WO1994024680A1 - Positive characteristic thermistor - Google Patents

Positive characteristic thermistor Download PDF

Info

Publication number
WO1994024680A1
WO1994024680A1 PCT/JP1994/000622 JP9400622W WO9424680A1 WO 1994024680 A1 WO1994024680 A1 WO 1994024680A1 JP 9400622 W JP9400622 W JP 9400622W WO 9424680 A1 WO9424680 A1 WO 9424680A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermistor
composition
positive
temperature coefficient
mol
Prior art date
Application number
PCT/JP1994/000622
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Sasaki
Hiroshi Inagaki
Takuji Okumura
Masatoshi Tamura
Katsuhiko Sugisawa
Original Assignee
Kabushiki Kaisha Komatsu Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP8754993A external-priority patent/JPH06302402A/en
Priority claimed from JP5281352A external-priority patent/JPH06349604A/en
Application filed by Kabushiki Kaisha Komatsu Seisakusho filed Critical Kabushiki Kaisha Komatsu Seisakusho
Priority to EP94912679A priority Critical patent/EP0694930A4/en
Priority to KR1019950704028A priority patent/KR960701453A/en
Publication of WO1994024680A1 publication Critical patent/WO1994024680A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient

Definitions

  • the present invention relates to a positive-characteristic temperature sensor, and more particularly to a composition of a thermistor body.
  • porcelain consisting B a T i 0 3 system base perovskite-type compound is a dielectric, piezoelectric, pyroelectric, have electrical have utility value properties such as abnormal resistance, widely various electronic devices Used.
  • the added oxide semiconductors 3at% is because it has a large positive temperature coefficient, it referred to as PTC thermistor evening.
  • PTC thermistor evening the temperature range having a large positive temperature coefficient can be adjusted by adding Sr, Pb, etc., so that the temperature can be measured and overcurrent can be prevented. It must be in a wide variety of fields, such as circuit elements for demagnetization and low-temperature heaters.
  • a first object of the present invention one force, low room temperature resistivity p 25, can resistance temperature coefficient ⁇ is large, there is provided a mono mistakes evening with stable characteristics.
  • a second object of the present invention is to provide a highly reliable positive-characteristic thermistor with low power consumption, no generation of Pb vapor, and high reliability.
  • the present invention in the semi-conductor composition of B a T i 0 3 perovskite type compounds constituting the mono- thermistor body, the better to you in excess T i amount It is characterized in that the composition that has been set is a composition in which the Ti amount is less than the stoichiometric ratio.
  • thermistor main body made of a rhodium titanate-based semiconductor formed so as to satisfy the following formula, and a power supply electrode attached to the thermistor main body.
  • S at least one element selected from Sr, Sn, Zr, Ca, Pb
  • M Nb, Ta, Bi, Sb, Y, La, Nd, W, Th, Ce, Sm, Gd,
  • A At least one element selected from Mn, Fe, Cu, Cr, F, CI, Br, K, and V
  • the present inventors have repeated various experiments by changing the composition ratio, and as a result, have found that a composition in which the Ti amount is less than the stoichiometric ratio is better, and the present invention has been made by paying attention to this. as hereinbefore, by using the above composition, and smaller room temperature resistivity p 25, alpha is possible force to provide a mono thermistor with a large listening stable characteristics.
  • the element of S mainly has an action of controlling the Curie temperature
  • the element of ⁇ ⁇ ⁇ ⁇ has an action of mainly converting the composition into a semiconductor
  • the element of ⁇ controls the surface state of the crystal grain boundary. It is believed to be something.
  • the present invention is characterized in that the composition of the semiconductor constituting the thermistor body is constituted by the following titanate / ⁇ calcium-lium-thiocyanate-based semiconductor.
  • the present inventors have conducted various experiments by changing the composition, and as a result, have found that the use of the above composition makes it possible to obtain a positive characteristic thermistor with low power consumption. Is made by paying attention to this.
  • Ca has the effect of refining the crystal grains and improving the withstand voltage characteristics.
  • the reason why the composition range is set to 0.01 ⁇ x ⁇ 0.2 is that when X is smaller than 0.01, there is no effect of improving the characteristics, and when X exceeds 0.2, the specific resistance of the element becomes large and the practicality is lost.
  • Y has an effect of imparting semiconductivity to titanium titanate.
  • its composition range In order to reduce the specific resistance to a practically low value (10 to 1 kQ * cm), its composition range must be within the range of 0.002 ⁇ y ⁇ 0.006.
  • Excess Ti content than the stoichiometric composition has a large effect on the crystal grain size and the temperature coefficient of resistance of the device, and therefore has the greatest effect on power consumption during energization.
  • the composition range of T i is set to 0.001 ⁇ z ⁇ 0.010 because the temperature coefficient of resistance is smaller for a table with a value of less than 0.001. Therefore, the element resistance at the time of applying a voltage is reduced, and the power consumption during energization is increased. For such a reason, the above range is determined.
  • S i 0 2 lowers the sintering temperature, the effect of suppressing abnormal grain growth of crystal grains.
  • the reason for setting 0.005 ⁇ p ⁇ 0.03 is that bananas smaller than 0.005 have insufficient effect of suppressing abnormal grain growth, and larger than 0.03, and conversely, cause abnormal grain growth of crystal grains.
  • Mn has the effect of increasing the temperature coefficient of resistance above the Curie temperature. However, since the addition of Mn also increases the specific resistance, the composition range must be 0.0005 ⁇ q ⁇ 0.0015 in order to obtain the above effect within the practical range of the specific resistance of the element (l kQ * cm or less).
  • FIG. 1 is a diagram showing a positive characteristic thermistor according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing the relationship between the composition ratio of the positive temperature coefficient thermistor of the embodiment of the present invention and the conventional example, and the specific resistance at room temperature and the temperature coefficient of resistance.
  • Fig. 3 shows anomalous resistance at positive temperature thermistors.
  • FIG. 4 is a diagram showing a positive characteristic thermistor according to the second embodiment of the present invention.
  • FIG. 5 is a diagram showing a circuit for measuring power consumption in a positive temperature coefficient thermistor according to the present invention.
  • FIG. 1 is a diagram showing a positive characteristic thermistor according to an embodiment of the present invention.
  • the positive characteristics of the thermistor are characterized in that the composition of the thermistor body 1 is configured as shown in the following equation.
  • this positive temperature coefficient thermistor is composed of A first electrode layer 2a, 2 made of a Ni vapor-deposited layer formed so that the edge comes to a position slightly entering from the outer peripheral edge, and first electrode layers 2a, 2b on this upper layer. Second electrode layers 3a and 3b containing silver as a main component and formed so that their edges coincide with each other.
  • T i C 1 was diluted with distilled water so that the volume of the stock solution is doubled, a portion of the T i C 1 4 is hydrated, concentration of T i 1 mole per 239. 6 g T i C 17] Japanese. Here, the concentration was quantified by Coulomb analysis.
  • the granulated powder was reduced to 60 m or less by a spray drier, formed into pellets by a hydraulic press, and fired at 141 CTC for 1 hour to obtain semiconductor porcelain. An electrode was attached to this porcelain and the temperature resistance characteristics were measured. The results are shown in Table 1.
  • composition of the thermistor body 1 was configured as shown in the following equation.
  • B a 0.7744 S r 0.2217 Y 0.0039 ⁇ T i 0.9961 ° 3 + 0 " 00 1Mn (Formula)
  • the manufacturing process of the positive temperature coefficient thermistor will be described.
  • the T i C 1 stock solution was diluted with distilled water and the concentration was
  • T i C 1 4 hydrate 245 g T g of T i C 1 4 hydrate was prepared, and this T i C 1 4 hydrate 122. 1 g (T i: 0. 499 mol) were collected and the T i C 1 4 ⁇ solution was added further distilled water 200 g.
  • composition power of the thermistor body 1 was configured as shown in the following equation.
  • composition of the thermistor body 1 was configured as shown in the following equation.
  • the composition of the thermistor body 1 was configured as shown in the following equation. (Ba 0 7778 S r 0 2180 Y 0 0042 ) T i 1 0033 O 3 + ⁇ . ⁇ ⁇ (Formula) This composition exceeds the upper limit of the composition range of T i.
  • the composition of the thermistor body 1 was configured as shown in the following equation.
  • Example 1 shows the measurement results of the characteristics of the rice thermistor element as Comparative Example B.
  • FIG. 4 is a diagram showing a PTC thermistor according to the embodiment of the present invention.
  • This positive temperature coefficient thermistor is characterized in that the composition of the thermistor body 1S has a composition ratio as shown in the following table, and is constituted by potassium titanate-calcium titanate semiconductor shown below.
  • this positive characteristic ceramic is formed such that the main body 1S of the above composition, which is composed of titanium titanate, and the upper surface and the T® have an edge at a position slightly entering from the outer peripheral edge.
  • a first electrode layer 2a, 2b formed of a Ni vapor-deposited layer, and a second layer mainly composed of silver formed on the first electrode layer 2a, 2b so as to match the edge force of the first electrode layer 2a, 2b.
  • two electrode layers 3a and 3b are two electrode layers.
  • the obtained granulated powder is formed by a hydraulic press to a density of 2.5-3.Og / cm 3 , and then fired at 135 CTC for 1 hour in the air to have a diameter of 20 mm and a thickness of 2. 5 Obtained barium titanate-based semiconductor porcelain.
  • Commercially available Ag electrodes were printed and printed on both end surfaces of the semiconductor porcelain, and the specific resistance and power consumption were measured.
  • the power consumption was measured using a measurement circuit as shown in FIG. In this measurement circuit, the positive characteristic error signal 10 is connected to the power supply 12 via the load resistor 11, and this connection can be turned on and off by the switch 13.
  • the voltage at both ends of the positive temperature coefficient thermistor 1 ⁇ is measured by the connected voltmeter 14, and the voltage is measured by the The current flowing is measured. In this way, the voltage at both ends of the positive characteristic thermistor 10 and the current flowing through the positive characteristic thermistor 10 are measured to calculate the power consumption.
  • the power consumption P (W) was obtained by the following equation.
  • compositions Nos. 1 to 5, 8, and 9 indicate the present invention
  • compositions Nos. 6, 7, 10, and 11 indicate comparative examples.
  • composition Nos. 1 to 5 By comparing composition Nos. 1 to 5 with compositions Nos. 6 and 7, the amount of excess Ti 0 2 was 0.001 to O. Olmol (total Ti 0 3 ⁇ 4 100.1 -101.0 mol), It can be seen that a small power consumption equal to or less than the power consumption (3.0 W) of composition No. 11 can be obtained. If the amount of excess Ti is 0.001 mol or less or O.Olmol or more, the power consumption is 3. Ow or more.
  • the composition of the semiconductor constituting the semiconductor body is composed of barium titanate-calcium titanate-based semiconductor containing no Pb, Pb vapor is emitted during firing. And a positive temperature coefficient thermistor with low power consumption during energization can be provided.

Abstract

A thermistor having a small specific resistance ς25 at room temperature, a large α and stable characteristics. The semiconductor which constitutes the main body of the thermistor is a BaTiO3 perovskite-type compound. The quantity of Ti is smaller than that determined by the stoichiometric ratio, which has been preferably in excess conventionally.

Description

明細書  Specification
正特性サ一ミス夕  Positive characteristic mistake
技術分野  Technical field
本発明は、 正特性サ一ミス夕に係り、 特にサーミスタ本体の組成に関する。  The present invention relates to a positive-characteristic temperature sensor, and more particularly to a composition of a thermistor body.
背景技術  Background art
一般に、 B a T i 03系べロブスカイト型化合物からなる磁器は誘電性、圧電 性、 焦電性、異常抵抗性などの電気的に利用価値がある性質を有し、 種々の電子 デバイスに広く用いられている。 In general, porcelain consisting B a T i 0 3 system base perovskite-type compound is a dielectric, piezoelectric, pyroelectric, have electrical have utility value properties such as abnormal resistance, widely various electronic devices Used.
なかでも B aT i 03 に、 Y, Nd等を◦. 1〜0. 3at%添加した酸化物半 導体は大きな正の温度係数を有することから、 正特性サーミス夕と呼ばれる。 この正特性サ一ミス夕は、 大きな正の温度係数を有する温度領域を S r , P b 等の添加で調整することができることから、 温度の測定および過電流防止、 モ一 夕起動、 カラー TV消磁用等の回路素子および低温発熱ヒータ等、 広く様々な分 野でなくてはならないものとなっている。 Inter alia B aT i 0 3, Y, and Nd, etc. ◦. 1 to 0. The added oxide semiconductors 3at% is because it has a large positive temperature coefficient, it referred to as PTC thermistor evening. In the positive characteristics, the temperature range having a large positive temperature coefficient can be adjusted by adding Sr, Pb, etc., so that the temperature can be measured and overcurrent can be prevented. It must be in a wide variety of fields, such as circuit elements for demagnetization and low-temperature heaters.
また、 実用に際しては図 3に示した室温比抵抗 (以下/ o25) 、 抵抗温度係数 (以下 α) 、 抵抗変化幅 (以下】) を目的に適合するように組成面、 製法面から 制御しなければならない。 Further, for practical use the room temperature resistivity shown in FIG. 3 (hereinafter / o 2 5), temperature coefficient of resistance (hereinafter alpha), the composition surface to fit the purpose of resistance change width (hereinafter]), controlled from the preparation surface Must.
例えば、 抵抗温度係数 αを大きく力、つ、 抵抗変化幅 Jを高くするために結晶粒 界の表面準位を制御する元素である Mnなどを添加する方法 (特公昭 41-12 146号、 特公昭 42— 3855号) や、 室温比抵抗 p 25を低くするために S i 02 を添加する方法 (特公昭 51— 19599号) 、 T i量を過剰にする方法 (特公昭 41一 21869号) など力《知られている。 For example, in order to increase the temperature coefficient of resistance α and to increase the resistance change width J, a method of adding Mn, which is an element that controls the surface state of crystal grain boundaries (Japanese Patent Publication No. 41-12146, No. Publication 42 No. 3855) and No. method (JP-B 51- 19599 the addition of S i 0 2 in order to lower the room temperature resistivity p 25), a method of an excess of T i amount (JP 41 one 21,869 No. ) Etc. << Known.
ところで、 BaT i 03系の正特性サ一ミスタを実用に供する場合、 室温比抵 抗 P2rが小さいこと、抵抗温度係数 αが大きいこと、抵抗変化幅 J力《高いことが 要求されるが、 と には正の相関関係があり、 <o25が小さく力、つ αカ大きい サ一ミス夕を得ようとしても、 (aZl o gp。5) ~10という限界があった。 また、 前述したような従来の正特性サ一ミス夕は、 材料中に蒸気圧の高 、 P b を含有させる必、要があるため、 1◦ 00°C以上となる焼結中には、 Pb蒸気が大 量に発生し、 環境に対して有害性が高 L、という問題があつた。 発明の開示 Incidentally, when providing a positive characteristic mono- thermistor of BAT i 0 3 based on practical, that the room temperature ratio resistors P 2 r is small, the resistance temperature coefficient α is large, it is required that the resistance change width J force "high However, there is a positive correlation between and and there is a limit of (aZl o gp. 5 ) ~ 10 even if you try to obtain a small power and a large power of < 25 . In addition, in the conventional positive characteristics as described above, it is necessary to include a high vapor pressure and Pb in the material. There was a problem that a large amount of Pb vapor was generated and the toxicity to the environment was high. Disclosure of the invention
本発明の第 1の目的は、 室温比抵抗 p25が小さく力、つ、 抵抗温度係数 αが大 き 、安定な特性を持つサ一ミス夕を提供することにある。 A first object of the present invention, one force, low room temperature resistivity p 25, can resistance temperature coefficient α is large, there is provided a mono mistakes evening with stable characteristics.
また本発明の第 2の目的は、 消費電力が小さく、 Pb蒸気の発生がなく信頼 性の高 、正特性サ一ミスタを提供することにある。  A second object of the present invention is to provide a highly reliable positive-characteristic thermistor with low power consumption, no generation of Pb vapor, and high reliability.
上記第 1の目的を達成するため、 本発明では、 サ一ミスタ本体を構成する半 導体の組成を B a T i 03 ぺロブスカイト型化合物において、 T i量を過剰にす るのがよいとされていた組成を、 T i量を化学量論比よりも不足させた組成にし たことを特徴とする。 To achieve the above first object, the present invention, in the semi-conductor composition of B a T i 0 3 perovskite type compounds constituting the mono- thermistor body, the better to you in excess T i amount It is characterized in that the composition that has been set is a composition in which the Ti amount is less than the stoichiometric ratio.
すなわち、 次式を満たすように形成されたチタン酸ノ <リゥム系半導体からなる サーミスタ本体と、 前記サーミスタ本体に取り付けられた給電用の電極とを具備 したことを特徴とする。  That is, it is characterized by comprising a thermistor main body made of a rhodium titanate-based semiconductor formed so as to satisfy the following formula, and a power supply electrode attached to the thermistor main body.
(B —x-y Sx My ) T i z 03 + nA (B — x - y S x My) T iz 0 3 + nA
0≤x く丄 , 0 く y く 1 , 0.99≤z く 1 , 0 ≤π <0.002 (式) 0≤x x, 0 x y x 1, 0.99≤z x 1, 0 ≤π <0.002 (Equation)
S : S r, Sn, Z r, C a, P bから選ばれる少なくとも 1種の元素 S: at least one element selected from Sr, Sn, Zr, Ca, Pb
M: Nb, T a, B i , Sb, Y, La, N d, W, Th, C e, S m, Gd, M: Nb, Ta, Bi, Sb, Y, La, Nd, W, Th, Ce, Sm, Gd,
Dyから選ばれる少なくとも 1種の元素 At least one element selected from Dy
A: Mn, F e, Cu, C r, F, C I, B r, K, Vから選ばれる少なくと も 1種の元素  A: At least one element selected from Mn, Fe, Cu, Cr, F, CI, Br, K, and V
本発明者らは、 組成比を変化させて種々の実験を重ねた結果、 T i量を化学量 論比よりも不足させた組成がよいことを発見し、 本発明はこれに着目してなされ たもので、 上記組成を用いることにより、 室温比抵抗 p25が小さくかつ、 αが大 きい安定な特性を持つサ一ミスタを提供すること力可能となる。 The present inventors have repeated various experiments by changing the composition ratio, and as a result, have found that a composition in which the Ti amount is less than the stoichiometric ratio is better, and the present invention has been made by paying attention to this. as hereinbefore, by using the above composition, and smaller room temperature resistivity p 25, alpha is possible force to provide a mono thermistor with a large listening stable characteristics.
上記組成中、 Sの元素は、 主としてキュリー温度を制御する作用を有し、 Μの 元素は、 主として組成を半導体化する作用を有し、 Αの元素は結晶粒界の表面準 位を制御するものであると考えられている。  In the above composition, the element of S mainly has an action of controlling the Curie temperature, the element of 主 と し て has an action of mainly converting the composition into a semiconductor, and the element of Α controls the surface state of the crystal grain boundary. It is believed to be something.
また上記第 2の目的を達成するため、 本発明では、 サ一ミスタ本体を構成する 半導体の組成を以下に示すチタン酸/ <リウムーチ夕ン酸カルシゥム系半導体で構 成したことを特徴とする。 (B ai-x-y C ax Yy ) T i (l+z) °3 +P S 1 °2 +q Mn Further, in order to achieve the second object, the present invention is characterized in that the composition of the semiconductor constituting the thermistor body is constituted by the following titanate / <calcium-lium-thiocyanate-based semiconductor. ( B a ixy C a x Y y) T i (l + z) ° 3 + P S 1 ° 2 + q Mn
0.01≤x ≤0.2 , 0.002 ≤y ≤0.006 , 0.001 ≤z ≤0.010 , 0.005 ≤p≤0. 0.01≤x ≤0.2, 0.002 ≤y ≤0.006, 0.001 ≤z ≤0.010, 0.005 ≤p≤0.
03 0.0005≤q ≤0.0015 (式) すなわち、 従来のチタン酸バリウム一チタン酸ストロンチウム系半導体におい て P bの添加を止め、 チタンを化学的量論比よりも過剰に添加するようにしたこ とを特徴とする。 03 0.0005≤q ≤0.0015 (Equation) In other words, in conventional barium titanate-strontium titanate-based semiconductors, the addition of Pb was stopped and titanium was added in excess of the stoichiometric ratio. Features.
本発明者らは組成を変化させて種々の実験を重ねた結果、上記組成を用いるこ とにより、 消費電力の小さい、 正特性サーミス夕を得ること力《可能となることを 発見し、 本発明はこれに着目してなされたものである。  The present inventors have conducted various experiments by changing the composition, and as a result, have found that the use of the above composition makes it possible to obtain a positive characteristic thermistor with low power consumption. Is made by paying attention to this.
上記組成中、 C aは結晶粒を微細化し、 耐電圧特性を向上させる効果がある。 組成範囲を 0.01≤x ≤0.2 としたのは、 Xが 0.01より小さい場合は特性改善の効 果がなく、 0. 2を越えると素子の比抵抗が大きくなり、 実用性がなくなるため である。  In the above composition, Ca has the effect of refining the crystal grains and improving the withstand voltage characteristics. The reason why the composition range is set to 0.01 ≤ x ≤ 0.2 is that when X is smaller than 0.01, there is no effect of improving the characteristics, and when X exceeds 0.2, the specific resistance of the element becomes large and the practicality is lost.
Yはチタン酸バリゥムに対して半導電性を付与する効果がある。 比抵抗を実用 的値である低い値 (10~l kQ * cm) にするため、 その組成範囲は 0.002 ≤ y ≤ 0.006 の範囲とする必要がある。  Y has an effect of imparting semiconductivity to titanium titanate. In order to reduce the specific resistance to a practically low value (10 to 1 kQ * cm), its composition range must be within the range of 0.002 ≤ y ≤ 0.006.
化学量論組成よりも過剰な T i量は結晶粒の粒径、素子の抵抗温度係数に大き な影響を与えるため、 通電中の消費電力に最も影響する。 ここで T iの組成範囲 を 0.001 ≤z ≤0.010 としたのは、 0.001 より小さい場台は抵抗温度係数が小さ くなるため、 また、 0.01より大きい場台は結晶粒が異常 長し、 バリスタ効果 により電圧印加時の素子抵抗が小さくなるため、 通電中の消費電力が大きくなる ことからであってこのような理由から、上記範囲を決定した。  Excess Ti content than the stoichiometric composition has a large effect on the crystal grain size and the temperature coefficient of resistance of the device, and therefore has the greatest effect on power consumption during energization. Here, the composition range of T i is set to 0.001 ≤z ≤0.010 because the temperature coefficient of resistance is smaller for a table with a value of less than 0.001. Therefore, the element resistance at the time of applying a voltage is reduced, and the power consumption during energization is increased. For such a reason, the above range is determined.
また、 S i 02 は焼結温度を低下させ、 結晶粒の異常粒成長を抑制するという 効果がある。 0.005 ≤p≤0.03としたのは、 0.005 より小さい塲台は異常粒成長 抑制効果が不十分であり、 0.03より大き t、場合は逆に結晶粒の異常粒成長を引き 起こす。 Further, S i 0 2 lowers the sintering temperature, the effect of suppressing abnormal grain growth of crystal grains. The reason for setting 0.005 ≤p≤0.03 is that bananas smaller than 0.005 have insufficient effect of suppressing abnormal grain growth, and larger than 0.03, and conversely, cause abnormal grain growth of crystal grains.
Mnは、 キュリー温度以上での抵抗温度係数を増大させる効果がある。 しかし、 Mnの添加は比抵抗をも増大させるため、 実用的な素子比抵抗 (l kQ *cm以下) の範囲で上記効果を得るには、 その組成範囲を 0.0005≤q ≤0.0015とする必要が あ Mn has the effect of increasing the temperature coefficient of resistance above the Curie temperature. However, since the addition of Mn also increases the specific resistance, the composition range must be 0.0005≤q≤0.0015 in order to obtain the above effect within the practical range of the specific resistance of the element (l kQ * cm or less). Ah
• 図面の簡単な説明  • Brief description of the drawing
図 1は本発明の第 1の実施例の正特性サーミス夕を示す図  FIG. 1 is a diagram showing a positive characteristic thermistor according to the first embodiment of the present invention.
図 2は本発明実施例および従来例の正特性サ一ミスタの組成比と室温比抵抗お よび抵抗温度係数との関係を示す図  FIG. 2 is a diagram showing the relationship between the composition ratio of the positive temperature coefficient thermistor of the embodiment of the present invention and the conventional example, and the specific resistance at room temperature and the temperature coefficient of resistance.
図 3は正特性サーミス夕の異常抵抗性を示す図  Fig. 3 shows anomalous resistance at positive temperature thermistors.
図 4は本発明の第 2の実施例の正特性サーミス夕を示す図  FIG. 4 is a diagram showing a positive characteristic thermistor according to the second embodiment of the present invention.
図 5は本発明実施例の正特性サーミス夕の消費電力測定回路を示す図  FIG. 5 is a diagram showing a circuit for measuring power consumption in a positive temperature coefficient thermistor according to the present invention.
発明を実施すベき最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施例について図面を参照しつつ詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
実施例 1 Example 1
図 1は本発明実施例の正特性サ一ミスタを示す図である。  FIG. 1 is a diagram showing a positive characteristic thermistor according to an embodiment of the present invention.
この正特性サ一ミス夕は、 サーミス夕本体 1の組成が次式に示すように構成し たことを特徵とするものである。  The positive characteristics of the thermistor are characterized in that the composition of the thermistor body 1 is configured as shown in the following equation.
(B a0.7737S r 0.2221Y0.0042} T i 0.9955°3 + 0- 00 1Mn (式) すなわちこの正特性サーミス夕は、 チタン酸バリゥムを^分とする上記組成 のサ一ミスタ本体 1と、 その上面と に、 外周縁からやや入り込んだ位置に端 縁がくるように形成された N i蒸着層からなる第 1の電極層 2 a, 2 と、 この 上層に第 1の電極層 2a, 2bと端縁が一致するように形成された銀を主成分と する第 2の電極層 3 a, 3 bとから構成されている。 (B a 0.7737 S r 0.2221 Y 0.0042 } T i 0.9955 ° 3 + 0-00 1Mn (Equation) In other words, this positive temperature coefficient thermistor is composed of A first electrode layer 2a, 2 made of a Ni vapor-deposited layer formed so that the edge comes to a position slightly entering from the outer peripheral edge, and first electrode layers 2a, 2b on this upper layer. Second electrode layers 3a and 3b containing silver as a main component and formed so that their edges coincide with each other.
次にこの正特性サーミスタの製造工程について説明する。  Next, a manufacturing process of the positive temperature coefficient thermistor will be described.
まず、 T i C 1 , 原液を体積が 2倍になるように蒸留水で希釈し, T i C 14 の一部が水和し、 濃度が T i 1モルあたり 239. 6 gになる T i C 1 7]和物 を調合した。 ここで濃度はクぺロン分析法によつて定量した。 First, T i C 1, was diluted with distilled water so that the volume of the stock solution is doubled, a portion of the T i C 1 4 is hydrated, concentration of T i 1 mole per 239. 6 g T i C 17] Japanese. Here, the concentration was quantified by Coulomb analysis.
次に、 この丁 1じ 7和物238. 3 g (T i : 0. 994モル) を採取し、 さらに蒸留水 400 gを加えて T i C 14 7]溶液とした。 Next, the T1s Ji 7 hydrate 238. 3 g (T i: 0. 994 mol) were collected and the T i C 1 4 7] solution was added further distilled water 400 g.
さらに 12. 7wt% B a C 1 Q水溶液 1145 g (B a : 0. 595モル) 、 16. 5vt% S r C 127]溶液 479. 2 g (S r : 0. 297モル) 、 4. 5 3wt% YC 13水溶液 104. 7 g (Y: 0. 0156モル) を調合し、 4種の 水溶液を混合した。 Further, 1145 g of 12.7 wt% BaC 1 Q aqueous solution (Ba: 0.595 mol), 16.5 vt% SrC127] solution 479.2 g (Sr: 0.297 mol), 4.5 3 wt% YC 1 3 aq 104. 7 g (Y: 0. 0156 mol) was formulated, four The aqueous solutions were mixed.
そして、 75°C±0. 5°Cに維持した 16. 7wt% H2 C2 04 (蓚酸) 水溶 液 1440 g (H2 C2 04 : 1. 902モル) にこの混台液を 4時間かけて滴 下し、 共沈物として (Ba S rY) T i O (C2 0^ ) 2 · 4Η9 0なる蓚酸塩 を得た。 Then, 75 ° C ± 0 was maintained at 5 ° C 16. 7wt% H 2 C 2 0 4 ( oxalic acid) aqueous solution 1440 g (H 2 C 2 0 4: 1. 902 mol). The混台solution over 4 hours beat drops, as a coprecipitate the (Ba S rY) T i O (C 2 0 ^) 2 · 4Η 9 0 becomes oxalates.
この蓚酸塩を濾過 ·水洗後、 1150°C1時間の仮焼を行つた。 仮焼粉に M n (N03 ) „ を (B a S r Y) T i 03全体のモノレ数に対して 0. 1モル%添加 後、遊星型ボールミルで 1時間湿式粉砕を行いスラリ一を得た。 After filtration and washing with water, the oxalate was calcined at 1150 ° C. for 1 hour. The M n (N0 3) "the calcined powder (B a S r Y) T i 0 3 After 0.1 mol% added to the total Monore number, slurry one for 1 hour wet grinding in a planetary ball mill I got
ついでスプレードライヤーにより造粒粉が 60 m以下になるようにし、油圧 プレスでペレット状に成型、 141 CTCで 1時間焼成し、 半導体磁器を得た。 こ の磁器に電極を付け、温度抵抗特性を測定した。 その結果を表 1に示す。  Then, the granulated powder was reduced to 60 m or less by a spray drier, formed into pellets by a hydraulic press, and fired at 141 CTC for 1 hour to obtain semiconductor porcelain. An electrode was attached to this porcelain and the temperature resistance characteristics were measured. The results are shown in Table 1.
表 1 実施例 ·比較例の温度 ·抵抗特性 Table 1 Example · Temperature of comparative example · Resistance characteristics
Figure imgf000007_0001
Figure imgf000007_0001
実施例 2 Example 2
次に、 サ一ミスタ本体 1の組成力次式に示すように構成した。 B a 0.7744S r0.2217Y0.0039} T i 0.9961°3 + 0" 00 1Mn (式) 次にこの正特性サーミス夕の製造工程について説明する。 Next, the composition of the thermistor body 1 was configured as shown in the following equation. B a 0.7744 S r 0.2217 Y 0.0039 } T i 0.9961 ° 3 + 0 " 00 1Mn (Formula) Next, the manufacturing process of the positive temperature coefficient thermistor will be described.
実施例 1と同様、 T i C 1 原液を蒸留水で希釈し, 濃度が T i 1モルあたり As in Example 1, the T i C 1 stock solution was diluted with distilled water and the concentration was
245. ◦ gになる T i C 14水和物を調台し、 この T i C 14水和物 122. 1 g (T i : 0. 499モル) を採取し、 さらに蒸留水 200 gを加えて T i C 14 ΤΚ溶液とした。 245 g T g of T i C 1 4 hydrate was prepared, and this T i C 1 4 hydrate 122. 1 g (T i: 0. 499 mol) were collected and the T i C 1 4 ΤΚ solution was added further distilled water 200 g.
さらにこの水溶液に 12. 8wt¾ B a C 12水溶液 573. 3 g (B a : 0. 400モル) 、 16. 6wt% S r C 127K溶液 239. 7 g (S r : 0. 149 モル) 、 3. 50wt% YC 137}溶液 51. 8g (Y: 5. 98x10— 3モル) を混合し、 75°C±0. 5。Cに保った 16. 7wt% H2 C2 04水溶液 720. 3 g (H2 C9 04 : 0. 954モル) にこの混合液を 2. 5時間かけて滴下し、 蓚酸塩を得た。 Further to the aqueous solution 12. 8wt¾ B a C 1 2 solution 573. 3 g (B a: 0. 400 mol), 16. 6wt% S r C 127K solution 239. 7 g (S r: 0. 149 mol), 3. 50wt% YC 1 3 7} solution 51. 8g. (Y: 5. 98x10- 3 moles) were mixed, 75 ° C ± 0 5. Was maintained at C 16. 7wt% H 2 C 2 0 4 aq 720. 3 g (H 2 C 9 0 4: 0. 954 mol) was added dropwise over the mixture 2.5 hours, to give the oxalate salt Was.
そして実施例 1と同様にして素子をつくり、 特性を測定した。 その結果を表 1 に示す。  Then, a device was prepared in the same manner as in Example 1, and the characteristics were measured. The results are shown in Table 1.
実施例 3 Example 3
次に、 サーミス夕本体 1の組成力《次式に示すように構成した。  Next, the composition power of the thermistor body 1 was configured as shown in the following equation.
(B a 0.7731 S r 0.2228Y0.0041) T 10.9964Ο3 + 0· 001Μη (式) この組成のサーミスタ素子を実施例 2と同様の方法で作成し、 特性を測定した 結果を表 1に示す。 ( Ba 0.7731 S r 0.2228 Y 0.0041 ) T 1 0.9964 Ο 3 + 0 · 001Μη (Equation) A thermistor having this composition was prepared in the same manner as in Example 2, and the characteristics were measured. Table 1 shows the results.
実施例 4 Example 4
次に、 サ一ミスタ本体 1の組成が次式に示すように構成した。  Next, the composition of the thermistor body 1 was configured as shown in the following equation.
(B a 0.7707S r 0.2254Y0.0039} T i 0.9972°3 + 0· 001Μη (式) この組成のサーミスタ素子を実施例 2, 3と同様の方法で作成した。 結果を表 ( Ba 0.7707 S r 0.2254 Y 0.0039 } T i 0.9972 ° 3 + 0 · 001Μη (Equation) A thermistor element having this composition was prepared in the same manner as in Examples 2 and 3.
1に示す。 Shown in 1.
比較例 A Comparative example A
次に比較例として、 サーミスタ本体 1の組成を次式に示すように構成した。 (Ba0 7778 S r 0 2180Y0 0042) T i 1 0033O3 +◦. ΟΟ ΙΜη (式) この組成は T iの組成範囲の上限を越えるものである。 Next, as a comparative example, the composition of the thermistor body 1 was configured as shown in the following equation. (Ba 0 7778 S r 0 2180 Y 0 0042 ) T i 1 0033 O 3 + ◦. ΙΜ ΙΜη (Formula) This composition exceeds the upper limit of the composition range of T i.
次にこの正特性サーミス夕の製造工程について説明する。  Next, the manufacturing process of the positive characteristic thermistor will be described.
まず、 濃度が T i 1モルあたり 244. 5gになる T i C l4水和物を、 T i じ 14水和物243. 4 g (T i : 0. 9954モル) に、 さらに蒸留水 400 gを加えて T i C 1 水溶液とした。 First, the T i C l 4 hydrate concentration of T i 1 mole per 244. 5 g, T i Ji 1 tetrahydrate 243. 4 g: the (T i 0. 9954 mol), further distilled water 400 g was added to obtain a TiC 1 aqueous solution.
この T i C 水溶液に混台する B a C 127溶液以下各々の水溶液の濃度と 混合量は実施例 1と同じである。 また、 混合水溶液の滴下以後の素子の製造方法 も実施例 1と同様である。 このサーミスタ素子の特性の測定結果を表 1に示す。 比較例 B And concentration of the T i C aqueous solution混台to B a C 1 2 7 solution following each solution The mixing amount is the same as in Example 1. The method of manufacturing the device after the dropwise addition of the mixed aqueous solution is also the same as in Example 1. Table 1 shows the measurement results of the characteristics of the thermistor element. Comparative Example B
次に比較例として、 サーミスタ本体 1の組成が次式に示すように構成した。  Next, as a comparative example, the composition of the thermistor body 1 was configured as shown in the following equation.
(B a 0.7703° r 0.2249Y0.0048 Τ ι 0.9879Ο8 + 0' 00 1Μη (式) この組成は Τ iの組成範囲の下限を越えるものである。 (B a 0.7703 ° r 0.2249 Y 0.0048 Τ ι 0.9879 Ο 8 + 0 '00 1Μη (equation) This composition exceeds the lower limit of the composition range of Τ i.
次にこの正特性サーミス夕の製造に際しては、 70°C±0. 5°Cに維持した H Next, when manufacturing this positive temperature coefficient thermistor, the temperature was maintained at 70 ° C ± 0.5 ° C.
2 C2 04 (蓚酸) 7K溶液を用いた他は実施例 1と同様に形成した。 こめサーミ スタ素子の特性の測定結果を比較例 Bとして表 1に示す。 Except for using 2 C 2 0 4 (oxalate) 7K solution formed as in Example 1. Table 1 shows the measurement results of the characteristics of the rice thermistor element as Comparative Example B.
表 1から明らかなように特許請求の範囲のうち T iの組成範囲 T i7 : 0. 99 ≤ zく 1を満たした組成を持つ正特性サーミス夕素子を製造した場合、 P25が 1 2. 5〜26. 5Ω cmと小さくかつ αが 24. 00%以上であり、 なおかつ J が 6桁台の特性をもつことがわかった。 図 2に T i量 (T i Z (B a + S r +Y) ) と αΖ Ι o g p25との関係を測定した結果を示すように、 従来例 (比較例) で は、 1 o g Ρ25が 10程度であつたのに対して本発明によれば 2倍以上の値 をとること力可能となる。 As is clear from Table 1, of the claims, the composition range of T i 7 : 0.99 ≤ z When a positive temperature coefficient thermistor element having a composition satisfying 1 is manufactured, P 25 is 1 2 It was found to be as small as 5 to 26.5 Ωcm and α was 24.00% or more, and that J had characteristics in the order of six digits. As shown the results of measurement of the relationship between T i quantity (T i Z (B a + S r + Y)) and αΖ Ι ogp 25 in FIG. 2, in the conventional example (Comparative Example), 1 og Ρ 25 However, according to the present invention, it is possible to take a value that is twice or more.
このように本発明によれば Ρ25が小さく αが大きいよりすぐれた正特性サーミ スタを得ることが可能となる。 Thus it is possible according to the present invention in which [rho 25 to obtain a positive characteristic thermistor with excellent smaller than α is large.
実施例 5 Example 5
図 4は本発明実施例の正特性サーミスタを示す図である。  FIG. 4 is a diagram showing a PTC thermistor according to the embodiment of the present invention.
この正特性サ一ミスタは、 サーミスタ本体 1 Sの組成を次表に示すような組成 比を有し、 以下に示すチタン酸 ζくリウムーチタン酸カルシゥム系半導体で構成し たことを特徴とする。  This positive temperature coefficient thermistor is characterized in that the composition of the thermistor body 1S has a composition ratio as shown in the following table, and is constituted by potassium titanate-calcium titanate semiconductor shown below.
(B al-x-y C ax Yy ) T 1 (1+ζ) °3 +Ρ S 1 °2 Μη (B a lxy C a x Y y) T 1 (1 + ζ) ° 3 + Ρ S 1 ° 2 Μη
0.01≤χ ≤0.2 , 0.002 ≤y ≤0.006 , 0.001 ≤ζ ≤0.010 , 0.005 ≤ρ≤0. 0.01≤χ ≤0.2, 0.002 ≤y ≤0.006, 0.001 ≤ζ ≤0.010, 0.005 ≤ρ≤0.
03 0.0005≤q ≤0.0015 (式) 表 2 03 0.0005≤q ≤0.0015 (Formula) Table 2
Figure imgf000010_0001
Figure imgf000010_0001
すなわちこの正特性サ一ミス夕は、 チタン酸バリゥムを 分とする上記組成 のサーミス夕本体 1 Sと、 その上面と T®に、 外周縁からやや入り込んだ位置に 端縁がくるように形成された N i蒸着層からなる第 1の電極層 2 a, 2 bと、 こ の上層に第 1の電極層 2 a, 2bと端縁力一致するように形成された銀を主成分 とする第 2の電極層 3 a, 3 bとから構成されている。 In other words, this positive characteristic ceramic is formed such that the main body 1S of the above composition, which is composed of titanium titanate, and the upper surface and the T® have an edge at a position slightly entering from the outer peripheral edge. A first electrode layer 2a, 2b formed of a Ni vapor-deposited layer, and a second layer mainly composed of silver formed on the first electrode layer 2a, 2b so as to match the edge force of the first electrode layer 2a, 2b. And two electrode layers 3a and 3b.
次にこの正特性サーミス夕の製造工程について説明する。  Next, the manufacturing process of the positive characteristic thermistor will be described.
まず、 平均粒径 0. 3~2 m の市販の T i 0o , BaC03、 CaC03 お よび Y 2 03 の粉末を前表の割合で配合し湿式混合した後に乾燥し、 10◦ 0〜 120 CTCの温度で 4時間仮焼した。 得られた仮焼粉に平均粒径 1 m の S i 0 2 および Mn (NOg ) 2 ♦ 6H2 0水溶液を配合し、 湿式混合♦粉碎した。 こ のスラリーに有機バインダーを加え、 スプレードライヤーによって造粒した。 そ して得られた造粒粉を油圧プレスによって 2. 5-3. Og/cm3 の密度になるよ う成型した後、 大気中にて 135CTCで 1時間焼成し、 直径 20mm、 厚み 2. 5 匪のチタン酸バリウム系半導体磁器を得た。 この半導体磁器の両端面に、 市販の A g電極の印刷焼付けを行い、 比抵抗を測定するとともに消費電力を測定した。 ここで消費電力は図 5に示すような測定回路を用いて測定した。 この測定回路 では、 正特性サ一ミス夕 10を負荷抵抗 11を介して電源 12に接続し、 スイツ チ 13によってこの接続をオンオフ可能なようにし、 かっこの正特性サ一ミス夕 10に並列に接続された電圧計 14によつて正特性サ一ミスタ 1〇の両端の電圧 を測定するとともに、 正特性サーミス夕 10に直列に接続された電流計 15によ つて正特性サ一ミスタ 1◦に流れる電流を測定するようにしてなるものである。 このようにして正特性サ一ミスタ 10の両端の電圧および、 この正特性サーミス 夕 10に流れる電流を測定し、 消費電力を算出する。 ここで消費電力 P (W) は 次式で求めた。 First, dried blended commercial T i 0 o, BaC0 3, CaC0 3 Contact and Y 2 0 3 powder having an average particle diameter of 0. 3 ~ 2 m at the rate of previous tables after wet mixing, 10◦ 0 It was calcined at a temperature of ~ 120 CTC for 4 hours. The resulting blended S i 0 2 and Mn (NOg) 2 ♦ 6H 2 0 aqueous solution having an average particle diameter of 1 m to calcined powder was wet-mixed ♦ Kona碎. An organic binder was added to the slurry and granulated by a spray drier. The obtained granulated powder is formed by a hydraulic press to a density of 2.5-3.Og / cm 3 , and then fired at 135 CTC for 1 hour in the air to have a diameter of 20 mm and a thickness of 2. 5 Obtained barium titanate-based semiconductor porcelain. Commercially available Ag electrodes were printed and printed on both end surfaces of the semiconductor porcelain, and the specific resistance and power consumption were measured. Here, the power consumption was measured using a measurement circuit as shown in FIG. In this measurement circuit, the positive characteristic error signal 10 is connected to the power supply 12 via the load resistor 11, and this connection can be turned on and off by the switch 13. The voltage at both ends of the positive temperature coefficient thermistor 1 測定 is measured by the connected voltmeter 14, and the voltage is measured by the The current flowing is measured. In this way, the voltage at both ends of the positive characteristic thermistor 10 and the current flowing through the positive characteristic thermistor 10 are measured to calculate the power consumption. Here, the power consumption P (W) was obtained by the following equation.
P (W) =Vp (v) x I (A) P (W) = V p (v) x I (A)
前記表において、組成 No. 1〜5, 8, 9は本発明を示し、 組成 No. 6, 7, 10, 11は比較例を示す。  In the above table, compositions Nos. 1 to 5, 8, and 9 indicate the present invention, and compositions Nos. 6, 7, 10, and 11 indicate comparative examples.
組成 No. 1〜5と、組成 No. 6, 7との比較により、 過剰 T i 02量が 0.001 〜 O.Olmol (総 T i 0¾量 100.1 -101.0 mol ) にて、 従来の Pbを含む 組成 No. 11の消費電力 (3. 0W) と同等以下の小さい消費電力が得られる ことがわかる。 なお過剰 T i量が 0.001 mol 以下あるいは O.Olmol 以上では 3. Ow以上の消費電力となる。 By comparing composition Nos. 1 to 5 with compositions Nos. 6 and 7, the amount of excess Ti 0 2 was 0.001 to O. Olmol (total Ti 0 ¾ 100.1 -101.0 mol), It can be seen that a small power consumption equal to or less than the power consumption (3.0 W) of composition No. 11 can be obtained. If the amount of excess Ti is 0.001 mol or less or O.Olmol or more, the power consumption is 3. Ow or more.
また、 過剰 T i 02量を 0.3mol (総 T i 09量 100.3mol) と固定し、 C a添加 量を変化させた場合 (組成 No. 2, 8, 9, 10) 、 Ca添加量が 20mol を 越えると比抵抗力《急増し、 実用的でなくなる。 また C a添加量が 20 mol 以下で は。 比抵抗は 1ΚΩ · cm以下のものが得られ、 消費電力も 3. 0W以下と小さ い。 Also, when the amount of excess Ti 0 2 was fixed at 0.3 mol (total Ti 0 9 100.3 mol) and the amount of Ca added was changed (composition Nos. 2, 8, 9, 10), the amount of Ca added If it exceeds 20 mol, the specific resistance increases rapidly, making it impractical. Also, when the amount of Ca added is 20 mol or less. Specific resistance of less than 1ΚΩ · cm can be obtained, and power consumption is as low as 3.0W or less.
このように P bを含有しない組成において、 Ba, Ca, T i , Y, Μη, S i 0。 の組成範囲を適正化することにより、 従来 Pbを添加しなければ得られな 力、つた低い消費電力を得ること力《でき、 しかも P bを含まないため、 製造時に P b蒸気が発生するという問題を解決することができた。  In the composition not containing Pb, Ba, Ca, T i, Y, Μη, S i 0. By optimizing the composition range of Pb, the power that can not be obtained without adding Pb in the past, the power to achieve very low power consumption can be obtained, and Pb is not included, so Pb vapor is generated during manufacturing The problem could be solved.
産業上の利用可能性  Industrial applicability
以上説明してきたように、 本発明の第 1によれば、 サ一ミス夕本体を構成する B a T i 03系べロブスカイト型化合物の組成を T i量を化学的量論比よりも不 足するようにしているため P 25が小さく αが大きい正特性サーミス夕を得ること 力《可肯 gとなる。 As described above, according to the first aspect of the present invention, than chemical stoichiometric ratio T i amount the composition of B a T i 0 3 system base perovskite-type compound constituting the mono- miss evening body not To obtain a positive characteristic thermistor with a small P 25 and a large α due to the addition
また、 本発明の第 2によれば、 サ一ミス夕本体を構成する半導体の組成を P b を含有しないチタン酸バリウム一チタン酸カルシゥム系半導体で構成しているた め、 焼成に際し P b蒸気を発生することがなく、 通電中の消費電力の低い正特性 サーミスタを提供することができる。  Further, according to the second aspect of the present invention, since the composition of the semiconductor constituting the semiconductor body is composed of barium titanate-calcium titanate-based semiconductor containing no Pb, Pb vapor is emitted during firing. And a positive temperature coefficient thermistor with low power consumption during energization can be provided.
0 0

Claims

請求の範囲 The scope of the claims
( 1 ) 組成が次式を満たすように形成されたチタン酸' リゥム系半導体からな るサ一ミス夕本体と、  (1) A ceramic body made of a titanic acid-based semiconductor formed so that the composition satisfies the following formula:
前記サーミス夕本体に取り付けられた給電用の電極とを具備したことを 特徵とする正特性サーミス夕。  A positive-characteristic thermistor comprising a power supply electrode attached to the thermistor body.
^B al-x-y Sx My T iz °3 +nA ^ B a lxy S x M y T i z ° 3 + nA
0≤x <1 , 0 <y <1 , 0.99≤z <1 , 0 ≤n <0.002 (式) 0≤x <1, 0 <y <1, 0.99≤z <1, 0 ≤n <0.002 (expression)
S : S r, Sn, Z r, C a, P bから選ばれる少なくとも 1種の元素 S: at least one element selected from Sr, Sn, Zr, Ca, Pb
M: Nb, Ta, B i, S b, Y, La, Nd, W, Th, Ce, S m, Gd, M: Nb, Ta, Bi, Sb, Y, La, Nd, W, Th, Ce, Sm, Gd,
D yから選ばれる少なくとも 1種の元素 At least one element selected from D y
A: Mn, F e, Cu, C r, F, C l, B r, K, Vから選ばれる少なくと も 1種の元素  A: At least one element selected from Mn, Fe, Cu, Cr, F, Cl, Br, K, and V
(2) 組成が次式を満たすように形成されたチタン酸バリゥム一チタン酸カル シゥム半導体からなるサーミスタ本体と、  (2) a thermistor body made of barium titanate-calcium titanate semiconductor having a composition satisfying the following formula:
(B aト x_y Cax Yy ) T iひ+ Og +p S i。2 +q Mn (Ba x _ y Ca x Y y ) T i + Og + p S i. 2 + q Mn
0.01≤x ≤0.2, 0.002 ≤y ≤0.006 , 0.001 ≤z ≤0.010, 0.005 ≤p≤0. 03 0.0005≤q ≤0.0015 (式) 前記サーミスタ本体に取り付けられた給電用の電極とを具備したことを 特徴とする正特性サーミス夕。  0.01 ≤ x ≤ 0.2, 0.002 ≤ y ≤ 0.006, 0.001 ≤ z ≤ 0.010, 0.005 ≤ p ≤ 0. 03 0.0005 ≤ q ≤ 0.0015 (Equation) A power supply electrode attached to the thermistor body Positive characteristic thermist evening.
PCT/JP1994/000622 1993-04-14 1994-04-14 Positive characteristic thermistor WO1994024680A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP94912679A EP0694930A4 (en) 1993-04-14 1994-04-14 Positive characteristic thermistor
KR1019950704028A KR960701453A (en) 1993-04-14 1994-04-14 Static thermistor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8754993A JPH06302402A (en) 1993-04-14 1993-04-14 Positive temperature coefficient thermistor
JP8755093 1993-04-14
JP5/87550 1993-04-14
JP5/87549 1993-04-14
JP5281352A JPH06349604A (en) 1993-04-14 1993-11-10 Positive characteristic thermistor
JP5/281352 1993-11-10

Publications (1)

Publication Number Publication Date
WO1994024680A1 true WO1994024680A1 (en) 1994-10-27

Family

ID=27305540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000622 WO1994024680A1 (en) 1993-04-14 1994-04-14 Positive characteristic thermistor

Country Status (3)

Country Link
EP (1) EP0694930A4 (en)
KR (1) KR960701453A (en)
WO (1) WO1994024680A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4058140B2 (en) * 1997-09-05 2008-03-05 Tdk株式会社 Barium titanate semiconductor porcelain
JP4080576B2 (en) * 1997-09-05 2008-04-23 Tdk株式会社 Method for manufacturing positive characteristic semiconductor porcelain
JP3506044B2 (en) * 1999-04-28 2004-03-15 株式会社村田製作所 Semiconductor ceramic, semiconductor ceramic element, and circuit protection element
KR100674692B1 (en) * 1999-06-03 2007-01-26 마쯔시다덴기산교 가부시키가이샤 Thin film thermistor element and method for the fabrication of thin film thermistor element
DE10026261A1 (en) * 2000-05-26 2001-12-06 Epcos Ag Ceramic material, method for its production, component with the ceramic material and use of the component
DE10061458B4 (en) * 2000-12-09 2005-12-15 Eichenauer Heizelemente Gmbh & Co. Kg Method and device for controlling a vehicle auxiliary heating

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898396A (en) * 1972-03-28 1973-12-13
JPS5410110B2 (en) * 1974-03-20 1979-05-01
JPH02192456A (en) * 1989-01-21 1990-07-30 Chichibu Cement Co Ltd Semiconductor ceramic
JPH05251203A (en) * 1992-03-04 1993-09-28 Chichibu Cement Co Ltd Semiconductor ceramic compound
JPH0613203A (en) * 1992-06-25 1994-01-21 Murata Mfg Co Ltd Manufacture of semiconductor ceramic element
JPH0684605A (en) * 1992-08-31 1994-03-25 Shinagawa Refract Co Ltd Positive characteristic thermister and production thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175060A (en) * 1977-11-25 1979-11-20 Bell Telephone Laboratories, Incorporated Composition and processing procedure for making thermistors
JPH03155352A (en) * 1989-11-13 1991-07-03 Nkk Corp Small direct current motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898396A (en) * 1972-03-28 1973-12-13
JPS5410110B2 (en) * 1974-03-20 1979-05-01
JPH02192456A (en) * 1989-01-21 1990-07-30 Chichibu Cement Co Ltd Semiconductor ceramic
JPH05251203A (en) * 1992-03-04 1993-09-28 Chichibu Cement Co Ltd Semiconductor ceramic compound
JPH0613203A (en) * 1992-06-25 1994-01-21 Murata Mfg Co Ltd Manufacture of semiconductor ceramic element
JPH0684605A (en) * 1992-08-31 1994-03-25 Shinagawa Refract Co Ltd Positive characteristic thermister and production thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0694930A4 *

Also Published As

Publication number Publication date
KR960701453A (en) 1996-02-24
EP0694930A1 (en) 1996-01-31
EP0694930A4 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
JP5327556B2 (en) Semiconductor ceramic and positive temperature coefficient thermistor
JP5327555B2 (en) Semiconductor ceramic and positive temperature coefficient thermistor
JP5413458B2 (en) Barium titanate semiconductor ceramic composition and barium titanate semiconductor ceramic element
CN106431390B (en) Semiconductive ceramic composition and PTC thermistor
EP3202746A1 (en) Semiconductor ceramic composition and ptc thermistor
WO1994024680A1 (en) Positive characteristic thermistor
JP5223927B2 (en) Barium titanate-based semiconductor ceramic composition and PTC thermistor
JP4888264B2 (en) Multilayer thermistor and manufacturing method thereof
JPH06349604A (en) Positive characteristic thermistor
US20020105022A1 (en) Monolithic semiconducting ceramic electronic component
JP2016184694A (en) Semiconductor ceramic composition and ptc thermistor
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JPH06302402A (en) Positive temperature coefficient thermistor
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP3320122B2 (en) Bismuth layered structure oxide and PTC thermistor device
JPH11292622A (en) Semiconductor ceramic and semiconductor ceramic element
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP4123666B2 (en) Semiconductor ceramic powder and multilayer semiconductor ceramic electronic parts
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JPH04144201A (en) Positive temperature coefficient thermistor and manufacture thereof
JPS6255244B2 (en)
JPH10212161A (en) Thermistor material having positive characteristic and its production
JPH1070009A (en) Positive temperature coefficient thermistor and manufacture thereof
JPH04368793A (en) Semiconductor element having positive resistance temperature characteristic

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 532658

Date of ref document: 19951013

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1994912679

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994912679

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994912679

Country of ref document: EP