JPH0640768A - Production of ptc ceramics having high characteristic - Google Patents
Production of ptc ceramics having high characteristicInfo
- Publication number
- JPH0640768A JPH0640768A JP4196812A JP19681292A JPH0640768A JP H0640768 A JPH0640768 A JP H0640768A JP 4196812 A JP4196812 A JP 4196812A JP 19681292 A JP19681292 A JP 19681292A JP H0640768 A JPH0640768 A JP H0640768A
- Authority
- JP
- Japan
- Prior art keywords
- ptc
- raw material
- batio
- resistivity
- ceramics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は高特性PTCセラミック
スの製造方法に係り、特に、BaTiO3 ,BaSrT
iO3 ,BaPbTiO3 を生じさせる原料と、鉄及び
/又はコバルト系原料とを混合、成形及び焼成して、B
aTiO3 ,BaSrTiO3 ,BaPbTiO3 を主
体とし、鉄及び/又はコバルト化合物を、Baに対し
て、Fe及び/又はCoに換算して0.001〜0.1
原子%含むPTCセラミックスを製造する方法の改良に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-performance PTC ceramics, and more particularly to BaTiO 3 , BaSrT.
A raw material for producing iO 3 , BaPbTiO 3 and an iron and / or cobalt-based raw material are mixed, shaped and fired to form B.
The aTiO 3, BaSrTiO 3, BaPbTiO 3 mainly, iron and / or cobalt compound, with respect to Ba, in terms of Fe and / or Co 0.001 to 0.1
The present invention relates to an improvement in a method for producing a PTC ceramic containing atomic%.
【0002】[0002]
【従来の技術】一般に、半導体は温度が上昇するにつれ
て電気抵抗が減少する傾向を示すが、半導体化したBa
TiO3 焼結体は、低温側では低い電気抵抗を示し、あ
る温度、即ち、結晶転移するキュリー温度を境として急
激に電気抵抗が増大する性質を示す。これをPTC効果
ないしPTC特性と称し、BaTiO3 焼結体は、その
PTC特性を利用して、消磁素子、ヒータ素子等として
各種分野で広く用いられている。2. Description of the Related Art Generally, semiconductors show a tendency that electric resistance decreases as temperature rises.
The TiO 3 sintered body has a low electric resistance on the low temperature side, and has a property of rapidly increasing the electric resistance at a certain temperature, that is, at the Curie temperature at which the crystal transition occurs. This is called PTC effect or PTC characteristic, and BaTiO 3 sintered body is widely used in various fields as a demagnetizing element, a heater element, etc. by utilizing the PTC characteristic.
【0003】BaTiO3 セラミックスにおけるこのよ
うなPTC特性は、BaTiO3 に固溶させた微量のド
ープ元素(ドーパント)によるものと考えられている。
即ち、ドープ元素を固溶させることにより、移動可能な
電子が発生し、この電子が上記キュリー温度よりも低い
温度では焼結体内を動き回ることによりBaTiO3セ
ラミックスは低い電気抵抗を示し、キュリー温度よりも
高い温度では該電子が焼結体の結晶粒界を超えて動くこ
とが困難となることによりBaTiO3 セラミックスは
高い電気抵抗を示す。Such PTC characteristics in BaTiO 3 ceramics are considered to be due to a small amount of doping element (dopant) dissolved in BaTiO 3 .
That is, by dissolving the doping element in a solid solution, movable electrons are generated, and at a temperature lower than the Curie temperature, the electrons move around in the sintered body, so that the BaTiO 3 ceramics exhibits low electric resistance, Even at a high temperature, it becomes difficult for the electrons to move beyond the crystal grain boundaries of the sintered body, so that the BaTiO 3 ceramic exhibits a high electric resistance.
【0004】このようなBaTiO3 系等のPTCセラ
ミックスは、特に、そのPTC特性を利用して、保護回
路部品として用いられる場合が多い。この場合、PTC
セラミックスを回路に直列に接続して用い、回路に過電
流が流れてPTCセラミックス自体が発熱して温度が上
昇すると、その電気抵抗が上昇して回路の電流が遮断さ
れて回路が保護される。In particular, such PTC ceramics such as BaTiO 3 system are often used as protective circuit parts by utilizing their PTC characteristics. In this case, PTC
When ceramics are connected in series to a circuit and an overcurrent flows through the circuit to generate heat in the PTC ceramics itself and the temperature rises, the electrical resistance increases and the current in the circuit is interrupted to protect the circuit.
【0005】従って、このような保護回路部品としての
用途から、PTCセラミックスは、室温のような、キュ
リー温度よりも低温側の温度領域では、できるだけ電気
抵抗(以下、室温領域での電気抵抗を「室温抵抗率」と
称す。)が小さく、電流を流し易く電力の消費が少ない
こと、逆に、過電流発生による温度上昇時のようなキュ
リー温度よりも高温側の温度領域では、電気抵抗(以
下、高温領域での電気抵抗の最大値を「最大抵抗率」と
称す。)が大きく、過電流を確実に遮断して回路を保護
することができること、即ち、室温抵抗率が低く、抵抗
率の上昇度が急峻で最大抵抗率が高いこと、PTC特性
が大きいことが望まれる。Therefore, from the use as such a protection circuit component, PTC ceramics has an electric resistance as much as possible in the temperature region lower than the Curie temperature, such as room temperature. The room temperature resistivity is small), the current can flow easily, and the power consumption is low. On the contrary, in the temperature range higher than the Curie temperature such as when the temperature rises due to overcurrent, the electric resistance (hereinafter , The maximum value of the electric resistance in the high temperature region is called "maximum resistivity") is large, and the circuit can be protected by reliably cutting off the overcurrent, that is, the room temperature resistivity is low and the resistivity It is desired that the degree of rise is steep, the maximum resistivity is high, and the PTC characteristics are large.
【0006】従来、PTCセラミックスのPTC特性を
改善する方法としては、ドープ元素含有量を多くするこ
とが考えられている。Conventionally, increasing the content of the doping element has been considered as a method for improving the PTC characteristics of PTC ceramics.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、ドープ
元素含有量を多くすると、焼成により焼結が良好に進行
せず、嵩密度の低い焼結体となる、或いは、逆にPTC
特性が損なわれるなどの不具合を生じるため、ドープ元
素を徒に増加させることは、好ましいことではない。However, when the content of the doping element is increased, the sintering does not proceed well due to firing, resulting in a sintered body having a low bulk density, or conversely, PTC.
It is not preferable to increase the number of doping elements, because it causes problems such as deterioration of characteristics.
【0008】従来、PTC効果を示すための結晶構造と
して、焼結体の結晶粒子が強誘電性の半導体で、結晶粒
界が絶縁体に近い高電気抵抗を示す微細構造が必要条件
であると考えられているが、詳細な解明がなされていな
いのが実情である。Conventionally, as the crystal structure for exhibiting the PTC effect, it is necessary to have a fine structure in which the crystal grains of the sintered body are a ferroelectric semiconductor and the crystal grain boundaries exhibit high electric resistance close to that of an insulator. Though it is considered, the reality is that it has not been clarified in detail.
【0009】本発明は上記従来の実情に鑑みてなされた
ものであって、室温抵抗率が低く、最大抵抗率が高く、
PTC特性の大きい高特性BaTiO3 系BaSrTi
O3系又はBaPbTiO3 系PTCセラミックスを製
造する方法を提供することを目的とする。The present invention has been made in view of the above conventional circumstances, and has a low room temperature resistivity and a high maximum resistivity.
High-performance BaTiO 3 system BaSrTi with large PTC characteristics
It is an object of the present invention to provide a method for producing an O 3 -based or BaPbTiO 3 -based PTC ceramics.
【0010】[0010]
【課題を解決するための手段】本発明の高特性PTCセ
ラミックスの製造方法は、BaTiO3 ,BaSrTi
O3 及びBaPbTiO3 よりなる群から選ばれる少な
くとも1種を生じさせる原料と、鉄系原料及び/又はコ
バルト系原料とを混合、成形及び焼成し、BaTiO
3 ,BaSrTiO3 及びBaPbTiO3 よりなる群
から選ばれる少なくとも1種を主体とし、鉄化合物及び
/又はコバルト化合物をFe及び/又はCoに換算して
Baに対し0.001〜0.1原子%の割合にて含むP
TCセラミックスを製造する方法において、O2 分圧が
30気圧以上の高圧酸化雰囲気中にて前記焼成を行なう
ことを特徴とする。The method for producing high-performance PTC ceramics according to the present invention is based on BaTiO 3 , BaSrTi.
A raw material that produces at least one selected from the group consisting of O 3 and BaPbTiO 3, and an iron-based raw material and / or a cobalt-based raw material are mixed, molded, and fired to form BaTiO 3.
3 , at least one selected from the group consisting of BaSrTiO 3 and BaPbTiO 3 is the main component, and an iron compound and / or a cobalt compound is converted into Fe and / or Co in an amount of 0.001 to 0.1 atomic% based on Ba P included in proportion
The method for producing TC ceramics is characterized in that the firing is performed in a high-pressure oxidizing atmosphere having an O 2 partial pressure of 30 atm or more.
【0011】以下に本発明を詳細に説明する。The present invention will be described in detail below.
【0012】本発明においては、まず、BaTiO3 ,
BaSrTiO3 及びBaPbTiO3 よりなる群から
選ばれる少なくとも1種を生じさせる原料(以下「Ba
TiO3 系原料」と称す。)と鉄系原料及び/又はコバ
ルト系原料とを、所定の割合で混合し、常法に従って成
形する。In the present invention, first, BaTiO 3 ,
A raw material (hereinafter referred to as “Ba”) which produces at least one selected from the group consisting of BaSrTiO 3 and BaPbTiO 3.
It is referred to as "TiO 3 -based raw material". ) And an iron-based raw material and / or a cobalt-based raw material are mixed at a predetermined ratio and molded according to a conventional method.
【0013】次いで、得られた成形体を焼成するが、本
発明においては、この焼成をO2 分圧30気圧以上の高
圧酸化雰囲気中にて行なう。この焼成雰囲気中のO2 分
圧が30気圧未満であると、本発明による十分なPTC
特性の向上効果が得られない。通常の場合、O2 分圧は
30〜2000気圧の範囲とするのが好ましい。Next, the obtained molded body is fired. In the present invention, this firing is performed in a high-pressure oxidizing atmosphere with an O 2 partial pressure of 30 atm or more. If the O 2 partial pressure in this firing atmosphere is less than 30 atm, sufficient PTC according to the present invention will be obtained.
The effect of improving the characteristics cannot be obtained. Usually, the O 2 partial pressure is preferably in the range of 30 to 2000 atm.
【0014】なお、作業安全性の点からして、純O2
(100%O2 )雰囲気ではなくO2にAr等の希ガス
を混ぜた雰囲気とするのが好ましい。雰囲気ガス中のO
2 の割合は3〜20体積%位が好ましい。In terms of work safety, pure O 2
It is preferable to use an atmosphere in which a rare gas such as Ar is mixed with O 2 instead of the (100% O 2 ) atmosphere. O in atmosphere gas
The ratio of 2 is preferably about 3 to 20% by volume.
【0015】本発明において、この高圧酸化雰囲気中で
の焼成は、高圧酸化雰囲気中での熱間静水圧プレス(H
IP)処理で行なうのが好ましい。このHIP処理は、
過度な処理時間、処理温度等で行なうと、結晶粒子の酸
化及び粒成長が起こり好ましくない。従って、HIP処
理は、温度900〜1280℃、全圧500〜1000
0気圧、処理時間0.5〜20時間程度で行なうのが好
ましい。In the present invention, the firing in the high pressure oxidizing atmosphere is performed by hot isostatic pressing (H
It is preferable to carry out IP) treatment. This HIP process is
If the treatment is performed for an excessively long treatment time or treatment temperature, the crystal grains may be oxidized and grain growth may occur. Therefore, the HIP treatment is performed at a temperature of 900 to 1280 ° C and a total pressure of 500 to 1000.
It is preferable to carry out the treatment at 0 atm and a treatment time of about 0.5 to 20 hours.
【0016】なお、本発明において、BaTiO3 系原
料としては、BaCO3 ,TiO2,BaO,SrCO3
,PbCO3 等のBa,Ti,Sr,Pbの酸化物、
或いは、焼成により酸化物を生じる硝酸塩、炭酸塩等が
挙げられる。In the present invention, as the BaTiO 3 -based raw material, BaCO 3 , TiO 2 , BaO, SrCO 3 are used.
, Oxides of Ba, Ti, Sr, Pb such as PbCO 3 ,
Alternatively, nitrates, carbonates and the like that produce oxides by firing may be used.
【0017】鉄系原料及びコバルト系原料としては、
鉄、コバルトの酸化物、硝酸塩、炭酸塩、塩酸塩、水酸
化物等、具体的には、Fe2 O3 ,Fe(NO3 )2 ,
FeCl2 ,FeO,Fe3 O4 ,Fe(OH)3 ,C
o(NO3 )2 ,CoCl2 ,CoO,Co3 O4 ,C
o(OH)2 等が挙げられる。As the iron-based raw material and the cobalt-based raw material,
Iron, cobalt oxides, nitrates, carbonates, hydrochlorides, hydroxides and the like, specifically Fe 2 O 3 , Fe (NO 3 ) 2 ,
FeCl 2 , FeO, Fe 3 O 4 , Fe (OH) 3 , C
o (NO 3 ) 2 , CoCl 2 , CoO, Co 3 O 4 , C
and o (OH) 2 and the like.
【0018】本発明においては、これら鉄系原料及びコ
バルト系原料は、得られるBaTiO3 系焼結体中の鉄
化合物及び/又はコバルト化合物の含有量が、Fe及び
/又はCo換算にて、Baに対して0.001〜0.1
原子%となるように用いる。この割合が0.001原子
%未満では、ドープ元素添加による良好なPTC効果が
得られず、逆に0.1原子%を超えるとドープ元素量が
多過ぎて室温抵抗率が高くなり好ましくない。In the present invention, the iron-based raw material and the cobalt-based raw material have a Ba content in the BaTiO 3 -based sintered body of which the content of the iron compound and / or the cobalt compound is Ba and Fe, respectively. For 0.001-0.1
It is used so that it becomes atomic%. If this proportion is less than 0.001 atomic%, a good PTC effect due to the addition of the doping element cannot be obtained, and conversely, if it exceeds 0.1 atomic%, the amount of the doping element is too large and the room temperature resistivity becomes unfavorably high.
【0019】なお、本発明においては、ドープ元素とし
て、上記Fe,Co以外のもの、例えば、V,Cr,M
n,Ni,Cu,Zn,Ru,Ga,Rh,In,T
l,Ag等を、その特性を損なわない範囲で添加しても
良い。この場合、これらの他のドープ元素の化合物の含
有量は、当該元素換算量にて、Baに対して0.5原子
%以下とするのが好ましい。In the present invention, as the doping element, elements other than Fe and Co, such as V, Cr and M, are used.
n, Ni, Cu, Zn, Ru, Ga, Rh, In, T
You may add l, Ag, etc. in the range which does not impair the characteristic. In this case, the content of the compound of these other doping elements is preferably 0.5 atomic% or less based on Ba in terms of the element conversion amount.
【0020】[0020]
【作用】Fe,Coは、酸化により高い価数を採り得る
元素であるため、ドープ元素としてこのFe,Coを添
加し、O2 分圧30気圧以上の高圧酸化雰囲気中にて焼
成を行なうと、得られる焼結体中のFe,Co元素は、
2価、3価よりも更に高い価数となる。これにより、高
温時には、伝導帯から比較的離れたアクセプタ準位が形
成される。このため、高温領域における電子の移動が阻
止され、高温抵抗率が高くなる。Since Fe and Co are elements that can have a high valence by oxidation, if Fe and Co are added as doping elements and firing is performed in a high pressure oxidizing atmosphere with an O 2 partial pressure of 30 atm or more. The Fe and Co elements in the obtained sintered body are
The valence is higher than that of divalent or trivalent. As a result, at high temperature, an acceptor level relatively far from the conduction band is formed. Therefore, the movement of electrons in the high temperature region is blocked, and the high temperature resistivity increases.
【0021】一方、このように、焼成時の酸化により最
大抵抗率を高めることから、ドープ元素はBaに対する
Fe及び/又はCoの割合で0.1原子%以下と少なく
することができ、このため、室温抵抗率については低く
維持することができる。On the other hand, since the maximum resistivity is increased by the oxidation during firing in this way, the doping element can be reduced to 0.1 atomic% or less in the ratio of Fe and / or Co with respect to Ba. The room temperature resistivity can be kept low.
【0022】[0022]
【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。EXAMPLES The present invention will be described in more detail with reference to the following examples.
【0023】実施例1〜6 下記BaTiO3 原料と鉄系原料及び/又はコバルト系
原料とを用い、表1に示すO2 分圧にてHIP処理を行
なって、表1に示す酸化鉄及び/又は酸化コバルト含有
量のBaTiO3 系PTCセラミックスを製造した。Examples 1 to 6 Using the following BaTiO 3 raw materials and iron-based raw materials and / or cobalt-based raw materials, HIP treatment was performed at an O 2 partial pressure shown in Table 1 to obtain iron oxides and / or iron oxides shown in Table 1. Alternatively, BaTiO 3 -based PTC ceramics containing cobalt oxide were manufactured.
【0024】BaTiO3 原料:BaTiO3 鉄系原料:Fe(NO3 )3 コバルト系原料:Co(NO3 )2 なお、HIP処理のO2 分圧以外の条件は次の通りであ
る。BaTiO 3 raw material: BaTiO 3 iron-based raw material: Fe (NO 3 ) 3 cobalt-based raw material: Co (NO 3 ) 2 The conditions other than the O 2 partial pressure in the HIP treatment are as follows.
【0025】 全圧:100気圧(O2 以外のガスはAr) 温度:1200℃ 時間:2時間 得られたBaTiO3 系PTCセラミックスについて、
それぞれ室温抵抗率(25℃)と最大抵抗率とを測定
し、結果を表1に示した。Total pressure: 100 atm (gas other than O 2 is Ar) Temperature: 1200 ° C. Time: 2 hours About the obtained BaTiO 3 -based PTC ceramics,
The room temperature resistivity (25 ° C.) and the maximum resistivity were measured, and the results are shown in Table 1.
【0026】比較例1 実施例2において、O2 分圧を10気圧としたこと以外
は同様にしてBaTiO3 系PTCセラミックスを製造
してその抵抗率を調べ、結果を表1に示した。Comparative Example 1 A BaTiO 3 PTC ceramic was produced in the same manner as in Example 2 except that the O 2 partial pressure was 10 atm, and its resistivity was examined. The results are shown in Table 1.
【0027】比較例2〜5 実施例1において、鉄系原料の添加量を変えるか、又
は、コバルト系原料に置換したこと以外は同様にしてB
aTiO3 系PTCセラミックスを製造してその抵抗率
を調べ、結果を表1に示した。Comparative Examples 2 to 5 In the same manner as in Example 1, except that the addition amount of the iron-based raw material was changed or the cobalt-based raw material was replaced, B
The aTiO 3 -based PTC ceramics were manufactured and their resistivity was investigated. The results are shown in Table 1.
【0028】[0028]
【表1】 [Table 1]
【0029】表1より、本発明方法によれば、室温抵抗
率が低く、最大抵抗率が高く、PTC特性の大きいBa
TiO3 系PTCセラミックスが得られることが明らか
である。From Table 1, according to the method of the present invention, Ba having a low room temperature resistivity, a high maximum resistivity and a large PTC characteristic.
It is clear that TiO 3 -based PTC ceramics can be obtained.
【0030】これに対して、焼成雰囲気中のO2 分圧が
低い比較例1では最大抵抗率が低く、また、鉄及び/又
はコバルト含有量の少ない比較例2、4では最大抵抗率
が低く、逆に含有量が多い比較例3、5では室温抵抗率
が高く、いずれも良好なPTC特性は得られない。On the other hand, in Comparative Example 1 in which the partial pressure of O 2 in the firing atmosphere is low, the maximum resistivity is low, and in Comparative Examples 2 and 4 in which the iron and / or cobalt content is low, the maximum resistivity is low. On the contrary, in Comparative Examples 3 and 5 in which the content is large, the room temperature resistivity is high, and in either case, good PTC characteristics cannot be obtained.
【0031】なお、実施例1〜6において、BaTiO
3 をBaSrTiO3 に置換したこと以外は全く同様に
してPTCセラミックスを製造し、その特性を測定した
ところ、実施例1〜6と全く同一であった。また、実施
例1〜6において、BaTiO3 をBaPbTiO3 に
置換したこと以外は全く同様にしてPTCセラミックス
を製造し、その特性を測定したところ、実施例1〜6と
全く同一であった。In Examples 1 to 6, BaTiO 3 was used.
3 in the same manner except that was replaced by BaSrTiO 3 to produce a PTC ceramic was measured for its properties were exactly the same as Examples 1-6. In addition, PTC ceramics were manufactured in the same manner as in Examples 1 to 6 except that BaTiO 3 was replaced with BaPbTiO 3 , and the characteristics were measured. The results were exactly the same as Examples 1 to 6.
【0032】[0032]
【発明の効果】以上詳述した通り、本発明の高特性PT
Cセラミックスの製造方法によれば、室温抵抗率が低
く、最大抵抗率が高く、PTC特性の大きい高特性Ba
TiO3系PTCセラミックスが得られる。As described in detail above, the high-performance PT of the present invention
According to the method for producing C ceramics, the high-temperature characteristic Ba having a low room temperature resistivity, a high maximum resistivity, and a large PTC property is obtained.
A TiO 3 -based PTC ceramic is obtained.
【0033】本発明で製造されるPTCセラミックス
は、そのPTC特性が著しく良好であることから、保護
回路用部材等として優れた性能を示し、工業的に極めて
有用である。Since the PTC ceramics produced by the present invention have remarkably good PTC characteristics, they show excellent performance as a member for a protection circuit and are industrially very useful.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 石▲崎▼ 幸三 新潟県長岡市深沢町1769番地1 (72)発明者 ハーブレヒツ ベン 新潟県長岡市緑町1−38−67 (72)発明者 杵鞭 義明 新潟県長岡市宮関4−13−4 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ishi ▲ Saki ▼ Kozo 1769 Fukasawa-cho, Nagaoka-shi, Niigata 1 (72) Inventor Herb Lehitz Ben 1-38-67 Midori-cho, Nagaoka-shi, Niigata (72) Inventor Kiuchi Yoshiaki 4-13-4 Miyaseki, Nagaoka City, Niigata Prefecture
Claims (1)
aPbTiO3 よりなる群から選ばれる少なくとも1種
を生じさせる原料と、鉄系原料及び/又はコバルト系原
料とを混合、成形及び焼成し、BaTiO3 ,BaSr
TiO3 及びBaPbTiO3 よりなる群から選ばれる
少なくとも1種を主体とし、鉄化合物及び/又はコバル
ト化合物をFe及び/又はCoに換算してBaに対し
0.001〜0.1原子%の割合にて含むPTCセラミ
ックスを製造する方法において、 O2 分圧が30気圧以上の高圧酸化雰囲気中にて前記焼
成を行なうことを特徴とする高特性PTCセラミックス
の製造方法。1. BaTiO 3 , BaSrTiO 3 and B
A raw material that produces at least one selected from the group consisting of aPbTiO 3 and an iron-based raw material and / or a cobalt-based raw material are mixed, shaped, and fired to form BaTiO 3 , BaSr.
Mainly at least one selected from the group consisting of TiO 3 and BaPbTiO 3, iron compound and / or cobalt compound Fe and / or proportion of 0.001 to 0.1 atomic% with respect to Ba in terms of Co The method for producing high-performance PTC ceramics is characterized in that the firing is performed in a high-pressure oxidizing atmosphere having an O 2 partial pressure of 30 atm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4196812A JPH0640768A (en) | 1992-07-23 | 1992-07-23 | Production of ptc ceramics having high characteristic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4196812A JPH0640768A (en) | 1992-07-23 | 1992-07-23 | Production of ptc ceramics having high characteristic |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0640768A true JPH0640768A (en) | 1994-02-15 |
Family
ID=16364070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4196812A Pending JPH0640768A (en) | 1992-07-23 | 1992-07-23 | Production of ptc ceramics having high characteristic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0640768A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100401748B1 (en) * | 2001-09-17 | 2003-10-17 | 현대자동차주식회사 | A PTC ceramic pre-heater and the preparing method thereof |
JP2007008768A (en) * | 2005-06-30 | 2007-01-18 | Murata Mfg Co Ltd | Barium titanate semiconductor porcelain composition |
CN101252813A (en) * | 2008-04-07 | 2008-08-27 | 蒋国屏 | PTC thermal sensitive ceramic heating element |
CN113603498A (en) * | 2020-12-30 | 2021-11-05 | 苏州金宏气体股份有限公司 | Cobalt-doped BaTiO3Piezoelectric ceramic, preparation method thereof and high-purity hydrogen production |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5867001A (en) * | 1981-10-19 | 1983-04-21 | 株式会社デンソー | Method of producing positive temperature coefficient semiconductor porcelain |
JPS6186467A (en) * | 1984-10-02 | 1986-05-01 | 科学技術庁無機材質研究所長 | Manufacture of high effeciency barium titanate posister |
-
1992
- 1992-07-23 JP JP4196812A patent/JPH0640768A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5867001A (en) * | 1981-10-19 | 1983-04-21 | 株式会社デンソー | Method of producing positive temperature coefficient semiconductor porcelain |
JPS6186467A (en) * | 1984-10-02 | 1986-05-01 | 科学技術庁無機材質研究所長 | Manufacture of high effeciency barium titanate posister |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100401748B1 (en) * | 2001-09-17 | 2003-10-17 | 현대자동차주식회사 | A PTC ceramic pre-heater and the preparing method thereof |
JP2007008768A (en) * | 2005-06-30 | 2007-01-18 | Murata Mfg Co Ltd | Barium titanate semiconductor porcelain composition |
CN101252813A (en) * | 2008-04-07 | 2008-08-27 | 蒋国屏 | PTC thermal sensitive ceramic heating element |
CN113603498A (en) * | 2020-12-30 | 2021-11-05 | 苏州金宏气体股份有限公司 | Cobalt-doped BaTiO3Piezoelectric ceramic, preparation method thereof and high-purity hydrogen production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010067867A1 (en) | Semiconductor ceramic and positive temperature coefficient thermistor | |
JPH11340009A (en) | Nonlinear resistor | |
EP3202746A1 (en) | Semiconductor ceramic composition and ptc thermistor | |
KR20170016805A (en) | Semiconductive ceramic composition and ptc thermistor | |
JP5844507B2 (en) | Method for producing semiconductor porcelain composition and heater using semiconductor porcelain composition | |
JPH0640768A (en) | Production of ptc ceramics having high characteristic | |
JPH029755A (en) | Ceramic composition having high dielectric constant | |
KR100327911B1 (en) | Semiconducting ceramic and monolithic electronic element fabricated from the same | |
JP3165410B2 (en) | High resistance voltage non-linear resistor and lightning arrester using it | |
JPH0230561B2 (en) | ||
US4280846A (en) | Method of fabrication of dielectric material having volume-distributed insulating barriers for use at high voltages and a ceramic body fabricated by said method | |
JP3323701B2 (en) | Method for producing zinc oxide based porcelain composition | |
JPS63312616A (en) | Semiconductor porcelain composition | |
JPH0590063A (en) | Semiconductor ceramic capacitor and manufacture of the same | |
JP3598177B2 (en) | Voltage non-linear resistor porcelain | |
JPH07297009A (en) | Positive temperature coefficient thermistor and manufacturing method thereof | |
JPS5821806B2 (en) | Sintered voltage nonlinear resistor | |
JP3956676B2 (en) | Method for manufacturing voltage-dependent non-linear resistor porcelain | |
JPH11157925A (en) | Semiconductor ceramic | |
JPH07201531A (en) | Voltage non-linear resistor porcelain composition and voltage non-linear resistor porcelain | |
JP2985559B2 (en) | Varistor | |
JP2987762B2 (en) | Ferroelectric porcelain composition | |
JPH10101414A (en) | Reduction-resistant positive thermistor | |
JP2608923B2 (en) | High dielectric constant ceramic composition | |
JPH029760A (en) | Ceramic composition having high dielectric constant |