JPH11106256A - Production of barium titanate-based semiconductor material - Google Patents

Production of barium titanate-based semiconductor material

Info

Publication number
JPH11106256A
JPH11106256A JP9271083A JP27108397A JPH11106256A JP H11106256 A JPH11106256 A JP H11106256A JP 9271083 A JP9271083 A JP 9271083A JP 27108397 A JP27108397 A JP 27108397A JP H11106256 A JPH11106256 A JP H11106256A
Authority
JP
Japan
Prior art keywords
sintering
semiconductor
barium titanate
raw material
forming agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9271083A
Other languages
Japanese (ja)
Inventor
Shinsuke Haruta
慎輔 治田
Takeshi Suemasu
猛 末益
Masaru Oda
大 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP9271083A priority Critical patent/JPH11106256A/en
Publication of JPH11106256A publication Critical patent/JPH11106256A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a material, having a region for forming a semiconductor of a low resistance within a wide temperature range and stable in characteristics by irradiating a formed compact formed of a semiconductor-forming agent selected from a raw material powder containing a rare earth element, Nb, Ta, W and Sb in a barium titanate-based magnetic composition with microwaves, heating and sintering the formed compact. SOLUTION: A formed compact formed of a semiconductor-forming agent selected from a raw material powder containing a rare earth element, Nb, Ta, W and Sb in a barium titanate-based magnetic composition is irradiated with microwaves used at preferably >=5 GHz, more preferably >=6 GHz frequency, heated and sintered at preferably 1,150-1,450 deg.C sintering temperature for preferably about 5-30 min sintering time. In the raw material formed compact at a low concentration of <0.2 mol.% of the added semiconductor-forming agent, the sintering is advanced at a low temperature in a short time by the microwave sintering and the abnormal grain growth is suppressed to provide a uniform granular structure. In the raw material formed compact at a high concentration of >=0.2 mol.% of the added semiconductor-forming agent, the diffusion of substances is more activated as compared with that of baking in an electric furnace and sintering reaction is promoted to achieve grain growth. Thereby, the sufficient semiconductor formation is realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気抵抗の温度係
数が正の特性を示す半導体磁器(以下PTC素子と略
す)の製造方法において、半導体化範囲の広い、低抵抗
なチタン酸バリウム系半導体材料を提供するチタン酸バ
リウム系半導体材料の製造法に関するものである。
The present invention relates to a method for manufacturing a semiconductor ceramic (hereinafter abbreviated as a PTC element) having a positive temperature coefficient of electrical resistance. The present invention relates to a method for producing a barium titanate-based semiconductor material that provides a material.

【0002】[0002]

【従来の技術】チタン酸バリウム系半導体材料は、チタ
ン酸バリウムを主成分とし、Bi、Sb、Ta、Laな
どの希土類元素などのうち一種類以上を微量含有させた
もので、常温における比抵抗が低く、抵抗急変点(キュ
リー温度)を越えると著しい正の抵抗温度変化を示すと
いう特徴を有している。この特性を利用して、温度感知
素子、電流制限素子などとして使用されている。一般
に、このような半導体化機構は原子価制御理論により広
く理解されている。しかし、チタン酸バリウムに加える
半導体化剤が0.2モル%を越えると常温の比抵抗は再
び上昇し、0.8モル%で再び絶縁体となる。この現象
には、焼結体粒子の急激な微小化をともなっており、粒
子の成長が半導体化と深く関連していることは明らかで
ある。しかし、この半導体から絶縁体への転移機構につ
いては、様々な議論がなされており未だ明らかにされて
いない。したがって、従来の製造方法においては、チタ
ン酸バリウム系半導体磁器を得るために、半導体化剤の
添加量の上限が0.6モル%までと制限されていた。ま
た、低抵抗を示す半導体化領域が狭いため、製品化の際
のバラツキの原因になっていた。また、半導体化範囲を
広げるために、Mnを添加する方法が知られている。
2. Description of the Related Art A barium titanate-based semiconductor material contains barium titanate as a main component and contains a trace amount of one or more rare earth elements such as Bi, Sb, Ta and La, and has a specific resistance at room temperature. Is low, and when the resistance exceeds a sudden change point (Curie temperature), a significant positive change in resistance temperature is exhibited. Utilizing this characteristic, it is used as a temperature sensing element, a current limiting element, or the like. Generally, such a semiconducting mechanism is widely understood by valence control theory. However, when the amount of the semiconducting agent added to barium titanate exceeds 0.2 mol%, the specific resistance at room temperature increases again, and at 0.8 mol%, it becomes an insulator again. This phenomenon is accompanied by rapid miniaturization of the sintered body particles, and it is clear that the growth of the particles is deeply related to the conversion to a semiconductor. However, the mechanism of the transition from the semiconductor to the insulator has been variously discussed and has not been clarified yet. Therefore, in the conventional manufacturing method, in order to obtain a barium titanate-based semiconductor porcelain, the upper limit of the amount of the semiconducting agent is limited to 0.6 mol%. In addition, since a semiconductor region showing low resistance is narrow, it has been a cause of variation in commercialization. Also, a method of adding Mn is known in order to widen the range of semiconductor conversion.

【0003】例えば特開昭50−76112号公報に
は、チタン酸バリウム系磁器組成物を基本組成物とし、
この基本組成物のうちBaの1.5〜15モル%をC
e、Y、Laなどの希土類元素、Biのうち1種以上と置
換し、かつ基本組成の100モルに対し、Mnを0.1
0〜0.30モル%含有しているチタン酸バリウム系半
導体磁器組成物が開示されている。
For example, Japanese Patent Application Laid-Open No. 50-76112 discloses a barium titanate-based porcelain composition as a basic composition,
In this basic composition, 1.5 to 15 mol% of Ba is C
e, a rare earth element such as Y, La or the like, Bi is substituted with at least one of Bi, and Mn is added to 0.1 mol per 100 mol of the basic composition.
A barium titanate-based semiconductor ceramic composition containing 0 to 0.30 mol% is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記特
開昭50−76112号公報記載の方法による効果は、
YなどによりBaサイトを置換した材料でのみに得られ
る特性であり、Nb、TaなどでTiサイトを置換した
材料については適用されていない。また、微量のMnを
狭い範囲で制御する必要があり、使用原料や外部環境か
らのMn、Feなどの不純物混入を極少に防ぐことが不
可欠となる。これらから、前記特開昭50−76112
号公報記載の方法は、半導体化領域を広げるための本質
的な解決手法とは言い難い。今日まで、より一層の低抵
抗化のため、材料組成や製造方法に関する多くの提案が
なされているが、未だ満足なものはない。
However, the effect of the method described in Japanese Patent Application Laid-Open No. 50-76112 is as follows.
This property can be obtained only with a material in which the Ba site is replaced with Y or the like, and is not applied to a material in which the Ti site is replaced with Nb, Ta, or the like. Further, it is necessary to control a very small amount of Mn in a narrow range, and it is essential to minimize the contamination of impurities such as Mn and Fe from the raw materials used and the external environment. From these, the above-mentioned JP-A-50-76112
The method described in Japanese Patent Application Laid-Open Publication No. H10-15064 cannot be said to be an essential solution for expanding the semiconductor region. To date, many proposals have been made on the material composition and manufacturing method for further lowering the resistance, but none have been satisfactory.

【0005】本発明の目的は、前記の問題点を解決し、
広い範囲において低抵抗な半導体化領域を有し、特性が
安定したチタン酸バリウム系半導体材料を製造する方法
を提供するものである。
An object of the present invention is to solve the above problems,
An object of the present invention is to provide a method for manufacturing a barium titanate-based semiconductor material having a low-resistance semiconductor region over a wide range and having stable characteristics.

【0006】[0006]

【課題を解決するための手段】本発明者らは、マイクロ
波により加熱・焼結することによって、従来絶縁体とな
っていた半導体化剤の添加範囲においても、Mnなどの
添加物によらず低抵抗なチタン酸バリウム系半導体磁器
が得られることを見出した。すなわち、本発明は、チタ
ン酸バリウム系磁器組成物において、希土類元素、N
b、Ta、WおよびSbのうち少なくとも一種を含有し
た原料粉末の成形体にマイクロ波を照射して加熱・焼結
することを特徴とするチタン酸バリウム系半導体材料の
製造方法に関する。
By heating and sintering by microwaves, the present inventors have realized that the range of addition of the semiconducting agent, which has conventionally been an insulator, does not depend on additives such as Mn. It has been found that barium titanate-based semiconductor porcelain with low resistance can be obtained. That is, the present invention provides a barium titanate-based porcelain composition comprising a rare earth element, N
The present invention relates to a method for producing a barium titanate-based semiconductor material, which comprises irradiating a microwave to a compact of a raw material powder containing at least one of b, Ta, W and Sb and heating and sintering the compact.

【0007】[0007]

【作用】本発明の正の抵抗温度係数を有するチタン酸バ
リウム系半導体材料の製造方法により、その生成機構は
未だ明らかではないが、半導体化領域が広範囲で、優れ
たPTCR特性を有するチタン酸バリウム系半導体材料
が得られる。
According to the method of the present invention for producing a barium titanate-based semiconductor material having a positive temperature coefficient of resistance, its formation mechanism is not yet clear, but barium titanate having a wide range of semiconducting regions and excellent PTCR characteristics is provided. A series semiconductor material is obtained.

【0008】[0008]

【発明の実施の形態】本発明の製造方法は、先ず、一般
的な方法により作製した原料粉末を用意する。次に、そ
の原料粉を所望の形状に成形し、原料の成形体を得る。
そして、その原料成形体に最適な条件においてマイクロ
波を照射し、成形体を焼結させる。このとき、成形体に
マイクロ波を照射すると、成形体の内部から急速に加熱
され、焼結が進行する。本発明に使用されるマイクロ波
としては、周波数が過度に低い場合には、焼結性が悪く
なり抵抗が高くなることがあるため、5GHz以上、特
に6GHz以上の周波数のマイクロ波が好ましい。高周
波数側における周波数については特に限定されず、通常
市販されているマイクロ波発生装置を好適に使用するこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the production method of the present invention, first, a raw material powder produced by a general method is prepared. Next, the raw material powder is formed into a desired shape to obtain a formed body of the raw material.
Then, the raw material compact is irradiated with microwaves under optimum conditions to sinter the compact. At this time, when the compact is irradiated with microwaves, it is rapidly heated from the inside of the compact and sintering proceeds. As the microwave used in the present invention, if the frequency is excessively low, the sinterability may be deteriorated and the resistance may be increased. Therefore, a microwave having a frequency of 5 GHz or more, particularly 6 GHz or more is preferable. The frequency on the high frequency side is not particularly limited, and a commercially available microwave generator can be suitably used.

【0009】半導体化剤の添加量が0.2モル%未満の
ような低濃度の原料成形体においては、マイクロ波焼結
により低温・短時間で焼結が進むため、異常粒子成長が
抑制され、均一な粒子構造となる。特に、6GHz以上
の周波数のマイクロ波を使用した場合には低抵抗のチタ
ン酸バリウム系半導体材料を製造することができる。一
方、半導体化剤の添加量が0.2モル%以上と高濃度の
原料成形体においては、従来の電気炉による焼成にくら
べ、物質の拡散がより活性化し焼結反応が促進されるた
め、粒子成長が達成される。そのため、半導体化剤が高
濃度の場合でも、十分に半導体化が実現される。特に、
6GHz以上の周波数のマイクロ波を使用した場合に
は、従来公知の方法では得られなかった半導体化剤の添
加量が1モル%〜7モル%と高濃度の原料成形体におい
て、広い範囲において低抵抗な半導体領域を有し、特性
が安定したチタン酸バリウム系半導体材料を製造するこ
とができる。
[0009] In a low-concentration raw material compact having an addition amount of the semiconducting agent of less than 0.2 mol%, sintering proceeds at a low temperature and in a short time by microwave sintering, so that abnormal grain growth is suppressed. , Resulting in a uniform particle structure. In particular, when a microwave having a frequency of 6 GHz or more is used, a barium titanate-based semiconductor material having low resistance can be manufactured. On the other hand, in a raw material compact having a high concentration of the semiconducting agent of 0.2 mol% or more, the diffusion of the substance is more activated and the sintering reaction is promoted as compared with the firing in a conventional electric furnace. Grain growth is achieved. Therefore, even when the concentration of the semiconducting agent is high, it is possible to sufficiently realize semiconversion. Especially,
When a microwave having a frequency of 6 GHz or more is used, the addition amount of the semiconducting agent, which cannot be obtained by a conventionally known method, is 1 mol% to 7 mol%, and the raw material compact having a high concentration is low in a wide range. A barium titanate-based semiconductor material having a semiconductor region with resistance and stable characteristics can be manufactured.

【0010】本発明におけるマイクロ波焼結の作製条件
として、焼結温度は1150〜1450℃であることが
好ましい。1150℃よりも低い温度であると、焼結が
不十分となるため十分に半導体化せず、それに対し14
50℃よりも高い温度になると、素子の表面が溶けてし
まい、良好な焼結体が作製できない。
In the present invention, the microwave sintering is preferably carried out at a sintering temperature of 1150 to 1450 ° C. If the temperature is lower than 1150 ° C., sintering becomes insufficient and the semiconductor is not sufficiently converted into a semiconductor.
When the temperature is higher than 50 ° C., the surface of the element is melted, and a good sintered body cannot be produced.

【0011】また、焼結時間は5〜30分程度であるこ
とが好ましい。焼結時間が5分未満であると焼結反応が
十分でなく、一方、30分を越えると良好な焼結体が得
られない。
The sintering time is preferably about 5 to 30 minutes. If the sintering time is less than 5 minutes, the sintering reaction is not sufficient, while if it exceeds 30 minutes, a good sintered body cannot be obtained.

【0012】さらに、必要に応じてマイクロ波照射によ
り得られた焼結体を、適切な条件にて再熱処理すること
で、キュリー温度での抵抗変化の大きさを向上させるこ
とができる。
Further, the magnitude of the resistance change at the Curie temperature can be improved by subjecting the sintered body obtained by microwave irradiation to heat treatment again under appropriate conditions, if necessary.

【0013】[0013]

【実施例】以下に実施例および比較例を示し、本発明を
具体的に説明する。 実施例1 出発原料として、BaCO3 、TiO2 、Nb2 5
La2 3 を所定の比率になるように調合し、ジルコニ
アボールを用いて18時間湿式ボールミル混合を行い、
乾燥後、1150℃で2時間仮焼した。この仮焼粉末を
粉砕し、さらにポリビニルアルコールを2重量%加えて
1000kg/cm2 の圧力で直径8.73mm、厚さ
2.7mmの円板に成形した。
The present invention will be specifically described below with reference to examples and comparative examples. Example 1 As starting materials, BaCO 3 , TiO 2 , Nb 2 O 5 ,
La 2 O 3 was prepared so as to have a predetermined ratio, and wet ball mill mixing was performed for 18 hours using zirconia balls.
After drying, it was calcined at 1150 ° C. for 2 hours. The calcined powder was pulverized, and 2% by weight of polyvinyl alcohol was further added to form a disc having a diameter of 8.73 mm and a thickness of 2.7 mm at a pressure of 1000 kg / cm 2 .

【0014】次にこれを以下の条件においてマイクロ波
を照射し、成形体を焼結した。共振周波数を6GHz、
マイクロ波出力を600Wとし、大気中において145
0℃、約10分間保持した。昇温および冷却速度は、い
ずれも30℃/分で行った。そのマイクロ波焼結体に1
050℃、大気中で熱処理を施し、PTCセラミックス
を得た。このセラミックスに、オーミックコンタクトが
良好なAg電極を焼き付けてPTC素子を得た。このP
TC素子について、室温(25℃)における比抵抗、抵
抗ー温度特性を測定した。また、得られた製品間には特
性のバラツキがほとんど見られなかった。
Next, this was irradiated with microwave under the following conditions to sinter the compact. 6 GHz resonance frequency,
The microwave output is set to 600 W and 145
It was kept at 0 ° C. for about 10 minutes. The heating and cooling rates were all 30 ° C./min. 1 for the microwave sintered body
Heat treatment was performed at 050 ° C. in the air to obtain PTC ceramics. An Ag electrode having good ohmic contact was baked on this ceramic to obtain a PTC element. This P
For the TC element, the specific resistance at room temperature (25 ° C.) and the resistance-temperature characteristics were measured. Also, there was hardly any variation in characteristics among the obtained products.

【0015】比較例1 比較のために、上記条件で作製した成形体を従来方法に
よる電気炉で、1450℃、20時間の条件で加熱した
PTC素子についても、同様な測定を行った。なお、上
記実施例では出発原料として炭酸塩、もしくは酸化物を
用いたが、これは特に重要ではなく、熱分解等により所
定の成分比を与える原料を用いても良い。
Comparative Example 1 For comparison, the same measurement was performed on a PTC element obtained by heating a molded body produced under the above conditions in an electric furnace according to a conventional method at 1450 ° C. for 20 hours. In the above embodiment, a carbonate or an oxide is used as a starting material. However, this is not particularly important, and a material giving a predetermined component ratio by thermal decomposition or the like may be used.

【0016】また、上記実施例では、PTCR特性向上
のためのMnや焼結助剤としてのSiO2 などは添加し
ていないが、それらを含有させた原料成形体において
も、本発明と同様の効果が得られる。
In the above embodiment, Mn for improving the PTCR characteristic and SiO 2 as a sintering aid were not added. However, the same applies to the raw material compact containing them as in the present invention. The effect is obtained.

【0017】さらに、チタン酸バリウムのBaサイトの
一部をPb、Sr、Caで同時置換し、添加物としてM
n、SiO2 を含有させたものでも良い。
Further, part of the Ba site of barium titanate is simultaneously replaced with Pb, Sr and Ca, and M is added as an additive.
n and SiO 2 may be contained.

【0018】図1に、各PTC素子における室温比抵抗
の半導体化剤依存性を示す。
FIG. 1 shows the dependence of the specific resistance at room temperature on the semiconducting agent in each PTC element.

【0019】図2に、半導体化剤を1.0モル%添加し
たPTC素子における比抵抗の温度依存性を示す。
FIG. 2 shows the temperature dependence of the specific resistance in a PTC element to which 1.0 mol% of a semiconducting agent is added.

【0020】図1および図2から明らかなように、各実
施例のPTC素子は比較例のものに比べ、半導体化の濃
度範囲が大幅に増大する。これに対して、比較例では、
半導体化剤の添加量が0.02〜0.6%の範囲からは
ずれると、急激に抵抗が増加して、半導体材料が得られ
ない。以上述べたように、本発明はPTC素子において
半導体化領域を従来の10倍と格段に改良する事がで
き、その学術かつ産業上の効果は格別のものである。
As is clear from FIGS. 1 and 2, the PTC element of each embodiment has a greatly increased concentration range for semiconductor conversion as compared with that of the comparative example. On the other hand, in the comparative example,
If the addition amount of the semiconducting agent is out of the range of 0.02 to 0.6%, the resistance increases sharply and a semiconductor material cannot be obtained. As described above, the present invention can remarkably improve the semiconductor region of the PTC element to ten times that of the conventional one, and its academic and industrial effects are remarkable.

【0021】[0021]

【発明の効果】本発明によると、マイクロ波を照射して
加熱・焼結することで、従来よりも広い範囲に低抵抗な
半導体化領域を有するチタン酸バリウム系半導体材料を
製造することができる。しかも、材料組成に対する依存
性が小さいため、製造工程における管理が容易となり、
工業的な利用価値は極めて高いものである。
According to the present invention, a barium titanate-based semiconductor material having a low-resistance semiconducting region in a wider range than before can be manufactured by heating and sintering by microwave irradiation. . Moreover, since the dependence on the material composition is small, management in the manufacturing process is easy,
The industrial utility value is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各PTC素子における室温比抵抗の半導体化剤
依存性を示す図である。
FIG. 1 is a diagram showing the dependence of the room temperature resistivity on the semiconducting agent in each PTC element.

【図2】半導体化剤を1.0モル%添加したPTC素子
における比抵抗の温度依存性を示す図である。
FIG. 2 is a diagram showing temperature dependence of specific resistance in a PTC element to which a semiconductor agent is added at 1.0 mol%.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チタン酸バリウム系磁器組成物におい
て、希土類元素、Nb、Ta、WおよびSbのうち少な
くとも一種を含有した原料粉末の成形体にマイクロ波を
照射して加熱・焼結することを特徴とするチタン酸バリ
ウム系半導体材料の製造方法。
In a barium titanate-based porcelain composition, heating and sintering is performed by irradiating a microwave to a compact of a raw material powder containing at least one of rare earth elements, Nb, Ta, W and Sb. A method for producing a barium titanate-based semiconductor material.
JP9271083A 1997-10-03 1997-10-03 Production of barium titanate-based semiconductor material Pending JPH11106256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9271083A JPH11106256A (en) 1997-10-03 1997-10-03 Production of barium titanate-based semiconductor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9271083A JPH11106256A (en) 1997-10-03 1997-10-03 Production of barium titanate-based semiconductor material

Publications (1)

Publication Number Publication Date
JPH11106256A true JPH11106256A (en) 1999-04-20

Family

ID=17495141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9271083A Pending JPH11106256A (en) 1997-10-03 1997-10-03 Production of barium titanate-based semiconductor material

Country Status (1)

Country Link
JP (1) JPH11106256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015943A (en) * 2000-06-29 2002-01-18 Kyocera Corp Method for manufacturing dielectric, and the dielectric and capacitor using the dielectric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015943A (en) * 2000-06-29 2002-01-18 Kyocera Corp Method for manufacturing dielectric, and the dielectric and capacitor using the dielectric

Similar Documents

Publication Publication Date Title
JP5151477B2 (en) Semiconductor porcelain composition and method for producing the same
KR101152453B1 (en) Semiconductor ceramic composition
JPWO2008053813A1 (en) Semiconductor porcelain composition and method for producing the same
JP5590494B2 (en) Manufacturing method of semiconductor ceramic composition-electrode assembly
JP5844507B2 (en) Method for producing semiconductor porcelain composition and heater using semiconductor porcelain composition
JPH11106256A (en) Production of barium titanate-based semiconductor material
JP2000016866A (en) Production of barium titanate-based semiconductor material
JP2979915B2 (en) Semiconductor porcelain composition and method for producing the same
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH11102802A (en) Positive temperature coefficient thermistor and its manufacture
JP3178083B2 (en) Barium titanate-based ceramic semiconductor and method for producing the same
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JPH0338802A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JP2004014950A (en) Ceramics material having ptc characteristic
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JPS5948521B2 (en) Method for manufacturing positive characteristic semiconductor porcelain
JPH0338803A (en) Manufacture of positive temperature coefficient semiconductor porcelain
JPH1092605A (en) Manufacture of positive temperature thermistor
JPH1070008A (en) Manufacture of positive temperature coefficient thermistor
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JPS6366401B2 (en)
JPH11139870A (en) Barium titanate-base semiconductor porcelain
JP2000313661A (en) Discharge plasma sintered compact and its production
JPH04280861A (en) Composition for barium titanate-based semiconductor porcelain and barium titanate-based semiconductor porcelain using the same composition
JPH07183104A (en) Manufacture of barium titanate semiconductor porcelain