JP2536679B2 - Positive characteristic thermistor material - Google Patents

Positive characteristic thermistor material

Info

Publication number
JP2536679B2
JP2536679B2 JP2219529A JP21952990A JP2536679B2 JP 2536679 B2 JP2536679 B2 JP 2536679B2 JP 2219529 A JP2219529 A JP 2219529A JP 21952990 A JP21952990 A JP 21952990A JP 2536679 B2 JP2536679 B2 JP 2536679B2
Authority
JP
Japan
Prior art keywords
mol
thermistor material
sample
temperature coefficient
positive temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2219529A
Other languages
Japanese (ja)
Other versions
JPH04104948A (en
Inventor
誠 佐野
範光 鬼頭
隆彦 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2219529A priority Critical patent/JP2536679B2/en
Publication of JPH04104948A publication Critical patent/JPH04104948A/en
Application granted granted Critical
Publication of JP2536679B2 publication Critical patent/JP2536679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は正特性サーミスタ材料に関し、特にチタン
酸バリウムを主成分とする正特性サーミスタ材料に関す
る。
The present invention relates to a PTC thermistor material, and more particularly to a PTC thermistor material containing barium titanate as a main component.

(従来技術) 正特性サーミスタに用いられる材料は、チタン酸バリ
ウムを主成分とし、半導体化剤となるY,La,Ceなどの希
土類元素,Nb,Bi,Sb,W,Thなどの中から選ばれる少なくと
も1種類を微量添加含有させたものである。このような
材料を用いた正特性サーミスタは、常温において小さい
比抵抗を有し、キュリー点を超えると著しい正の抵抗温
度変化を示すという特徴を有している。通常、正特性サ
ーミスタでは、その主成分であるチタン酸バリウムの影
響により、そのキュリー点が120℃付近にある。
(Prior Art) The material used for the PTC thermistor is mainly composed of barium titanate and selected from rare earth elements such as Y, La and Ce, which are semiconductor agents, Nb, Bi, Sb, W and Th. At least one of the above is added in a trace amount. A positive temperature coefficient thermistor using such a material has a characteristic that it has a small specific resistance at room temperature and exhibits a significant positive resistance temperature change when it exceeds the Curie point. Usually, in a positive temperature coefficient thermistor, its Curie point is around 120 ° C. due to the influence of barium titanate which is its main component.

このキュリー点を高温側に移行させるために、Baの一
部をPbで置換することが知られている。逆に、キュリー
点を低温側に移行させるために、Baの一部をSrで置換し
たり、Tiの一部をZr,Snなどで置換することが知られて
いる。
In order to shift this Curie point to the high temperature side, it is known to replace part of Ba with Pb. On the contrary, in order to shift the Curie point to the low temperature side, it is known that a part of Ba is replaced with Sr and a part of Ti is replaced with Zr, Sn and the like.

また、正特性サーミスタ材料にマンガンを微量添加す
ることにより、キュリー点を超えたのちの抵抗温度変化
率を著しく増大させることが知られている。さらに、Si
O2を微量添加することにより、常温における比抵抗を小
さくするとともに安定したものにすることが知られてい
る。
It is also known that by adding a small amount of manganese to the positive temperature coefficient thermistor material, the rate of change in resistance temperature after exceeding the Curie point is significantly increased. Furthermore, Si
It is known that the addition of a small amount of O 2 reduces the specific resistance at room temperature and stabilizes it.

(発明が解決しようとする課題) このような正特性サーミスタの耐電圧特性を上げるた
め、Baの一部をCa,Sr,Pbの中から選ばれる少なくとも1
種類で置換した材料を使用することが知られている。し
かし、比抵抗が10Ωcm以下のものでは、絶縁破壊電圧が
48V/mmの値しか示さず、実用上十分な値ではない。
(Problems to be Solved by the Invention) In order to improve the withstand voltage characteristic of such a positive temperature coefficient thermistor, at least one portion of Ba is selected from Ca, Sr, and Pb.
It is known to use materials substituted by type. However, if the specific resistance is 10 Ωcm or less, the dielectric breakdown voltage
It shows only a value of 48V / mm, which is not a practically sufficient value.

それゆえに、この発明の主たる目的は、常温における
比抵抗が小さく、かつ耐電圧が高い正特性サーミスタを
得ることができる、正特性サーミスタ材料を提供するこ
とである。
Therefore, a main object of the present invention is to provide a PTC thermistor material which can obtain a PTC thermistor having a small specific resistance at room temperature and a high withstand voltage.

(課題を解決するための手段) この発明は、チタン酸バリウムまたはその固溶体から
なる主成分にシリカ,マンガンおよび半導体化剤が添加
含有された正特性サーミスタ材料であって、主成分は、
30〜95モル%のBaTiO3,3〜25モル%のCaTiO3,1〜25モル
%のSrTiO3,1〜30モル%のPbTiO3からなり、半導体化剤
は、3価の希土類元素の中から選ばれる少なくとも1種
類とV,Taの5価の金属の中から選ばれる少なくとも1種
類とからなり、3価の希土類元素と5価の金属とのモル
比が1:1〜7:3の範囲にあり、主成分に対して、シリカが
SiO2に換算して0.01〜5モル%、マンガンMnに換算して
0.003〜0.1モル%および半導体化剤が0.05〜0.1モル%
添加含有された、正特性サーミスタ材料である。
(Means for Solving the Problem) The present invention is a positive temperature coefficient thermistor material in which silica, manganese, and a semiconducting agent are added to the main component made of barium titanate or a solid solution thereof, and the main component is
30-95 mol% of BaTiO 3, 3 to 25 mol% of CaTiO 3, 1 to 25 mol% of SrTiO 3, consists of 1 to 30 mol% of PbTiO 3, semiconductor-forming agent is in the trivalent rare earth elements And at least one selected from pentavalent metals of V and Ta, and the molar ratio of trivalent rare earth element to pentavalent metal is 1: 1 to 7: 3. It is in the range, and silica is
Converted to SiO 2 0.01 to 5 mol%, converted to manganese Mn
0.003-0.1 mol% and semiconducting agent 0.05-0.1 mol%
It is a positive temperature coefficient thermistor material added and contained.

(発明の効果) この発明によれば、比抵抗が小さく、かつ耐電圧の高
い正特性サーミスタを作製可能な正特性サーミスタ材料
を得ることができる。
(Effect of the Invention) According to the present invention, it is possible to obtain a positive temperature coefficient thermistor material which can be manufactured into a positive temperature coefficient thermistor having a small specific resistance and a high withstand voltage.

この発明の上述の目的,その他の目的,特徴および利
点は、以下の実施例の詳細な説明から一層明らかとなろ
う。
The above-mentioned objects, other objects, features and advantages of the present invention will become more apparent from the detailed description of the embodiments below.

(実施例) まず、原料として、主成分であるBaCO3,CaCO3,SrCO3,
b3O4,TiO2、半導体化剤であるY2O3,La2O3,V2O5,Ta2O5
添加物であるMnCO3,SiO2などを準備した。これらの各原
料を表1に示す比率のサーミスタ材料が得られるように
配合し、湿式混合物を得た。この混合物を脱水乾燥し、
1150℃で2時間仮焼して仮焼物を得た。さらに、この仮
焼物を粉砕し、バインダを加えて造粒し、成形圧力1000
kg/cm2で円板状に成形して成形物を得た。この成形物を
1360℃で焼成し、直径17.5mm,厚さ0.6mmの円板状の正特
性サーミスタを得た。
Example First, as a raw material, the main components BaCO 3 , CaCO 3 , SrCO 3 ,
b 3 O 4 , TiO 2 , semiconducting agent Y 2 O 3 , La 2 O 3 , V 2 O 5 , Ta 2 O 5 ,
Additives such as MnCO 3 and SiO 2 were prepared. Each of these raw materials was blended so as to obtain the ratio of thermistor material shown in Table 1 to obtain a wet mixture. Dehydrating and drying this mixture,
It was calcined at 1150 ° C. for 2 hours to obtain a calcined product. Furthermore, this calcined product is crushed, a binder is added and granulated.
A molded product was obtained by molding in a disk shape at kg / cm 2 . This molded product
By firing at 1360 ° C, a disc-shaped positive temperature coefficient thermistor with a diameter of 17.5 mm and a thickness of 0.6 mm was obtained.

得られた正特性サーミスタの両主面にIn−Ga合金の電
極を形成し、試料とした。
Electrodes of In-Ga alloy were formed on both main surfaces of the obtained positive temperature coefficient thermistor to prepare a sample.

これらの試料について、常温(25℃)における比抵
抗,耐電圧特性およびキュリー点を測定して、表2に示
した。なお、表中*印を付したものはこの発明の範囲外
のものであり、それ以外はこの発明の範囲内のものであ
る。
The specific resistance, withstand voltage characteristics and Curie point of these samples at room temperature (25 ° C.) were measured and shown in Table 2. Those marked with * in the table are outside the scope of the present invention, and the others are within the scope of the present invention.

次に、各組成の限定理由について説明する。 Next, the reasons for limiting each composition will be described.

試料番号4のように、BaTiO3が30モル%未満では、比
抵抗が大きくなる。一方、試料番号21のように、BaTiO3
が95モル%を超えると、耐電圧特性の改善効果が少な
い。
As in Sample No. 4, when BaTiO 3 is less than 30 mol%, the specific resistance becomes large. On the other hand, as in sample number 21, BaTiO 3
When it exceeds 95 mol%, the effect of improving the withstand voltage characteristics is small.

試料番号2のように、CaTiO3が3モル%未満では、耐
電圧特性の改善効果が少ない。一方、試料番号22のよう
に、CaTiO3が25モル%を超えると、比抵抗が大きくなり
すぎる。
When the content of CaTiO 3 is less than 3 mol% as in Sample No. 2, the effect of improving the withstand voltage characteristics is small. On the other hand, when CaTiO 3 exceeds 25 mol% as in Sample No. 22, the specific resistance becomes too large.

試料番号23のように、SrTiO3が1モル%未満では、耐
電圧特性の改善効果が少ない。一方、試料番号3のよう
に、SrTiO3が25モル%を超えると、耐電圧特性の改善効
果がない。
When the SrTiO 3 content is less than 1 mol% as in Sample No. 23, the effect of improving the withstand voltage characteristics is small. On the other hand, if SrTiO 3 exceeds 25 mol% as in Sample No. 3, there is no improvement effect on the withstand voltage characteristics.

試料番号1のように、PbTiO3が1モル%未満では、耐
電圧特性の改善効果が少ない。一方、試料番号24のよう
に、PbTiO3が30モル%を超えると、半導体化が困難とな
る。
When the PbTiO 3 content is less than 1 mol% as in Sample No. 1, the effect of improving the withstand voltage characteristics is small. On the other hand, if PbTiO 3 exceeds 30 mol% as in Sample No. 24, it becomes difficult to form a semiconductor.

試料番号11のように、Mnが0.003モル%未満では、耐
電圧特性が劣化し、試料番号17のように、添加物として
のMnが0.1モル%以上では、比抵抗が10Ωcm以下になら
ない。
When Mn is less than 0.003 mol% as in Sample No. 11, the withstand voltage characteristic deteriorates, and when Mn as an additive is 0.1 mol% or more as in Sample No. 17, the specific resistance does not fall below 10 Ωcm.

試料番号16のように、シリカがSiO2に換算して0.01モ
ル%よりも少ないと、耐電圧特性の改善効果がない。一
方、試料番号10のように、シリカがSiO2に換算して5モ
ル%を超えると、融着がおこる。
When the amount of silica converted to SiO 2 is less than 0.01 mol% as in Sample No. 16, there is no improvement effect on withstand voltage characteristics. On the other hand, when the silica exceeds 5 mol% in terms of SiO 2 , like sample number 10, fusion occurs.

試料番号5,12のように、半導体化剤として3価の希土
類元素と5価の金属との比が1:1〜7:3の範囲をはずれる
と、耐電圧特性が向上しないためである。また、試料番
号15,25のように、3価の希土類元素と5価の金属との
合計モル数が0.05〜0.1モル%の範囲からはずれると、
比抵抗が大きくなる。試料番号8,19のように、3価の希
土類が添加されないとき、あるいは試料番号9のよう
に、5価の金属が添加されないときは、耐電圧特性の改
善効果が少ない。
This is because the withstand voltage characteristics are not improved when the ratio of the trivalent rare earth element to the pentavalent metal as the semiconducting agent is out of the range of 1: 1 to 7: 3 as in the case of sample numbers 5 and 12. When the total number of moles of the trivalent rare earth element and the pentavalent metal deviates from the range of 0.05 to 0.1 mol% as in sample numbers 15 and 25,
The specific resistance increases. When the trivalent rare earth element is not added as in sample numbers 8 and 19, or when the pentavalent metal is not added as in sample number 9, the effect of improving the withstand voltage characteristics is small.

それに対して、この発明の範囲内の正特性サーミスタ
材料を用いれば、10Ωcm以下の小さい比抵抗を有し、か
つ高い耐電圧を有する正特性サーミスタを得ることがで
きる。
On the other hand, by using the PTC thermistor material within the scope of the present invention, a PTC thermistor having a small specific resistance of 10 Ωcm or less and a high withstand voltage can be obtained.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】チタン酸バリウムまたはその固溶体からな
る主成分にシリカ,マンガンおよび半導体化剤が添加含
有された正特性サーミスタ材料であって、 前記主成分は、30〜95モル%のBaTiO3,3〜25モル%のCa
TiO3,1〜25モル%のSrTiO3,1〜30モル%のPbTiO3からな
り、 前記半導体化剤は、3価の希土類元素から選ばれる少な
くとも1種類とV,Taの5価の金属の中から選ばれる少な
くとも1種類とからなり、前記3価の希土類元素と前記
5価の金属とのモル比が1:1〜7:3の範囲にあり、 前記主成分に対して、前記シリカがSiO2に換算して0.01
〜5モル%、前記マンガンがMnに換算して0.003〜0.1モ
ル%および前記半導体化剤が0.05〜0.1モル%添加含有
された、正特性サーミスタ材料。
1. A positive temperature coefficient thermistor material comprising barium titanate or a solid solution thereof containing silica, manganese, and a semiconducting agent, the main component being 30 to 95 mol% of BaTiO 3 , 3-25 mol% Ca
TiO 3 , 1 to 25 mol% of SrTiO 3 , 1 to 30 mol% of PbTiO 3 , and the semiconducting agent comprises at least one selected from trivalent rare earth elements and a pentavalent metal of V and Ta. At least one selected from the above, the molar ratio of the trivalent rare earth element to the pentavalent metal is in the range of 1: 1 to 7: 3, and the silica is contained with respect to the main component. 0.01 converted to SiO 2
.About.5 mol%, 0.003 to 0.1 mol% of the manganese in terms of Mn, and 0.05 to 0.1 mol% of the semiconducting agent are added to the positive temperature coefficient thermistor material.
JP2219529A 1990-08-20 1990-08-20 Positive characteristic thermistor material Expired - Fee Related JP2536679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2219529A JP2536679B2 (en) 1990-08-20 1990-08-20 Positive characteristic thermistor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2219529A JP2536679B2 (en) 1990-08-20 1990-08-20 Positive characteristic thermistor material

Publications (2)

Publication Number Publication Date
JPH04104948A JPH04104948A (en) 1992-04-07
JP2536679B2 true JP2536679B2 (en) 1996-09-18

Family

ID=16736908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2219529A Expired - Fee Related JP2536679B2 (en) 1990-08-20 1990-08-20 Positive characteristic thermistor material

Country Status (1)

Country Link
JP (1) JP2536679B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783588B2 (en) 2000-12-15 2004-08-31 Canon Kabushiki Kaisha BaTiO3-PbTiO3 series single crystal and method of manufacturing the same piezoelectric type actuator and liquid discharge head using such piezoelectric type actuator
JP4336358B2 (en) 2006-08-23 2009-09-30 矢崎総業株式会社 Connector unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157502A (en) * 1981-03-24 1982-09-29 Murata Manufacturing Co Barium titanate series porcelain composition
JPH0388770A (en) * 1989-08-31 1991-04-15 Central Glass Co Ltd Barium titanate-based semiconductor porcelain composition and thermistor

Also Published As

Publication number Publication date
JPH04104948A (en) 1992-04-07

Similar Documents

Publication Publication Date Title
KR100320723B1 (en) Barium Titanate-base Semiconducting Ceramic Composition
JPS6328324B2 (en)
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
US3962146A (en) Ptc thermistor composition and method of making the same
JP6604653B2 (en) Semiconductor porcelain composition and method for producing the same
JP2536679B2 (en) Positive characteristic thermistor material
JP2541344B2 (en) Electronic parts using barium titanate based semiconductor porcelain
JPH04104951A (en) Barium titanate-based semiconductive porcelain material
JP3003201B2 (en) Barium titanate-based semiconductor porcelain composition
JPH06263535A (en) Piezoelectric ceramic
JP2990679B2 (en) Barium titanate-based semiconductor porcelain composition
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JP3273468B2 (en) Barium titanate-based semiconductor porcelain composition
JPH05275203A (en) Semiconductor ceramic composite
JP3036051B2 (en) Barium titanate-based semiconductor porcelain composition
JPH0551254A (en) Barium titanate-containing semiconductor porcelain composition
JPH03215354A (en) Barium titanate-based semiconductor ceramic composition
JP2737451B2 (en) Piezoelectric material
JPH05330910A (en) Semiconductor porcelain composition
JPH0818865B2 (en) Barium titanate-based semiconductor porcelain composition
JPH03215356A (en) Barium titanate-based semiconductor ceramic composition
JP6369902B2 (en) Semiconductor porcelain composition and method for producing the same
JP2911959B2 (en) Lead titanate-based semiconductor porcelain
JPS6328323B2 (en)
JP2837516B2 (en) Dielectric porcelain capacitors

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees