JPS5910951B2 - Raw material composition for manufacturing high dielectric constant porcelain - Google Patents

Raw material composition for manufacturing high dielectric constant porcelain

Info

Publication number
JPS5910951B2
JPS5910951B2 JP55055588A JP5558880A JPS5910951B2 JP S5910951 B2 JPS5910951 B2 JP S5910951B2 JP 55055588 A JP55055588 A JP 55055588A JP 5558880 A JP5558880 A JP 5558880A JP S5910951 B2 JPS5910951 B2 JP S5910951B2
Authority
JP
Japan
Prior art keywords
raw material
material composition
porcelain
dielectric constant
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55055588A
Other languages
Japanese (ja)
Other versions
JPS56155070A (en
Inventor
雄三 榊山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYORITSU CERAMIC MATERIALS
Original Assignee
KYORITSU CERAMIC MATERIALS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYORITSU CERAMIC MATERIALS filed Critical KYORITSU CERAMIC MATERIALS
Priority to JP55055588A priority Critical patent/JPS5910951B2/en
Publication of JPS56155070A publication Critical patent/JPS56155070A/en
Publication of JPS5910951B2 publication Critical patent/JPS5910951B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明は高誘電率系磁器製造用原料組成物に係り、特に
高誘電率を維持し、また誘電損失を向上せしめ得る一方
、磁器化焼成温度範囲を著しく拡大し得る誘電体磁器製
造用の原料組成物を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a raw material composition for producing high dielectric constant porcelain, which can maintain a particularly high dielectric constant and improve dielectric loss, while significantly expanding the porcelain firing temperature range. The present invention provides a raw material composition for producing dielectric ceramics.

従来より、誘電体磁器は、磁器コンデンサとして例えば
電流遮断器の火花消去用に使用されており、またTV受
像機、オシロスコープ等の倍電圧整流回路などにも使用
されている。
Conventionally, dielectric ceramics have been used as ceramic capacitors, for example, for extinguishing sparks in current circuit breakers, and also in voltage doubler rectifier circuits for TV receivers, oscilloscopes, and the like.

そして、このような用途に用いられる磁器コンデンサ等
としての誘電体磁器は、一般にチタン酸バリウムまたは
それを生成し得る混合物を主成分とし、これに必要に応
じてシフター、鉱化剤などを配合せしめた原料組成物を
所定の温度で焼成して磁器化することによつて得られて
いるが、その場合の焼成温度は得られる磁器の性質に大
きな影響を与えることとなる。
Dielectric ceramics used as ceramic capacitors and the like used in such applications generally have barium titanate or a mixture capable of producing barium titanate as a main component, with shifters, mineralizers, etc. added as necessary. It is obtained by firing a raw material composition at a predetermined temperature to form porcelain, but the firing temperature in this case has a great influence on the properties of the resulting porcelain.

ところで、上記した如き従来のチタン酸バリウム系の磁
器を与える原料組成物の適正焼成温度範囲は、通常13
40℃附近において20〜40℃の狭い範囲に制御する
ことが必要とされているのである。しかしながら、この
ような高温度において20〜40℃程度の狭い温度範囲
に焼成を制御しようとするには、焼成炉の構造、匣鉢の
形状或は焼成物の匣鉢内での姿勢等の影響が微妙に現わ
れ、そのためこれらの要因をすべて制御することが必要
となつて焼成作業に多くの困難を伴なつていた。
By the way, the appropriate firing temperature range of the raw material composition for producing the conventional barium titanate-based porcelain as described above is usually 13
It is necessary to control the temperature around 40°C within a narrow range of 20 to 40°C. However, in order to control firing within a narrow temperature range of about 20 to 40 degrees Celsius at such high temperatures, the influence of the structure of the firing furnace, the shape of the sagger, the posture of the fired product within the sagger, etc. These factors appear in subtle ways, and it is therefore necessary to control all of these factors, which brings about many difficulties in the firing process.

ここにおいて、本発明は、かかる事情を背景にして為さ
れたものであつて、その特徴とするところは、チタン酸
バリウム若しくはチタン酸バリウムを生成し得る混合物
を主成分とし、必要に応じてシフターなどの補助成分を
含む誘電体磁器製造用の原料組成物において、更に0.
1〜10重量%のニオブ酸亜鉛若しくはニオブ酸亜鉛を
生成し得る混合物を配合せしめたことにあり、これによ
つて得られる磁器の電気的特性を従来のものに対して向
上させ或は同等に維持せしめつつ、換言すれば誘電率を
よりー層向上せしめ、また誘電損失の改善を図り、更に
は誘電率の温度変化率の低下を抑制しながら、該原料組
成物の磁器化焼成温度範囲(磁器化焼成温度巾)を著し
く拡張し得たのである。すなわち、かくの如き本発明に
従えば、本発明に係る原料組成物は1250℃程度から
1450℃程度の範囲において焼成が可能であるのであ
り、それ故従来の原料組成物が20〜40’C程度の焼
成温度巾しか取り得なかつたのに対し、200℃或はそ
れよりも広い温度範囲内での磁器化焼成条件を採用する
ことが出来ることとなつたため、従来の如く焼成炉の構
造や匣鉢の形状などを厳密に制御する必要がなくなり、
以てその焼成作業が著しく容易となつたのである。
The present invention has been developed against the background of the above, and is characterized by containing barium titanate or a mixture capable of producing barium titanate as a main component, and optionally using a shifter. In the raw material composition for producing dielectric ceramics containing auxiliary components such as 0.
The reason is that 1 to 10% by weight of zinc niobate or a mixture capable of producing zinc niobate is blended, and the electrical properties of the resulting porcelain are improved or equivalent to those of conventional ones. In other words, the dielectric constant is further improved, the dielectric loss is improved, and the temperature change rate of the dielectric constant is suppressed from decreasing, while the porcelain firing temperature range of the raw material composition ( This made it possible to significantly expand the porcelain firing temperature range. That is, according to the present invention, the raw material composition according to the present invention can be fired in the range of about 1250°C to 1450°C. Previously, the firing temperature range was only about 200°C, but now it is possible to use porcelain firing conditions within a temperature range of 200°C or wider. There is no need to strictly control the shape of the pot, etc.
This made the firing process much easier.

なお、かかる本発明に従う原料組成物は、チタン酸バリ
ウム系の磁器コンデンサを与えるものであり、そのため
チタン酸バリウム成分を、チタン酸バリウム(BaTl
O3)自体として若しくは焼成の過程でチタン酸バリウ
ムを生成し得る混合物、例えば炭酸バリウム(BaCO
3)と酸化チタン(TiO2)との混合物として、主成
分(一般に50モル%以上)となるように含むものであ
る。
The raw material composition according to the present invention provides a barium titanate-based ceramic capacitor, and therefore the barium titanate component is replaced with barium titanate (BaTl).
O3) itself or in the course of calcination can produce barium titanate, e.g. barium carbonate (BaCO
3) and titanium oxide (TiO2), which is contained as a main component (generally 50 mol% or more).

また、かかる原料組成物には、必要に応じて補助成分、
例えば誘電率の温度に対するキユ一り一点を所望の値に
変化せしめるシフターや、磁器焼結に際してその焼結性
を向上せしめる鉱化剤や、その他の特性改良剤(電気的
特性など)が配合せしめられる。このシフターとしては
、錫、ジルコニウム、ストロンチウム、マグネシウム、
カルシウム、鉛、ビスマスなどの酸化物またはそれらの
塩類の1種または2種以上が、所望の配合割合において
、好適に用いられることとなる。また、鉱化剤や他の特
性改良剤としても、公知のものが所望の量において適宜
に使用され得るのである。また、かかるチタン酸バリウ
ム成分と、必要に応じて上記シフターなどの補助成分を
含む原料組成物(配合物)には、本発明に従つて、更に
0.1〜10重量%のニオブ酸亜鉛成分が、ニオブ酸亜
鉛(Zn3Nb2O8);固溶体)自体として若しくは
焼成の過程で該ニオブ酸亜鉛を生成せしめ得る混合物、
例えば酸化亜鉛(ZnO)と酸化ニオブ(Nb2O5)
との混合物として配合せしめられるのである。特に、こ
のような割合のニオブ酸亜鉛成分の配合によつて、初め
て本発明の目的の達成が可能となるのであり、余りにも
少ない配合量ではかかるニオブ酸亜鉛成分の添加効果を
充分に奏し得ず、また組成物中に10重量%を越える割
合にてニオブ酸亜鉛成分を存在せしめる場合には、焼成
して得られる磁器の誘電率などの性能に悪影響をもたら
し、磁器コンデンサとして要求される特性などを低下せ
しめるので、避けなければならないOそして、かくの如
き本発明に従うBaTiO3−Zn3Nb2O8系原料
組成物は、公知の焼成手法に従つて、該組成物が許容す
る1250℃程度から1450℃程度に至る広い焼成領
域において有利に磁器化焼成せしめられるのであり、そ
れ故かかる焼成操作が容易となることは勿論、焼成して
得ノられる磁器においてその誘電率が高められ、また誘
電損失が顕著に改善される等の優れた効果が付与される
のである。
In addition, such raw material compositions may include auxiliary ingredients, if necessary.
For example, a shifter that changes the temperature coefficient of the dielectric constant to a desired value, a mineralizing agent that improves the sinterability of porcelain, and other property improvers (electrical properties, etc.) are blended. It will be done. This shifter includes tin, zirconium, strontium, magnesium,
One or more oxides of calcium, lead, bismuth, etc. or their salts are preferably used in a desired blending ratio. Additionally, known mineralizers and other property improvers can be used as appropriate in desired amounts. In addition, according to the present invention, a raw material composition (compound) containing such barium titanate component and, if necessary, auxiliary components such as the above-mentioned shifter, further contains 0.1 to 10% by weight of a zinc niobate component. is a mixture in which zinc niobate (Zn3Nb2O8) can be produced as a solid solution) itself or in the course of calcination,
For example, zinc oxide (ZnO) and niobium oxide (Nb2O5)
It is blended as a mixture with In particular, by blending the zinc niobate component in such a proportion, it becomes possible to achieve the object of the present invention for the first time, and if the blending amount is too small, the effect of adding the zinc niobate component cannot be sufficiently exhibited. Furthermore, if the zinc niobate component is present in the composition in a proportion exceeding 10% by weight, it will have an adverse effect on the dielectric constant and other performance of the ceramic obtained by firing, and the properties required for a ceramic capacitor will be adversely affected. O, which must be avoided because it reduces the This allows for advantageous porcelain firing in a wide range of firing areas, which not only facilitates the firing operation, but also increases the dielectric constant of the porcelain obtained by firing, and significantly improves dielectric loss. This provides excellent effects such as:

以上説明してきた本発明を、更に具体的に明らかにする
ために、以下に実施例を示すが、本発明{1かかる実施
例の記述によつて何等の制約をも受けるものでないこと
は言うまでもない。
In order to clarify the present invention that has been explained above more specifically, Examples are shown below, but it goes without saying that the present invention {1] is not in any way restricted by the description of such Examples. .

実施例 チタン酸バリウム成分として、BacO3及びTlO2
:ニオブ酸亜鉛成分として、ZnO及びNb2O:シフ
タ一として、ZrO2;鉱化剤として、MncO3を秤
取し、第1表に示す配合割合にて、ボールミル中におい
て湿式混合した後、約1150℃の温度下にて3時間の
間仮焼することにより、化学反応を行なわしめ(BaT
iO3,Zn3Nb2O8の生成)、ついでこの仮焼物
を再びボールミルに投入して平均粒径が1ミクロン程度
になるまで粉砕せしめた。
Example barium titanate components include BacO3 and TlO2
: ZnO and Nb2O as zinc niobate components: ZrO2 as a shifter; MncO3 as a mineralizer were weighed out and wet mixed in a ball mill at the blending ratio shown in Table 1. A chemical reaction is carried out by calcining for 3 hours at a low temperature (BaT
(formation of iO3, Zn3Nb2O8) Then, this calcined product was again put into a ball mill and pulverized until the average particle size was about 1 micron.

次いで、かくして得られた仮焼粉砕混合物を乾燥せしめ
た後、粘結剤としてポリビニルアルコール(PVA)を
適当量加え、約1トン/dの成形圧力の下に成形して直
径16m/k厚さ0.5m/mの円板状成形物を多数作
製した。
Next, after drying the calcined and pulverized mixture thus obtained, an appropriate amount of polyvinyl alcohol (PVA) was added as a binder, and the mixture was molded under a molding pressure of about 1 ton/d to a diameter of 16 m/k thickness. A large number of disc-shaped molded products with a diameter of 0.5 m/m were produced.

そして、この円板状成形物を用い、1200〜1500
℃の温度範囲における各種温度下で該成形物をそれぞれ
3時間の間本焼成した。そして、かかる本焼成によつて
得られた焼成物について、磁器化の程度を観察した後、
その中で磁器化し且つ融着していないものについてその
両面に銀電極を焼き付けることにより試料と為し、それ
ぞれの電気的諸特性を測定してその結果を第2表に示し
た。一方、上記実験と同様な手順にて、下記第3表に示
す配合比率の従来のチタン酸バリウム系原料組成物を、
湿式混合、仮焼、粉砕、成形、1300〜1400′C
の各種の温度下で本焼成せしめ、ついで得られた焼成物
のうち磁器化した(融着せず)ものについて、同様に、
銀電極を焼き付け、それぞれの電気的特性を測定してそ
の結果を第4表に示した。
Then, using this disk-shaped molded product, 1200 to 1500
The moldings were main fired at various temperatures in the temperature range of 0.degree. C. for 3 hours each. After observing the degree of porcelainization of the fired product obtained by this main firing,
Among them, those that were porcelain but not fused were made into samples by baking silver electrodes on both sides, and the electrical properties of each were measured and the results are shown in Table 2. On the other hand, using the same procedure as the above experiment, a conventional barium titanate-based raw material composition having the blending ratio shown in Table 3 below was prepared.
Wet mixing, calcination, crushing, molding, 1300-1400'C
Similarly, regarding the fired products that were made into porcelain (not fused) after main firing at various temperatures,
Silver electrodes were baked and the electrical characteristics of each were measured and the results are shown in Table 4.

* 第2表(本発明)と第4表(従来例)との結果を比較す
れば自ら明らかなように、本発明に従つて磁器原料組成
物中にZn3Nb2O8成分を配舎せしめることにより
、焼成可能温度は、第4表に示される従来の略1330
〜1370℃程度から、第2図に示される如く1250
〜1450℃程度にまで著しく拡大され、そしてその温
度巾は200℃を越える程にまでなつているのである。
*As is clear from comparing the results in Table 2 (invention) and Table 4 (conventional examples), by distributing the Zn3Nb2O8 component in the porcelain raw material composition according to the present invention, the firing The possible temperature is about 1330
~1370°C to 1250°C as shown in Figure 2
The temperature range has increased significantly to about 1450°C, and the temperature range has now exceeded 200°C.

Claims (1)

【特許請求の範囲】[Claims] 1 チタン酸バリウム若しくはチタン酸バリウムを生成
し得る混合物を主成分とし、必要に応じてシフターなど
の補助成分を含む誘電体磁器製造用原料組成物において
、更に0.1〜10重量%のニオブ酸亜鉛若しくはニオ
ブ酸亜鉛を生成し得る混合物を配合せしめたことを特徴
とする高誘電率系磁器製造用原料組成物。
1. In a raw material composition for producing dielectric porcelain containing barium titanate or a mixture capable of producing barium titanate as a main component, and optionally containing auxiliary components such as a shifter, 0.1 to 10% by weight of niobic acid is further added. A raw material composition for producing high dielectric constant porcelain, characterized in that it contains a mixture capable of producing zinc or zinc niobate.
JP55055588A 1980-04-26 1980-04-26 Raw material composition for manufacturing high dielectric constant porcelain Expired JPS5910951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55055588A JPS5910951B2 (en) 1980-04-26 1980-04-26 Raw material composition for manufacturing high dielectric constant porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55055588A JPS5910951B2 (en) 1980-04-26 1980-04-26 Raw material composition for manufacturing high dielectric constant porcelain

Publications (2)

Publication Number Publication Date
JPS56155070A JPS56155070A (en) 1981-12-01
JPS5910951B2 true JPS5910951B2 (en) 1984-03-12

Family

ID=13002903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55055588A Expired JPS5910951B2 (en) 1980-04-26 1980-04-26 Raw material composition for manufacturing high dielectric constant porcelain

Country Status (1)

Country Link
JP (1) JPS5910951B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918159A (en) * 1982-07-20 1984-01-30 三菱鉱業セメント株式会社 Dielectric ceramic composition
JPS5918162A (en) * 1982-07-20 1984-01-30 三菱鉱業セメント株式会社 Dielectric ceramic composition
JPS5918160A (en) * 1982-07-20 1984-01-30 三菱鉱業セメント株式会社 Dielectric ceramic composition
JPS6019606B2 (en) * 1982-07-26 1985-05-17 三菱鉱業セメント株式会社 dielectric porcelain composition
JPS6020849B2 (en) * 1982-07-26 1985-05-24 三菱鉱業セメント株式会社 dielectric porcelain composition
CN107573069A (en) * 2017-09-27 2018-01-12 天津大学 A kind of medium dielectric constant microwave medium high q-factor microwave dielectric material of intermediate sintering temperature

Also Published As

Publication number Publication date
JPS56155070A (en) 1981-12-01

Similar Documents

Publication Publication Date Title
JPS5910951B2 (en) Raw material composition for manufacturing high dielectric constant porcelain
JPH0354165A (en) Ptc ceramic composition and production thereof
JPS6051664A (en) Manufacture of lead zirconate titanate ceramic
JPH058524B2 (en)
JPH01100051A (en) Dielectric porcelain composition
US3153179A (en) Ceramic capacitor dielectrics
JPH0571538B2 (en)
JPS6351992B2 (en)
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH0196973A (en) Manufacture of piezoelectric porcelain
JPS6049151B2 (en) Method for manufacturing dielectric magnetic composition
JPH0361287B2 (en)
JPH04311002A (en) Manufacture of semiconductor porcelain with positive temperature coefficient of resistance
JP2000143339A (en) Piezoelectric substance porcelain composition
JPH02252649A (en) Dielectric porcelain composition
JPH08119733A (en) Piezoelectric ceramic composition
JP3324244B2 (en) Dielectric porcelain composition
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JPH06325620A (en) Dielectric ceramic composition
JPS594802B2 (en) Kouyudenritsujikisobutsu
JPS5919442B2 (en) Semiconductor ceramic material and its manufacturing method
JPH10223046A (en) Dielectric ceramic composition
JPS6053435B2 (en) High permittivity porcelain dielectric composition
JPS607322B2 (en) Manufacturing method of high dielectric constant porcelain
JPH0582342B2 (en)