JPH0571538B2 - - Google Patents

Info

Publication number
JPH0571538B2
JPH0571538B2 JP63103125A JP10312588A JPH0571538B2 JP H0571538 B2 JPH0571538 B2 JP H0571538B2 JP 63103125 A JP63103125 A JP 63103125A JP 10312588 A JP10312588 A JP 10312588A JP H0571538 B2 JPH0571538 B2 JP H0571538B2
Authority
JP
Japan
Prior art keywords
oxide
dielectric
present
composition
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63103125A
Other languages
Japanese (ja)
Other versions
JPH01275466A (en
Inventor
Masakazu Kobayashi
Seiji Saito
Takeshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP63103125A priority Critical patent/JPH01275466A/en
Publication of JPH01275466A publication Critical patent/JPH01275466A/en
Publication of JPH0571538B2 publication Critical patent/JPH0571538B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は誘電体磁器組成物に係り、特に酸化ス
トロンチウム(SrO)、酸化バリウム(BaO)、酸
化チタン(TiO2)、酸化ネオヂウム(Nd2O3)を
主成分として構成される誘電体磁器組成物であつ
て、比誘電率(ε)が大きく、かつその温度係数
(TC)が小さく、高周波における無負荷Q値の大
きい誘電体磁器を提供することができる誘電体磁
器組成物に関する。 [従来の技術] 従来より誘電体磁器としては、MgTiO3
CaTiO3、SrTiO3、CaTiO3−La2O3・2TiO2
MgTiO2系などの組成物が用いられており、これ
らの組成物を用いることにより比誘電率(ε)が
15〜280で、その温度係数(TC)が+100〜−
3000ppm/℃の範囲の誘電体磁器が得られること
が知られている。 [発明が解決しようとする課題] しかしながら、従来提供されている組成物にお
いては、比誘電率が大きくなると、温度係数の絶
対値も大きくなり、温度係数の絶対値を小さくし
ようとすれば比誘電率の小さい誘電体磁器しか得
られないという欠点があり、比誘電率及び温度係
数が共に良好な誘電体磁器組成物は得られていな
かつた。 本発明は上記従来の問題点を解決し、誘電率が
高く、しかもその温度係数の絶対値が比較的小さ
く、高周波における無負荷Q値の大きい誘電体磁
器を提供することができる誘電体磁器組成物を提
供することを目的とする。 [課題を解決するための手段] 本発明の誘電体磁器組成物は、酸化ストロンチ
ウム(SrO)、酸化バリウム(BaO)、酸化チタン
(TiO2)及び酸化ネオヂウム(Nd2O3)を主成分
として含む組成物であつて、一般式[] xMO−yTiO2−zNd2O3 ……[] {但し、M=Ba1-pSrP(0<p≦1)}と表した
とき、MO−TiO2−Nd2O3系において、x、y、
zが次のA〜Eの5点を結んでできる範囲の中に
あり、該主成分に対して15重量%以下の酸化ビス
マス(Bi2O3)を含むことを特徴とする。
[Industrial Application Field] The present invention relates to a dielectric ceramic composition, particularly a dielectric ceramic composition containing strontium oxide (SrO), barium oxide (BaO), titanium oxide (TiO 2 ), and neodymium oxide (Nd 2 O 3 ) as main components. A dielectric ceramic composition composed of a dielectric material having a large relative permittivity (ε), a small temperature coefficient (TC), and a dielectric material having a large no-load Q value at high frequencies. Relating to a porcelain composition. [Prior art] Traditionally, dielectric ceramics include MgTiO 3 ,
CaTiO 3 , SrTiO 3 , CaTiO 3 −La 2 O 3・2TiO 2
Compositions such as MgTiO 2 are used, and by using these compositions, the relative permittivity (ε) can be increased.
15 to 280, and its temperature coefficient (TC) is +100 to -
It is known that dielectric ceramics with a temperature range of 3000 ppm/°C can be obtained. [Problems to be Solved by the Invention] However, in the compositions provided conventionally, as the relative dielectric constant increases, the absolute value of the temperature coefficient also increases, and if the absolute value of the temperature coefficient is to be decreased, the relative dielectric constant increases. This method has the disadvantage that only dielectric ceramics with a small dielectric constant can be obtained, and a dielectric ceramic composition with good relative permittivity and temperature coefficient has not been obtained. The present invention solves the above conventional problems and provides a dielectric ceramic composition that has a high dielectric constant, a relatively small absolute value of its temperature coefficient, and a large no-load Q value at high frequencies. The purpose is to provide something. [Means for Solving the Problems] The dielectric ceramic composition of the present invention contains strontium oxide (SrO), barium oxide (BaO), titanium oxide (TiO 2 ), and neodymium oxide (Nd 2 O 3 ) as main components. A composition comprising the general formula [ ] In the TiO 2 −Nd 2 O 3 system, x, y,
It is characterized in that z is within the range formed by connecting the following five points A to E, and it contains bismuth oxide (Bi 2 O 3 ) in an amount of 15% by weight or less based on the main component.

【表】 即ち、本発明者らは前記従来の欠点を克服する
材料について種々検討した結果、上記一般式
[]で表される組成において、x、y、zが上
記A〜Eの5点を結んでできる範囲の中にあるも
のを主成分とし、これに酸化ビスマス(Bi2O3
を15重量%以下含有させることにより、比誘電率
(ε)が大きく、かつその温度係数(TC)が小さ
く、高周波における無負荷Q値の大きい誘電体磁
器が得られることを見出し、本発明を完成させ
た。 以下、本発明を詳細に説明する。 まず、本発明の誘電体磁器組成物の主成分組成
の範囲の限定理由を第1図を参照して説明する。 第1図において、まず、上記範囲外のa領域で
は誘電率が小さくなり実用的でない。b領域では
C・IR積が小さくなり、やはり実用的でない。
c領域では比誘電率が小さく、その温度変化が大
きくなる。d領域では、比誘電率の温度変化が大
きくなりすぎる。また、e領域では焼結が困難と
なり緻密な磁器が得られなくなる。このため、
x、y、zは前述のA〜Eの5点で囲まれる範囲
とするのが適当である。 pについては、それが0であると本発明の目的
である高い比誘電率が得られない。従つて、0<
p≦1とする。 Bi2O3の添加については、その含有量が増加す
るに従い比誘電率を大きくし、温度係数を改善す
ることができるが、主成分の15重量%を超えて添
加すると無負荷Qが低下する。このため、Bi2O3
の添加量は15重量%以下とする。 なお、本発明においては、焼結助材として一般
的に利用されているSiO2、MnCO3などを、主成
分の組成、特性を変えない範囲で添加することも
可能である。この場合、SiO2、MnCO3はそれぞ
れ主成分の0.1〜0.3重量%程度添加するのが好ま
しい。 このような本発明の誘電体磁器組成物を製造す
るには、例えば、酸化ストロンチウム(SrO)、
炭酸ストロンチウム(SrCO3)、酸化バリウム
(BaO)、酸化チタン(TiO2)、チタン酸バリウム
(BaTiO3)、酸化ネオヂウム(Nd2O3)及び酸化
ビスマス(Bi2O3)等の粉末を所定の割合となる
よう秤量し、湿式ボールミル等を用いて十分に混
合する。次にこの混合物を乾燥した後、必要に応
じ、1000〜1100℃の範囲で数時間程度仮焼する。
この仮焼は必ずしも行う必要はないが、これを行
うことにより粒子がより均一化され、誘電特性が
向上する傾向がある。仮焼を行つた場合には、仮
焼物を更に湿式ボールミル等で粉砕し、乾燥後、
ポリビニルアルコールなどの適当な有機バインダ
を加えて、顆粒を作り、これを所定の形状にプレ
ス形成した後、焼成を行う。この焼成は、1250〜
1400℃の温度範囲で0.5〜数時間程度行う。(勿
論、これらの製造条件は最も好適な数値であつ
て、本発明の磁器組成物は上記以外の条件もしく
は方法によつて製造されても良い。) [実施例] 以下に本発明を実施例を挙げて更に具体的に説
明するが、本発明はその要旨を超えない限り、以
下の実施例に限定されるものはない。 実施例 1 出発原料として、化学的に高純度のBaTiO3
SrCO3、TiO2、Nd2O3、Bi2O3及びSiO2
MnCO3を用い、これらの原料を第1表に示す配
合比になるように秤量し、ボールミルを用いて純
水と共に約18時間湿式粉砕した。混合粉砕後の原
料を乾燥後、約1075℃で4時間空気中に仮焼成を
行い、再びボールミルで純水とともに約18時間湿
式粉砕した。得られた粉砕物を乾燥後、バインダ
ー(ポリビニルアルコール13重量%水溶液)を加
えて造粒し、直径約16mm、厚さ約0.7mmの円板状
にプレス成形した。この円板状試料を第1表に示
す焼成温度で1時間焼成し、第1表及び第1図に
示す配合組成の誘電体磁器No.1〜34を得た。 このようにして得られた誘電体磁器の両面に銀
ペーストを塗布、乾燥後、約810℃3分間焼付を
行い、平行平板コンデンサーとし、その電気的諸
特性を評価した。結果を第1表に示す。 なお、誘電率ε及び無負荷Qは、25℃、1MHz
で測定した。また、誘電率の温度係数(TC)は、
−55℃〜+125℃の温度範囲における100KHzでの
測定値より求めた。絶縁抵抗(IR)は、室温に
おいてDC100V、60秒の測定値を示した。 第1表より明らかなように、本発明の範囲内の
誘電体磁器組成物は、比誘電率(ε)が大きく、
かつその温度係数(TC)が比較的小さく、高周
波における無負荷Qが大きいという優れた特性を
有し、温度補償用、高周波用等の材料に適してい
る。
[Table] That is, as a result of various studies by the present inventors on materials that overcome the above-mentioned conventional drawbacks, in the composition represented by the above general formula [], x, y, and z satisfy the above five points A to E. The main components are those found within the bound area, and this includes bismuth oxide (Bi 2 O 3 ).
It has been discovered that by containing 15% by weight or less of the dielectric material, a dielectric ceramic having a large relative dielectric constant (ε), a small temperature coefficient (TC), and a large no-load Q value at high frequencies can be obtained, and the present invention has been made based on this discovery. Completed. The present invention will be explained in detail below. First, the reason for limiting the range of the main component composition of the dielectric ceramic composition of the present invention will be explained with reference to FIG. In FIG. 1, first, in the a region outside the above range, the dielectric constant becomes so small that it is not practical. In region b, the C·IR product becomes small, which is also not practical.
In region c, the dielectric constant is small and its temperature change becomes large. In the d region, the relative dielectric constant changes with temperature too much. Furthermore, in the e region, sintering becomes difficult and dense porcelain cannot be obtained. For this reason,
It is appropriate that x, y, and z be in the range surrounded by the five points A to E described above. Regarding p, if it is 0, a high dielectric constant, which is the object of the present invention, cannot be obtained. Therefore, 0<
Let p≦1. Regarding the addition of Bi 2 O 3 , as its content increases, the dielectric constant increases and the temperature coefficient can be improved, but if it is added in an amount exceeding 15% by weight of the main component, the no-load Q decreases. . For this reason, Bi 2 O 3
The amount added shall be 15% by weight or less. In the present invention, it is also possible to add SiO 2 , MnCO 3 , etc., which are commonly used as sintering aids, as long as the composition and properties of the main components are not changed. In this case, it is preferable to add SiO 2 and MnCO 3 in an amount of about 0.1 to 0.3% by weight of the main components. In order to manufacture such a dielectric ceramic composition of the present invention, for example, strontium oxide (SrO),
Specified powders of strontium carbonate (SrCO 3 ), barium oxide (BaO), titanium oxide (TiO 2 ), barium titanate (BaTiO 3 ), neodymium oxide (Nd 2 O 3 ), bismuth oxide (Bi 2 O 3 ), etc. Weigh and mix thoroughly using a wet ball mill or the like. Next, after drying this mixture, if necessary, it is calcined at a temperature in the range of 1000 to 1100°C for several hours.
Although it is not necessary to perform this calcination, it tends to make the particles more uniform and improve the dielectric properties. When calcining is performed, the calcined product is further crushed using a wet ball mill, etc., and after drying,
A suitable organic binder such as polyvinyl alcohol is added to form granules, which are pressed into a predetermined shape and then fired. This firing is from 1250~
It is carried out at a temperature range of 1400℃ for about 0.5 to several hours. (Of course, these manufacturing conditions are the most suitable values, and the porcelain composition of the present invention may be manufactured under conditions or methods other than those described above.) [Examples] The present invention will be described in Examples below. The present invention will be described in more detail by citing the following examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. Example 1 As a starting material, chemically highly purified BaTiO 3 ,
SrCO3 , TiO2 , Nd2O3 , Bi2O3 and SiO2 ,
Using MnCO 3 , these raw materials were weighed so as to have the compounding ratio shown in Table 1, and wet-milled with pure water using a ball mill for about 18 hours. After drying the mixed and pulverized raw materials, they were pre-calcined in the air at about 1075°C for 4 hours, and wet-pulverized again with pure water in a ball mill for about 18 hours. After drying the obtained pulverized product, a binder (a 13% by weight aqueous solution of polyvinyl alcohol) was added to granulate it, and it was press-molded into a disk shape with a diameter of about 16 mm and a thickness of about 0.7 mm. This disk-shaped sample was fired for 1 hour at the firing temperature shown in Table 1 to obtain dielectric porcelain Nos. 1 to 34 having the compositions shown in Table 1 and FIG. Silver paste was coated on both sides of the dielectric ceramic thus obtained, and after drying, it was baked at about 810°C for 3 minutes to form a parallel plate capacitor, and its electrical properties were evaluated. The results are shown in Table 1. Note that the dielectric constant ε and no-load Q are at 25℃, 1MHz.
It was measured with In addition, the temperature coefficient (TC) of the dielectric constant is
It was determined from measurements at 100 KHz in the temperature range of -55°C to +125°C. Insulation resistance (IR) was measured at 100 V DC for 60 seconds at room temperature. As is clear from Table 1, the dielectric ceramic composition within the scope of the present invention has a large relative dielectric constant (ε),
It also has excellent properties such as a relatively small temperature coefficient (TC) and a large no-load Q at high frequencies, making it suitable as a material for temperature compensation, high frequencies, etc.

【表】【table】

【表】 [発明の効果] 以上詳述した通り、本発明の誘電体磁器組成物
によれば、誘電率が高く、しかもその温度係数の
絶対値が比較的小さく、高周波における無負荷Q
値の大きい誘電体磁器が提供される。従つて、本
発明の誘電体磁器組成物は、温度補償用、高周波
用等の誘電体磁器として極めて有用である。 特に、本発明においては、酸化ビスマス
(Bi2O3)を前記主成分の15重量%以下含有させ
るため、比較電率を大きくし、温度係数を改善す
ることができる。
[Table] [Effects of the Invention] As detailed above, the dielectric ceramic composition of the present invention has a high dielectric constant, a relatively small absolute value of its temperature coefficient, and a low no-load Q at high frequencies.
A dielectric porcelain with a high value is provided. Therefore, the dielectric ceramic composition of the present invention is extremely useful as a dielectric ceramic for temperature compensation, high frequency use, and the like. In particular, in the present invention, since bismuth oxide (Bi 2 O 3 ) is contained in an amount of 15% by weight or less of the main component, the comparative electrical conductivity can be increased and the temperature coefficient can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の誘電体磁器組成物の組成を説
明する三元組成図である。
FIG. 1 is a ternary composition diagram illustrating the composition of the dielectric ceramic composition of the present invention.

Claims (1)

【特許請求の範囲】 1 酸化ストロンチウム(SrO)、酸化バリウム
(BaO)、酸化チタン(TiO2)及び酸化ネオヂウ
ム(Nd2O3)を主成分として含む組成物であつ
て、一般式[] xMO−yTiO2−zNd2O3 ……[] {但し、M=Ba1-pSrP(0<p≦1)}と表した
とき、MO−TiO2−Nd2O3系において、x、y、
zが次のA〜Eの5点を結んでできる範囲の中に
あり、かつ、該主成分に対して15重量%以下の酸
化ビスマス(Bi2O3)を含むことを特徴とする誘
電体磁器組成物。 【表】
[Scope of Claims] 1. A composition containing strontium oxide (SrO), barium oxide (BaO), titanium oxide (TiO 2 ), and neodymium oxide (Nd 2 O 3 ) as main components, which has the general formula [ ] xMO −yTiO 2 −zNd 2 O 3 ...[] {However, when expressed as M=Ba 1-p Sr P (0<p≦1)}, in the MO-TiO 2 −Nd 2 O 3 system, x, y,
A dielectric material characterized in that z is within the range formed by connecting the following five points A to E, and contains bismuth oxide (Bi 2 O 3 ) in an amount of 15% by weight or less based on the main component: Porcelain composition. 【table】
JP63103125A 1988-04-26 1988-04-26 Dielectric ceramic composition Granted JPH01275466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63103125A JPH01275466A (en) 1988-04-26 1988-04-26 Dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63103125A JPH01275466A (en) 1988-04-26 1988-04-26 Dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPH01275466A JPH01275466A (en) 1989-11-06
JPH0571538B2 true JPH0571538B2 (en) 1993-10-07

Family

ID=14345849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63103125A Granted JPH01275466A (en) 1988-04-26 1988-04-26 Dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPH01275466A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2613722B2 (en) * 1991-09-27 1997-05-28 日本碍子株式会社 Method for producing dielectric ceramic composition for low-temperature firing
US5479140A (en) * 1991-09-27 1995-12-26 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
US5264403A (en) * 1991-09-27 1993-11-23 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass
JP5104852B2 (en) * 2007-03-26 2012-12-19 株式会社村田製作所 Photosensitive dielectric paste and electronic component using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2848693A1 (en) * 1977-11-10 1979-05-17 Inst Stefan Josef Dielectric ceramic of neodymium-bismuth-alkaline earth titanate type - having predetermined temp. coefft., high dielectric constant and low loss
JPS5814518A (en) * 1981-07-17 1983-01-27 松下電器産業株式会社 Surface dielectric layer type semiconductor porcelain composition and method of producing same
JPS593804A (en) * 1982-06-30 1984-01-10 株式会社小糸製作所 Lens of lamp for vehicle
JPS6221607A (en) * 1985-07-18 1987-01-30 Hitachi Electronics Eng Co Ltd Transfer device using lever-like member performing rectangular motion
JPS62216107A (en) * 1985-11-07 1987-09-22 株式会社住友金属エレクトロデバイス Microwave dielectric porcelain compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2848693A1 (en) * 1977-11-10 1979-05-17 Inst Stefan Josef Dielectric ceramic of neodymium-bismuth-alkaline earth titanate type - having predetermined temp. coefft., high dielectric constant and low loss
JPS5814518A (en) * 1981-07-17 1983-01-27 松下電器産業株式会社 Surface dielectric layer type semiconductor porcelain composition and method of producing same
JPS593804A (en) * 1982-06-30 1984-01-10 株式会社小糸製作所 Lens of lamp for vehicle
JPS6221607A (en) * 1985-07-18 1987-01-30 Hitachi Electronics Eng Co Ltd Transfer device using lever-like member performing rectangular motion
JPS62216107A (en) * 1985-11-07 1987-09-22 株式会社住友金属エレクトロデバイス Microwave dielectric porcelain compound

Also Published As

Publication number Publication date
JPH01275466A (en) 1989-11-06

Similar Documents

Publication Publication Date Title
US4477581A (en) High permittivity ceramic compositions
JPS6118283B2 (en)
JPS597665B2 (en) High dielectric constant porcelain composition
JPH0571538B2 (en)
JPH058524B2 (en)
JPS5910951B2 (en) Raw material composition for manufacturing high dielectric constant porcelain
JPH0676627A (en) Dielectric ceramic composition
JPS6348826B2 (en)
JPH07114824A (en) Dielectric ceramic composition
JPS6128620B2 (en)
JPH0742165B2 (en) Microwave dielectric ceramics
JP2514354B2 (en) Dielectric ceramic composition and method for producing the same
JPS6049151B2 (en) Method for manufacturing dielectric magnetic composition
JP2621478B2 (en) High dielectric constant porcelain composition
JPH03285870A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof
JP2660219B2 (en) Porcelain derivative composition
JPH05213666A (en) Dielectric porcelain composition and its production
JPS6223405B2 (en)
JPH02123612A (en) Porcelain dielectric composition
JPH0510764B2 (en)
JPH0334163B2 (en)
JPS6134206B2 (en)
JPS5849661A (en) High dielectric constant ceramic composition
JPH03203118A (en) Dielectric ceramic composition
JPS6216482B2 (en)