JP3617795B2 - Positive thermistor porcelain composition - Google Patents

Positive thermistor porcelain composition Download PDF

Info

Publication number
JP3617795B2
JP3617795B2 JP25786699A JP25786699A JP3617795B2 JP 3617795 B2 JP3617795 B2 JP 3617795B2 JP 25786699 A JP25786699 A JP 25786699A JP 25786699 A JP25786699 A JP 25786699A JP 3617795 B2 JP3617795 B2 JP 3617795B2
Authority
JP
Japan
Prior art keywords
composition
value
specific resistance
withstand voltage
composition value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25786699A
Other languages
Japanese (ja)
Other versions
JP2001085201A (en
Inventor
康行 松浦
俊也 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP25786699A priority Critical patent/JP3617795B2/en
Publication of JP2001085201A publication Critical patent/JP2001085201A/en
Application granted granted Critical
Publication of JP3617795B2 publication Critical patent/JP3617795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、正特性サーミスタ磁器組成物に関するものである。
【0002】
【従来の技術】
チタン酸バリウム系の正特性サーミスタは、主成分であるチタン酸バリウムにY、La等の希土類元素を添加して半導体化させたもので、常温では比抵抗が低いがキュリー点を越えると急激に比抵抗が増大するという性質を生かし、テレビの消磁回路や過電流保護回路等に広く用いられている。
近年の電子機器の小型化や低コスト化に伴い、正特性サーミスタにも、より抵抗値の低いものが求められ、これに対応するためには素子材料の比抵抗を低くする必要があり、材料組成や製造プロセスの面から様々な検討がなされている。
【0003】
【発明が解決しようとする課題】
特に消磁回路用の場合、素子の抵抗値を小さくして突入電流を大きくすることで消磁コイルの巻き数を少なくし、低コスト化することが検討されている。この低抵抗化に対応するためには用いる素子材料の比抵抗を従来の40Ω・cm以上から10〜20Ω・cmの範囲にまで下げなければならない。
しかし、このような低比抵抗化を行うと、耐電圧や突入許容電力、さらにはON−OFFサイクル寿命が低下するという欠点がある。ここで耐電圧とは、静的耐電圧ともいい、正特性サーミスタ素子(以下、単に素子という。)に徐々に電圧を印加したとき、素子が破壊せずに耐える最大電圧を意味する。また突入許容電力とは、素子に瞬時に電圧を印加したとき、素子が破壊せずに耐える最大電圧をいう。
特に、消磁用やモーター起動用の場合、素子に電圧が繰り返し印加されるため、単に耐電圧の性能のみではなく、突入許容電力が高く、かつON−OFFサイクル寿命が長いことが重要となる。
耐電圧を向上させる方法としては、チタン酸バリウムにSr、CaおよびPbを含有させる方法があり、既に公知である(特開昭57−157502)。しかし、この方法では比抵抗が35Ω・cmよりも低くならず、突入許容電力も低く、ON−OFFサイクル寿命も充分に長くはなかった。
また、Y、GdおよびDyを含有させる方法も公知であるが、この方法では比抵抗の目標とする10〜20Ω・cmの範囲が実現できるものの、耐電圧や突入許容電力が低く、ON−OFFサイクル寿命も短い。
このため、耐電圧を向上させるとともに、比抵抗が35Ω・cm以下で、突入許容電力も高く、ON−OFFサイクル寿命も長い正特性サーミスタを形成できる磁器組成物が要求されていた。
【0004】
【課題を解決するための手段】
本発明は上記の課題を解決するもので、組成式(BaSrCaPb)Ti(x+y+z+s+t=1)で表されるチタン酸バリウム系固溶体において、
組成値xが0.4180≦x≦0.8080、組成値yが0.02≦y≦0.30、組成値zが0.05≦z≦0.20、組成値sが0.01≦s≦0.15であって、DはPrで、その組成値tが0.0010≦t≦0.0035、また、組成値uが0.95≦u≦1.02である上記組成式に対して、
Mnが0.001wt%≦Mn≦0.0065wt%、Siが0.09wt%≦Si≦1.0wt%含有することにより、素子材料の比抵抗を下げても、耐電圧、突入許容電力およびON−OFFサイクル寿命が低下することなく、抵抗値の低い正特性サーミスタを得ることができた。
半導体化剤としてはYが一般的に用いられているが、その理由は他の半導体化剤と比べて広い濃度範囲で半導体化を示すためである。本発明では、チタン酸バリウムにSr、CaおよびPbを含有させた系に種々の半導体化剤を添加した組成を検討した。その結果10〜20Ω・cmの範囲まで比抵抗を下げるとYは耐電圧および突入許容電力が低く、使用出来るレベルに至らなかった。
上記組成(BaSrCaPb)Ti(x+y+z+s+t=1)で、0.4180≦x≦0.8080、0.02≦y≦0.30、0.05≦z≦0.20、0.01≦s≦0.15、0.0010≦t≦0.0035、0.95≦u≦1.02において、半導体化剤DとしてPrを用いることによって初めて10〜20Ω・cmの範囲の比抵抗でも、十分使用できるレベルの耐電圧と突入許容電力およびON−OFFサイクル寿命特性が得られた。
【0005】
【発明の実施の形態】
本発明によれば、組成式(BaSrCaPb)Ti(x+y+z+s+t=1)で表されるチタン酸バリウム系固溶体において、
組成値xが0.4180≦x≦0.8080、組成値yが0.02≦y≦0.30、組成値zが0.05≦z≦0.20、組成値sが0.01≦s≦0.15であって、DはPrで、その組成値tが0.0010≦t≦0.0035、また、組成値uが0.95≦u≦1.02である上記組成式に対して、
Mnが0.001wt%≦Mn≦0.0065wt%、Siが0.09wt%≦Si≦1.0wt%含有することにより、素子材料の比抵抗を下げても、耐電圧および突入許容電力が低下することなく、従来よりも抵抗の低い正特性サーミスタを作製することができる。
【0006】
【実施例】
原料としてBaCO、SrCO、CaCO、Pb、TiO、半導体化剤としてPr11、添加物としてMnCO、SiOを準備し、これらを表1〜3に示す所定の組成となるように配合した。さらにこれを湿式で混合した後に脱水乾燥し、1200℃で2時間仮焼した。
次に、これを湿式粉砕した後にバインダーを加えて造粒し、造粒粉体を得た。
これを一軸方向に圧力を加えて円柱状(直径18mm、厚み2.5mm)に成形し、1300℃で1時間焼成し、焼結体素子を得た。
この焼結体素子の両面にインジウム−ガリウム合金を塗布し、常温比抵抗および耐電圧測定用の試料とした。
さらに、この焼結体素子に電極(下層にNi電極、上層にSn電極からなる二層電極)を形成した後に、リード線を接続し、外装樹脂で外装した素子で突入許容電力の測定とON−OFFサイクルテスト(素子が破壊するサイクル数の測定)を行った。また、半導体化剤にYを用いた従来例と、Gd、Dyを用いた比較例についても上記と同様の試験を行った。
表1〜3において、A−1〜A−23は本発明による実施例であり、a−1〜a−16は本発明の請求範囲を外れる比較例である。また、b−1〜b−6は半導体化剤にGd、Dyを用いた比較例である。これらの結果を表1〜3に示す。
【0007】
【表1】

Figure 0003617795
【0008】
【表2】
Figure 0003617795
【0009】
【表3】
Figure 0003617795
【0010】
表1〜3に示した実施例において、評価○印は、低抵抗の消磁用正特性サーミスタの素子材料として求められる特性、すなわち比抵抗30Ω・cm未満で耐電圧120V/mm以上、突入許容電力260V以上、ON−OFFサイクル寿命30000サイクル以上を満足するものである。
表1〜3より、本発明の実施例A−1〜A−23はすべて評価○であり、比較例、従来例と比較して、低抵抗の消磁用正特性サーミスタの素子材料として使用できる特性を備えていることが分かる。
【0011】
なお、ここで、Baの組成値xは0.4180未満では比抵抗が高くなり、0.8080を超えると耐電圧や突入許容電力が低下する。
Srの組成値yは0.02未満では耐電圧が低下し、0.30を超えると比抵抗が高くなる。
Caの組成値zは0.05未満では耐電圧が低下し、0.20を超えると比抵抗が高くなる。
Pbの組成値sは0.01未満では耐電圧が低下し、0.15を超えると比抵抗が高くなる。
半導体化元素の組成値tは0.001未満では電気的特性が劣化し、0.0035を超えると比抵抗が高くなる。半導体化剤の種類については、前述したようにPrが10〜20Ω・cmの範囲の比抵抗でも、十分使用できるレベルの耐電圧と突入許容電力およびON−OFFサイクル寿命特性が得られる。さらに、Y、GdおよびDyは比抵抗の目標とする10〜20Ω・cmの範囲が実現できるものの、耐電圧や突入許容電力が低く、ON−OFFサイクル寿命も短い。
Tiのモル比uは0.95〜1.02以外では比抵抗が高くなる。
Mnの添加量は、0.001wt%未満では電気的特性が劣化し、0.0065wt%を超えると比抵抗が高くなる。
Siの添加量は0.09wt%(SiOとして0.2wt%)未満では焼結温度が高くなり、通常の焼成条件では比抵抗が高く、良好な特性が得られない。1.0wt%(SiOとして2.1wt%)を超えると電気的特性が劣化し、さらには素子が融着するので問題である。
また、上記実施例では、SiをSiOとして添加したが、これをSiとして添加しても同様の効果を得ることができた。
【0012】
【発明の効果】
組成式(BaSrCaPb)Ti(x+y+z+s+t=1)で表されるチタン酸バリウム系固溶体において、組成値xが0.4180≦x≦0.8080、組成値yが0.02≦y≦0.30、組成値zが0.05≦z≦0.20、組成値sが0.01≦s≦0.15であって、DはPrで、その組成値tが0.0010≦t≦0.0035、また、組成値uが0.95≦u≦1.02である上記組成式に対して、Mnが0.001wt%≦Mn≦0.0065wt%、Siが0.09wt%≦Si≦1.0wt%含有することによって、素子材料を低比抵抗化しても耐電圧、突入許容電力およびON−OFFサイクル寿命が低下することなく、抵抗値の低い正特性サーミスタを得ることができる。よって本発明は従来のものよりも低抵抗の消磁用正特性サーミスタの素子材料をはじめとする様々な用途の正特性サーミスタに適用することができ、その工業的利用価値は大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive temperature coefficient thermistor ceramic composition.
[0002]
[Prior art]
Barium titanate-based positive temperature coefficient thermistors are made by adding rare earth elements such as Y and La to barium titanate, which is the main component, to make semiconductors. Taking advantage of the property of increasing specific resistance, it is widely used in television degaussing circuits, overcurrent protection circuits, and the like.
With recent miniaturization and cost reduction of electronic equipment, positive resistance thermistors are also required to have lower resistance values. To cope with this, it is necessary to reduce the specific resistance of element materials. Various studies have been made in terms of composition and manufacturing process.
[0003]
[Problems to be solved by the invention]
In particular, in the case of a degaussing circuit, it has been studied to reduce the number of turns of the degaussing coil and reduce the cost by reducing the resistance value of the element and increasing the inrush current. In order to cope with this reduction in resistance, the specific resistance of the element material to be used must be lowered from the conventional 40 Ω · cm or more to the range of 10 to 20 Ω · cm.
However, such a reduction in specific resistance has the disadvantage that the withstand voltage, the inrush allowable power, and the ON-OFF cycle life are reduced. Here, the withstand voltage is also referred to as a static withstand voltage, and means a maximum voltage that can be withstood without destroying the element when a voltage is gradually applied to a positive temperature coefficient thermistor element (hereinafter simply referred to as an element). The inrush allowable power is the maximum voltage that can be sustained without destroying the element when a voltage is instantaneously applied to the element.
In particular, in the case of demagnetization or motor start-up, since voltage is repeatedly applied to the element, it is important that not only the withstand voltage performance but also the inrush allowable power is high and the ON-OFF cycle life is long.
As a method for improving the withstand voltage, there is a method in which barium titanate contains Sr, Ca and Pb, which is already known (Japanese Patent Laid-Open No. 57-157502). However, in this method, the specific resistance is not lower than 35 Ω · cm, the inrush allowable power is low, and the ON-OFF cycle life is not sufficiently long.
Moreover, although the method of containing Y, Gd, and Dy is also known, although this method can realize the target range of 10 to 20 Ω · cm, the withstand voltage and allowable inrush power are low, and ON-OFF Cycle life is also short.
For this reason, there has been a demand for a porcelain composition capable of forming a positive temperature coefficient thermistor with improved withstand voltage, a specific resistance of 35 Ω · cm or less, a high inrush allowable power, and a long ON-OFF cycle life.
[0004]
[Means for Solving the Problems]
The present invention is intended to solve the above problems, in the barium titanate-based solid solution represented by a composition formula (Ba x Sr y Ca z Pb s D t) Ti u O 3 (x + y + z + s + t = 1),
The composition value x is 0.4180 ≦ x ≦ 0.8080, the composition value y is 0.02 ≦ y ≦ 0.30, the composition value z is 0.05 ≦ z ≦ 0.20, and the composition value s is 0.01 ≦. In the above composition formula, s ≦ 0.15, D is Pr, the composition value t is 0.0010 ≦ t ≦ 0.0035, and the composition value u is 0.95 ≦ u ≦ 1.02. for,
By including Mn 0.001 wt% ≦ Mn ≦ 0.0065 wt% and Si 0.09 wt% ≦ Si ≦ 1.0 wt%, even if the specific resistance of the element material is lowered, withstand voltage, inrush allowable power and ON -A positive temperature coefficient thermistor with a low resistance value could be obtained without reducing the OFF cycle life.
Y is generally used as a semiconducting agent, because the semiconductor is formed in a wider concentration range than other semiconducting agents. In this invention, the composition which added various semiconducting agents to the system which contained Sr, Ca, and Pb in the barium titanate was examined. As a result, when the specific resistance was lowered to the range of 10 to 20 Ω · cm, Y had low withstand voltage and allowable inrush power, and did not reach a usable level.
In the above composition (Ba x Sr y Ca z Pb s D t) Ti u O 3 (x + y + z + s + t = 1), 0.4180 ≦ x ≦ 0.8080,0.02 ≦ y ≦ 0.30,0.05 ≦ z ≦ 0.20, 0.01 ≦ s ≦ 0.15, 0.0010 ≦ t ≦ 0.0035, 0.95 ≦ u ≦ 1.02, 10-20Ω for the first time by using Pr as the semiconducting agent D -Even with a specific resistance in the range of cm, the withstand voltage, inrush allowable power, and ON-OFF cycle life characteristics that can be used sufficiently were obtained.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, in the composition formula (Ba x Sr y Ca z Pb s D t) Ti u O 3 (x + y + z + s + t = 1) barium titanate-based solid solution represented by,
The composition value x is 0.4180 ≦ x ≦ 0.8080, the composition value y is 0.02 ≦ y ≦ 0.30, the composition value z is 0.05 ≦ z ≦ 0.20, and the composition value s is 0.01 ≦. In the above composition formula, s ≦ 0.15, D is Pr, the composition value t is 0.0010 ≦ t ≦ 0.0035, and the composition value u is 0.95 ≦ u ≦ 1.02. for,
By including Mn 0.001wt% ≤Mn≤0.0065wt% and Si 0.09wt% ≤Si≤1.0wt%, even if the specific resistance of the element material is lowered, the withstand voltage and inrush allowable power are reduced. Therefore, a positive temperature coefficient thermistor having a lower resistance than the conventional one can be manufactured.
[0006]
【Example】
BaCO 3 , SrCO 3 , CaCO 3 , Pb 3 O 4 , TiO 2 as raw materials, Pr 6 O 11 as a semiconducting agent, MnCO 3 and SiO 2 as additives are prepared, and these are shown in Tables 1 to 3 It mix | blended so that it might become a composition. Further, this was wet mixed, dehydrated and dried, and calcined at 1200 ° C. for 2 hours.
Next, after wet-grinding this, a binder was added and granulated to obtain a granulated powder.
This was pressed in a uniaxial direction to form a cylindrical shape (diameter 18 mm, thickness 2.5 mm), and fired at 1300 ° C. for 1 hour to obtain a sintered body element.
An indium-gallium alloy was applied to both surfaces of the sintered body element to prepare a sample for measuring room temperature specific resistance and withstand voltage.
Furthermore, after forming an electrode (a two-layer electrode consisting of a Ni electrode in the lower layer and a Sn electrode in the upper layer) on this sintered body element, connect the lead wire and measure the rush allowable power and turn it on with the element covered with the exterior resin -An OFF cycle test (measurement of the number of cycles at which the device breaks down) was performed. In addition, the same test as above was performed for the conventional example using Y as the semiconducting agent and the comparative example using Gd and Dy.
In Tables 1-3, A-1 to A-23 are examples according to the present invention, and a-1 to a-16 are comparative examples outside the scope of the present invention. B-1 to b-6 are comparative examples using Gd and Dy as semiconducting agents. These results are shown in Tables 1-3.
[0007]
[Table 1]
Figure 0003617795
[0008]
[Table 2]
Figure 0003617795
[0009]
[Table 3]
Figure 0003617795
[0010]
In the examples shown in Tables 1 to 3, the evaluation ○ indicates the characteristics required as the element material of the low resistance degaussing positive characteristic thermistor, that is, the specific resistance is less than 30 Ω · cm, the withstand voltage is 120 V / mm or more, and the inrush allowable power 260 V or more and ON-OFF cycle life of 30000 cycles or more are satisfied.
From Tables 1 to 3, Examples A-1 to A-23 of the present invention are all evaluated as ◯, and can be used as element materials for low resistance degaussing positive temperature coefficient thermistors as compared with Comparative Examples and Conventional Examples. It can be seen that
[0011]
Here, when the Ba composition value x is less than 0.4180, the specific resistance increases, and when it exceeds 0.8080, the withstand voltage and the inrush allowable power decrease.
When the composition value y of Sr is less than 0.02, the withstand voltage decreases, and when it exceeds 0.30, the specific resistance increases.
When the Ca composition value z is less than 0.05, the withstand voltage decreases, and when it exceeds 0.20, the specific resistance increases.
When the composition value s of Pb is less than 0.01, the withstand voltage decreases, and when it exceeds 0.15, the specific resistance increases.
If the composition value t of the semiconducting element is less than 0.001, the electrical characteristics deteriorate, and if it exceeds 0.0035, the specific resistance increases. As for the type of semiconducting agent, as described above, even with a specific resistance of Pr in the range of 10 to 20 Ω · cm, a sufficiently usable withstand voltage, inrush allowable power, and ON-OFF cycle life characteristics can be obtained. Furthermore, although Y, Gd, and Dy can realize the target range of 10 to 20 Ω · cm, the withstand voltage and inrush allowable power are low, and the ON-OFF cycle life is short.
When the Ti molar ratio u is other than 0.95 to 1.02, the specific resistance is high.
If the amount of Mn added is less than 0.001 wt%, the electrical characteristics deteriorate, and if it exceeds 0.0065 wt%, the specific resistance increases.
If the amount of Si added is less than 0.09 wt% (0.2 wt% as SiO 2 ), the sintering temperature is high, and the specific resistance is high under normal firing conditions, and good characteristics cannot be obtained. If it exceeds 1.0 wt% (2.1 wt% as SiO 2 ), the electrical characteristics deteriorate, and further, the element is fused, which is a problem.
In the above embodiment, although the addition of Si as SiO 2, it was possible to obtain the same effect even when added as the Si 3 N 4.
[0012]
【The invention's effect】
In the composition formula (Ba x Sr y Ca z Pb s D t) Ti u O 3 (x + y + z + s + t = 1) barium titanate-based solid solution represented by the composition value x is 0.4180 ≦ x ≦ 0.8080, composition value y is 0.02 ≦ y ≦ 0.30, composition value z is 0.05 ≦ z ≦ 0.20, composition value s is 0.01 ≦ s ≦ 0.15, D is Pr, and its composition Mn is 0.001 wt% ≦ Mn ≦ 0.0065 wt% with respect to the above composition formula where the value t is 0.0010 ≦ t ≦ 0.0035 and the composition value u is 0.95 ≦ u ≦ 1.02. , Si contains 0.09 wt% ≦ Si ≦ 1.0 wt%, and the resistance value is low without decreasing the withstand voltage, inrush allowable power and ON-OFF cycle life even when the specific resistance of the element material is lowered. A positive temperature coefficient thermistor can be obtained. Therefore, the present invention can be applied to a positive temperature coefficient thermistor for various uses including elemental elements of a positive temperature coefficient thermistor for demagnetization having a resistance lower than that of the conventional one, and its industrial utility value is great.

Claims (1)

組成式(BaSrCaPb)Ti(x+y+z+s+t=1)で表されるチタン酸バリウム系固溶体において、
組成値xが0.4180≦x≦0.8080、組成値yが0.02≦y≦0.30、組成値zが0.05≦z≦0.20、組成値sが0.01≦s≦0.15であって、DはPrで、その組成値tが0.0010≦t≦0.0035、また、組成値uが0.95≦u≦1.02である上記組成式に対して、
Mnが0.001wt%≦Mn≦0.0065wt%、Siが0.09wt%≦Si≦1.0wt%含有することを特徴とする正特性サーミスタ磁器組成物。
In the composition formula (Ba x Sr y Ca z Pb s D t) Ti u O 3 (x + y + z + s + t = 1) barium titanate-based solid solution represented by,
The composition value x is 0.4180 ≦ x ≦ 0.8080, the composition value y is 0.02 ≦ y ≦ 0.30, the composition value z is 0.05 ≦ z ≦ 0.20, and the composition value s is 0.01 ≦. In the above composition formula, s ≦ 0.15, D is Pr, the composition value t is 0.0010 ≦ t ≦ 0.0035, and the composition value u is 0.95 ≦ u ≦ 1.02. for,
A positive temperature coefficient thermistor ceramic composition comprising: Mn 0.001 wt% ≦ Mn ≦ 0.0065 wt% and Si 0.09 wt% ≦ Si ≦ 1.0 wt%.
JP25786699A 1999-09-10 1999-09-10 Positive thermistor porcelain composition Expired - Fee Related JP3617795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25786699A JP3617795B2 (en) 1999-09-10 1999-09-10 Positive thermistor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25786699A JP3617795B2 (en) 1999-09-10 1999-09-10 Positive thermistor porcelain composition

Publications (2)

Publication Number Publication Date
JP2001085201A JP2001085201A (en) 2001-03-30
JP3617795B2 true JP3617795B2 (en) 2005-02-09

Family

ID=17312272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25786699A Expired - Fee Related JP3617795B2 (en) 1999-09-10 1999-09-10 Positive thermistor porcelain composition

Country Status (1)

Country Link
JP (1) JP3617795B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5222781B2 (en) * 2009-04-28 2013-06-26 ニチコン株式会社 Positive thermistor porcelain composition

Also Published As

Publication number Publication date
JP2001085201A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
EP0963963A1 (en) Barium titanate-base semiconducting ceramic composition
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
JP5881169B2 (en) Method for producing semiconductor porcelain composition
JP2017178658A (en) Semiconductor ceramic composition and method for producing the same
JP4788274B2 (en) Oxide conductor porcelain and resistor having CTR characteristics
JP3617795B2 (en) Positive thermistor porcelain composition
JP5988388B2 (en) Semiconductor porcelain composition and method for producing the same
KR100399708B1 (en) Barium titanate-base semiconductor ceramic
JP6075877B2 (en) Semiconductor porcelain composition and method for producing the same
JP4779466B2 (en) Barium titanate semiconductor porcelain composition
JP5137780B2 (en) Positive thermistor porcelain composition
WO2004110952A1 (en) Barium titanate based semiconductor porcelain composition
JP2001253771A (en) Positive characteristic thermistor porcelain composition
JPS63312616A (en) Semiconductor porcelain composition
JP3823876B2 (en) Voltage-dependent nonlinear resistor
JP2990679B2 (en) Barium titanate-based semiconductor porcelain composition
JP2002217006A (en) Nonlinear resistor
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP3506044B2 (en) Semiconductor ceramic, semiconductor ceramic element, and circuit protection element
JP2630156B2 (en) Semiconductor porcelain composition and method for producing the same
JPH03215354A (en) Barium titanate-based semiconductor ceramic composition
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JP3840917B2 (en) Voltage-dependent nonlinear resistor
JP2580916B2 (en) Porcelain composition and method for producing the same
JPH0818865B2 (en) Barium titanate-based semiconductor porcelain composition

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees