i /B a )が1.00未満のため、比抵抗が
非常に高い。C25は、  B/A (Ti / B 
a )が11のため、比抵抗が高い。
In contrast, regarding conventional examples, NoC21 has a high resistivity because it is only fired in the atmosphere, and No. C22 has extremely poor PTC46 properties because it has not been subjected to heat oxidation treatment. Regarding Comparative Example G, C2324 is B/A (
Since T i /B a ) is less than 1.00, the specific resistance is very high. C25 is B/A (Ti/B
a) is 11, so the specific resistance is high.

また、第2表のNo、23に示す本発明にかかる半導体
磁器につき、そのPTC特性を、第2図にrib線No
、23で示した。また、No、C21に示す従来品につ
き、同図に曲線No、 C21で示した。
In addition, the PTC characteristics of the semiconductor porcelain according to the present invention shown in No. 23 of Table 2 are shown in FIG.
, 23. In addition, the conventional product shown as No. C21 is shown as a curve No. C21 in the same figure.

同図より1本発明品は低い比抵抗と優れたPTC特性を
有することが分かる。
From the figure, it can be seen that the product of the present invention has low resistivity and excellent PTC characteristics.

第3実施例 第3表に示すごとく、チタン酸バリウム100モルに対
して1種々の半導体化元素を種々の割合(モル)で添加
し、第1実施例と同様にして、正特性半導体磁器を製造
し、特性評価を行った。尚。
Third Example As shown in Table 3, various semiconductor elements were added in various ratios (moles) to 100 moles of barium titanate, and positive characteristic semiconductor porcelain was produced in the same manner as in the first example. manufactured and characterized. still.

本例においては、第1実施例で示した粉砕物へのカーボ
ン添加、該カーボン除去の予備焼成は行っていない。
In this example, the addition of carbon to the pulverized material and the preliminary firing for removing the carbon shown in the first example were not performed.

第3表には、磁器組成物の各成分のモル量、製法(還元
焼成、大気焼威後還元処理、及び加熱酸化処理)、得ら
れた半導体磁器の特性1判定等を第1表と同様に示した
Table 3 shows the molar amount of each component of the porcelain composition, the manufacturing method (reduction firing, reduction treatment after atmospheric firing, and heating oxidation treatment), the characteristics 1 judgment of the obtained semiconductor porcelain, etc., as in Table 1. It was shown to.

第3表より知られるごとく1本発明にかかるN。As can be seen from Table 3, N according to the present invention.

51〜78の半導体磁器は、いずれも4.9Ωcm以下
という低い比抵抗で、かつ3.1桁以上という優れたP
TC特性を示している。
Semiconductor ceramics Nos. 51 to 78 all have a low resistivity of 4.9 Ωcm or less and an excellent P of 3.1 digits or more.
It shows TC characteristics.

これに比して従来例に関しては、C51,C52は、大
気焼成のみ又は加熱酸化処理を行っていないため、比抵
抗が大きく又はPTC特性が極めて悪い。
In comparison, C51 and C52 of the conventional examples have high specific resistance or extremely poor PTC characteristics because they are only fired in the atmosphere or are not subjected to heat oxidation treatment.

また、比較例に関しては、C53はY2O,が少ないた
め、比抵抗が高い。またC54はY2O3多く、C55
はLa20.か少なく、C56?;tLaz03多いた
め、それぞれ比抵抗が高い。以下同様にC58〜C62
は、Cez Oi 、Nb2O5、Ta2o、の量が少
ないか多いために、いずれも比抵抗が高い。
Further, regarding the comparative example, C53 has a high specific resistance because it has a small amount of Y2O. Also, C54 has a lot of Y2O3, and C55
is La20. Or less, C56? ; Since there is a large amount of tLaz03, each has a high specific resistance. Similarly below, C58 to C62
Because the amounts of Cez Oi, Nb2O5, and Ta2o are small or large, the resistivity is high.

また、第3表のNo、53に示す本発明にかかる半導体
磁器につき1そのP TC特性を第3図に曲線No、5
3で示した。また、比較のため、 No、C51に示す
従来品につき同図に曲線No、C51で示した。
In addition, the PTC characteristics of the semiconductor porcelain according to the present invention shown in No. 53 in Table 3 are shown in curve No. 5 in FIG.
3. In addition, for comparison, the conventional product shown as No. C51 is shown as a curve No. C51 in the same figure.

同図より知られるごとく1本発明品は低い比抵抗と優れ
たPTC特性を有することが分かる。
As can be seen from the figure, the product of the present invention has low resistivity and excellent PTC characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第3図は、第1実施例、第2実施例
及び第3実施例に示した正特性半導体磁器の温度と比抵
抗の関係を示す線図、第4し1は比抵抗と抵抗比(PT
C特性)との関係を示す図である。
1, 2, and 3 are diagrams showing the relationship between temperature and specific resistance of the positive characteristic semiconductor porcelain shown in the first, second, and third examples; is the specific resistance and resistance ratio (PT
It is a figure showing the relationship with C characteristic).

Claims (1)

【特許請求の範囲】[Claims]  Y,La,Nb等の半導体化元素を含有したチタン酸
バリウム系半導体の組成物を,N_2,Ar,H_2等
の中性および/または還元雰囲気中で焼成した後,成い
は上記組成物を大気中焼成後に中性および/または還元
雰囲気中で熱処理した後,800℃以上において加熱酸
化処理を行なうことを特徴とする正特性半導体磁器の製
造方法。
After firing a barium titanate-based semiconductor composition containing semiconducting elements such as Y, La, and Nb in a neutral and/or reducing atmosphere such as N_2, Ar, and H_2, the composition is 1. A method for producing positive characteristic semiconductor porcelain, which comprises firing in the air, heat-treating in a neutral and/or reducing atmosphere, and then performing a heating oxidation treatment at 800° C. or higher.
JP1175312A 1989-07-06 1989-07-06 Manufacture of positive temperature coefficient semiconductor porcelain Pending JPH0338802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1175312A JPH0338802A (en) 1989-07-06 1989-07-06 Manufacture of positive temperature coefficient semiconductor porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1175312A JPH0338802A (en) 1989-07-06 1989-07-06 Manufacture of positive temperature coefficient semiconductor porcelain

Publications (1)

Publication Number Publication Date
JPH0338802A true JPH0338802A (en) 1991-02-19

Family

ID=15993893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1175312A Pending JPH0338802A (en) 1989-07-06 1989-07-06 Manufacture of positive temperature coefficient semiconductor porcelain

Country Status (1)

Country Link
JP (1) JPH0338802A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984355B2 (en) * 1999-11-02 2006-01-10 Murata Manufacturing Co., Ltd. Semiconducting ceramic material, process for producing the ceramic material, and thermistor
WO2011002021A1 (en) * 2009-07-01 2011-01-06 株式会社村田製作所 Semiconductor ceramic and positive-coefficient thermistor
WO2013065413A1 (en) * 2011-11-01 2013-05-10 株式会社村田製作所 Method for manufacturing ceramic semiconductor having positive resistance-temperature characteristics, ceramic semiconductor, and ptc thermistor using said ceramic semiconductor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837693A (en) * 1971-09-16 1973-06-02
JPS50104396A (en) * 1974-01-25 1975-08-18
JPS56158401A (en) * 1980-05-12 1981-12-07 Murata Manufacturing Co Barium titanate semiconductor porcelain

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837693A (en) * 1971-09-16 1973-06-02
JPS50104396A (en) * 1974-01-25 1975-08-18
JPS56158401A (en) * 1980-05-12 1981-12-07 Murata Manufacturing Co Barium titanate semiconductor porcelain

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984355B2 (en) * 1999-11-02 2006-01-10 Murata Manufacturing Co., Ltd. Semiconducting ceramic material, process for producing the ceramic material, and thermistor
WO2011002021A1 (en) * 2009-07-01 2011-01-06 株式会社村田製作所 Semiconductor ceramic and positive-coefficient thermistor
CN102471164A (en) * 2009-07-01 2012-05-23 株式会社村田制作所 Semiconductor ceramic and positive-coefficient thermistor
JPWO2011002021A1 (en) * 2009-07-01 2012-12-13 株式会社村田製作所 Semiconductor ceramic and positive temperature coefficient thermistor
US8390421B2 (en) 2009-07-01 2013-03-05 Murata Manufacturing Co., Ltd. Semiconductor ceramic and positive-coefficient characteristic thermistor
JP5510455B2 (en) * 2009-07-01 2014-06-04 株式会社村田製作所 Semiconductor ceramic and positive temperature coefficient thermistor
WO2013065413A1 (en) * 2011-11-01 2013-05-10 株式会社村田製作所 Method for manufacturing ceramic semiconductor having positive resistance-temperature characteristics, ceramic semiconductor, and ptc thermistor using said ceramic semiconductor

Similar Documents

Publication Publication Date Title
KR101189293B1 (en) Semiconductor porcelain composition and process for producing the same
JPWO2008053813A1 (en) Semiconductor porcelain composition and method for producing the same
KR20010051354A (en) Semiconducting Ceramic Material, Process for Producing the Ceramic Material, and Thermistor
JP5844507B2 (en) Method for producing semiconductor porcelain composition and heater using semiconductor porcelain composition
JPH0338802A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JPH06172025A (en) Piezoelectric ceramic and its production
JPH11102802A (en) Positive temperature coefficient thermistor and its manufacture
JP2940182B2 (en) Method for manufacturing semiconductor porcelain having positive temperature coefficient of resistance
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH0338803A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JPH02174201A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JPH02152202A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JP3237502B2 (en) Manufacturing method of grain boundary insulated semiconductor ceramic capacitor
JPH01238101A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPH0335503A (en) Manufacture of ptc thermistor
JPH1092605A (en) Manufacture of positive temperature thermistor
JP2990627B2 (en) Varistor manufacturing method
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JPH1092604A (en) Positive temperature coefficient thermistor and its manufacture
JPH11106256A (en) Production of barium titanate-based semiconductor material
JP2608922B2 (en) High dielectric constant ceramic composition
JP2000016866A (en) Production of barium titanate-based semiconductor material