JPS6128620B2 - - Google Patents

Info

Publication number
JPS6128620B2
JPS6128620B2 JP54026446A JP2644679A JPS6128620B2 JP S6128620 B2 JPS6128620 B2 JP S6128620B2 JP 54026446 A JP54026446 A JP 54026446A JP 2644679 A JP2644679 A JP 2644679A JP S6128620 B2 JPS6128620 B2 JP S6128620B2
Authority
JP
Japan
Prior art keywords
dielectric constant
present
pbtio
dielectric
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54026446A
Other languages
Japanese (ja)
Other versions
JPS55121958A (en
Inventor
Shinobu Fujiwara
Kyoshi Furukawa
Nobuaki Kikuchi
Osamu Iizawa
Hitoshi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2644679A priority Critical patent/JPS55121958A/en
Priority to GB7937204A priority patent/GB2035994B/en
Priority to CA338,589A priority patent/CA1108842A/en
Priority to FR7926786A priority patent/FR2440344A1/en
Priority to US06/089,245 priority patent/US4265668A/en
Priority to DE19792943812 priority patent/DE2943812A1/en
Publication of JPS55121958A publication Critical patent/JPS55121958A/en
Publication of JPS6128620B2 publication Critical patent/JPS6128620B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高誘電率系磁器組成物に係り、複合化
合物の固相反応によつて合成されたPb(Mg1/3
Nb2/3)O3−PbTiO3系酸化物であり、Pb元素を
A、Mg、Nb、Ti元素をBとしABO3と表わすと
き、そのA/Bモル比が0.9200≦A/B≦1.0000
とすることによつて誘電率が格段に向上し特に低
温度焼結が可能で、かつ誘電体損失が小さく、温
度変化率の優れた高誘電率系磁器組成物に関する
ものである。従来より高誘電率系磁器組成物とし
て、チタン酸バリウムBaTiO3系を主成分とし
て、スズ酸バリウムBaSnO3、チタン酸カルシウ
ムCaTiO3、PbTiO3などを基本として、その置換
固溶体あるいは他の結晶構造を有する化合物との
複合誘電体磁器が、種々の要求特性に対して、広
く実用化される。これ等の磁器誘電体は、特性改
善の為に常温での誘電率を最大とすると誘電率の
温度変化が大きくなり、一方誘電率の温度変化を
小さくすれば誘電率の最大値が減少するなど実用
上種々の問題点があり、その改善が望まれてい
た。更に、BaTiO3系を主成分としたものである
ために通常1200〜1400℃附近の高温領域で焼結を
必要とするために焼結時、多量の熱エネルギーを
必要とし、更に高温下の焼成炉材の熱的劣化損失
が激しく、従つて焼成装置の保全費がかさむ等の
欠点があつた。また最近急速に普及しつつある積
層磁器コンデンサにあつては、製造法上、内部電
極を磁器誘電体に埋込んだ状態で焼結する必要が
あり、焼結温度が1200℃を越える従来の磁器誘電
体では、1300℃以上の高温で安定ではあるが高価
な貴金属・白金、パラジウムもしくはこれ等の合
金を使用しなければならなかつた。もし1000℃程
度の低温度焼結可能な磁器誘電体を積層磁器コン
デンサとして用いることが可能であれば、埋込み
内部電極に銀系、ニツケル系、アルミ系等の安価
な金属材料を内部電極として使用出来ることにな
り、製造コスト面で極めて有利である。もちろん
低温度焼結で得られた磁器誘電体は、絶縁抵抗が
高く、誘電率が比較的大きく、誘電体損失が小さ
く、かつ温度変化率の優れたものが必要とされ
る。従来、これ等の条件を備えた低温度焼結によ
る安定な磁器誘電体は少なく、その実現が望まれ
ていた。 本発明者等は、上述の要請に鑑み、鋭意研究の
結果、本発明に到達したものであり、その要旨
は、Pb(Mg1/3Nb2/3)O3−PbTiO3を主とする
組成物であつて Pb(Mg1/3Nb2/3)O3 ………88.0〜99.0モル% PbTiO3 ……… 1.0〜12.0モル% の範囲内の組成においてPb元素をA、Mg、Nb、
Ti元素をBとしこれら複合化合物の化学式を
ABO3と表わす時、そのA/Bのモル比が0.9200
≦A/B≦1.0000の範囲内にあることを特徴とす
る高誘電率系磁器組成物に関するものである。 すなわち、本発明者らはすでに低温度で焼結で
きるPb(Mg1/3Nb2/3)O3−PbTiO3系からなる
二成分系の高誘電率系磁器組成物を提案している
が本発明はこの組成内でPb元素をA、Mg、Nb、
Ti元素をBとし化学式をABO3と表わすとき、そ
のA/BモルがBサイト元素を過剰添加して
0.9200≦A/B≦1.0000とすることによつて誘電
率が格段に向上することを見出したものであり、
かつ誘電体損失が極めて良好で焼結性の優れた高
誘電率系磁器組成物に関するものである。 すなわち、本発明は850〜1100℃附近の低温領
域で焼結することが可能で、かつ特性の優れた高
誘電率系磁器組成物を提供するものである。 以下実施例によつて本発明を詳述する。 出発原料として酸化鉛(PbO)、酸化ニオブ
(Nb2O5)、酸化マグネシユム(MgO)、酸化チタ
ン(TiO2)、を用い、第1表に示した配合比とな
るように秤量した。これ等の原料配合物を合成樹
脂ボールミルで、湿式混合した後、700〜850℃で
2時間仮焼し、化学反応を行なわせしめた。この
反応物を、ふたたびボールミルを用いて、粒子径
数μ程度に粉砕混合する。 この混合物に粘結剤としてポリビニールアルコ
ール(PVA)を適当量加え、約3トン/cm2の成
形圧力で直径16.5mm、厚さ0.6mmの円板状成形物
を作成した。成形物は高温での鉛成分の蒸発を防
ぐ為、マグネシア磁器製容器に密閉して、約850
〜1100℃で2時間本焼成する。こうして得られた
磁器素体の両端面に銀電極を焼付する。 このようにして製造した試料を、それぞれ電気
特性を測定した結果を第1表に示す。 ここで誘電率εsおよび誘電体損失(tanδ)
は周波数1KHzで測定した。 温度特性は、室温20℃を基準として−25℃、+
85℃容量変化率を求めた。
The present invention relates to a high dielectric constant ceramic composition, in which Pb (Mg1/3
Nb2/3) O 3 -PbTiO 3 -based oxide, expressed as ABO 3 where Pb element is A, Mg, Nb, and Ti element is B, and the A/B molar ratio is 0.9200≦A/B≦1.0000.
The present invention relates to a high dielectric constant ceramic composition which has a significantly improved dielectric constant, can be sintered at a particularly low temperature, has a small dielectric loss, and has an excellent temperature change rate. Conventionally, high-permittivity ceramic compositions have been made with barium titanate BaTiO 3 as the main component, barium stannate BaSnO 3 , calcium titanate CaTiO 3 , PbTiO 3 , etc., and their substituted solid solutions or other crystal structures. Composite dielectric ceramics with compounds having the above are widely put into practical use to meet various required characteristics. For these porcelain dielectrics, if the dielectric constant at room temperature is maximized to improve the characteristics, the temperature change in the dielectric constant becomes large, while if the temperature change in the dielectric constant is made small, the maximum value of the dielectric constant decreases. There are various problems in practical use, and improvements have been desired. Furthermore, since it is mainly composed of BaTiO 3 , it requires sintering at a high temperature range of usually around 1200 to 1400℃, which requires a large amount of thermal energy during sintering. There were drawbacks such as severe thermal deterioration loss of the furnace material and therefore increased maintenance costs for the firing equipment. Furthermore, in the case of multilayer porcelain capacitors, which are rapidly becoming popular these days, the manufacturing method requires that the internal electrodes be sintered while being embedded in a porcelain dielectric, which is different from conventional porcelain capacitors whose sintering temperature exceeds 1200°C. For the dielectric, it was necessary to use precious metals such as platinum, palladium, or alloys of these, which are stable at high temperatures of 1,300°C or higher, but are expensive. If it is possible to use a ceramic dielectric material that can be sintered at a low temperature of about 1000℃ as a multilayer ceramic capacitor, use an inexpensive metal material such as silver, nickel, or aluminum for the embedded internal electrode. This is extremely advantageous in terms of manufacturing costs. Of course, the porcelain dielectric obtained by low-temperature sintering is required to have high insulation resistance, relatively large dielectric constant, small dielectric loss, and excellent temperature change rate. Hitherto, there have been few stable porcelain dielectrics produced by low-temperature sintering that meet these conditions, and the realization of such materials has been desired. In view of the above - mentioned demands, the present inventors have arrived at the present invention as a result of intensive research. Pb (Mg1/3Nb2/3)O 3 ...... 88.0 to 99.0 mol% PbTiO 3 ...... 1.0 to 12.0 mol% Pb element is mixed with A, Mg, Nb,
The chemical formulas of these complex compounds are as follows, with Ti element as B:
When expressed as ABO 3 , the molar ratio of A/B is 0.9200
The present invention relates to a high dielectric constant ceramic composition characterized in that ≦A/B≦1.0000. That is, the present inventors have already proposed a binary high permittivity ceramic composition consisting of Pb(Mg1/3Nb2/3)O 3 -PbTiO 3 system that can be sintered at low temperatures, but the present invention Within this composition, the Pb element is A, Mg, Nb,
When the Ti element is B and the chemical formula is expressed as ABO 3 , the A/B mole is due to excessive addition of the B site element.
It has been discovered that the dielectric constant is significantly improved by setting 0.9200≦A/B≦1.0000,
The present invention also relates to a high dielectric constant ceramic composition that has extremely good dielectric loss and excellent sinterability. That is, the present invention provides a high dielectric constant ceramic composition that can be sintered at a low temperature around 850 to 1100°C and has excellent properties. The present invention will be explained in detail below with reference to Examples. Lead oxide (PbO), niobium oxide (Nb 2 O 5 ), magnesium oxide (MgO), and titanium oxide (TiO 2 ) were used as starting materials and were weighed so as to have the compounding ratios shown in Table 1. These raw material mixtures were wet mixed in a synthetic resin ball mill and then calcined at 700 to 850°C for 2 hours to cause a chemical reaction. This reaction product is pulverized and mixed again using a ball mill to a particle size of about several μm. An appropriate amount of polyvinyl alcohol (PVA) was added as a binder to this mixture, and a disc-shaped molded product with a diameter of 16.5 mm and a thickness of 0.6 mm was produced at a molding pressure of about 3 tons/cm 2 . The molded product is sealed in a magnesia porcelain container to prevent the lead component from evaporating at high temperatures.
Main firing at ~1100℃ for 2 hours. Silver electrodes are baked onto both end faces of the porcelain body thus obtained. Table 1 shows the results of measuring the electrical properties of the samples produced in this way. Here, permittivity εs and dielectric loss (tanδ)
was measured at a frequency of 1KHz. Temperature characteristics are -25℃ and +25℃ based on room temperature 20℃.
The rate of change in capacity at 85°C was determined.

【表】【table】

【表】 第1表において、試料No.6、10は本発明の範
囲外のものであり、比較の為示した。 第1表より明らかなように、本発明範囲内のも
のは、比誘電率(εs)が約20300〜29800の高い
値を示し、誘電体損失(tanδ)は0.8〜1.7%の
極めて小さな値を示している状態でしかも1100℃
未満の低温度で焼結が可能である。すなわち、こ
の組成範囲からはずれるものでは第1表に示すよ
うに望ましい特性を得ることはできなかつた。 その限定理由を具体的に述べる。 A/Bモル比が0.9200より小さい領域に於いて
は誘電率(εs)の向上がなくA/Bモル比を限
定する特徴がない。 なお、実施例においてはMgO等は炭酸塩の形
で用いたが他の形の例えば硝酸塩のものでも本発
明の技術思想に包含されることは明らかである。 以上の様に本発明のPb(Mg1/3Nb2/3)O3
PbTiO3系酸化物でありPb元素をA、Mg、Nb、
Ti元素をBとし、化学式をABO3と表わすとき、
そのA/Bモル比が0.9200≦A/B≦1.0000とす
ることによつて誘電率が格段に向上し、誘電体損
失(tanδ)、容量変化率の極めて良好な新規な磁
器組成物が得られ、また積層磁器コンデンサに使
用した場合、埋込内部電極に銀系・ニツケル系・
アルミ系の如き低融点金属の使用が可能となつ
た。 したがつて、従来の高温領域焼結材に比較し
て、多量の熱エネルギー、焼成炉材等の保全費に
格段の効果があるので省エネルギーの観点からコ
スト面で極めて有利な高誘電率系磁器組成物を提
供することができるので工業上の利益に大なるも
のがある。
[Table] In Table 1, Samples Nos. 6 and 10 are outside the scope of the present invention and are shown for comparison. As is clear from Table 1, those within the range of the present invention exhibit a high relative dielectric constant (εs) of about 20,300 to 29,800, and a very small dielectric loss (tan δ) of 0.8 to 1.7%. 1100℃ as shown
Sintering is possible at low temperatures below. That is, if the composition deviated from this range, it was not possible to obtain the desired properties as shown in Table 1. The reason for this limitation will be explained in detail. In a region where the A/B molar ratio is smaller than 0.9200, there is no improvement in the dielectric constant (εs) and there is no feature that limits the A/B molar ratio. In the examples, MgO and the like were used in the form of carbonate, but it is clear that other forms such as nitrate are also included in the technical idea of the present invention. As described above, the Pb(Mg1/3Nb2/3)O 3 − of the present invention
PbTiO is a 3 -based oxide that contains Pb elements such as A, Mg, Nb,
When the Ti element is B and the chemical formula is expressed as ABO 3 ,
By setting the A/B molar ratio to 0.9200≦A/B≦1.0000, the dielectric constant is significantly improved, and a new ceramic composition with extremely good dielectric loss (tan δ) and capacitance change rate can be obtained. In addition, when used in a multilayer ceramic capacitor, the embedded internal electrode contains silver, nickel, or
It became possible to use low melting point metals such as aluminum. Therefore, compared to conventional sintered materials in high-temperature ranges, high-permittivity porcelain is extremely effective in terms of cost from the perspective of energy saving, as it is significantly effective in reducing the amount of thermal energy and maintenance costs for firing furnace materials, etc. There are great industrial benefits as a result of the ability to provide compositions.

Claims (1)

【特許請求の範囲】 1 Pb(Mg1/3Nb2/3)O3−PbTiO3を主とする
組成物であつて、 Pb(Mg1/3Nb2/3)O3 ………88.0〜99.0モル% PbTiO3 ……… 1.0〜12.0モル% の範囲の組成においてPb元素をA、Mg、Nb、Ti
元素をBとし、これらの複合化合物の化学式を
ABO3表わす時、そのA/Bのモル比が0.9200≦
A/B≦1.0000の範囲内にあることを特徴とする
高誘電率系磁器組成物。
[Scope of Claims] 1. A composition mainly containing Pb(Mg1/3Nb2/3)O 3 -PbTiO 3 , wherein Pb(Mg1/3Nb2/3)O 3 ......88.0 to 99.0 mol% PbTiO 3 ...... Pb element is added to A, Mg, Nb, Ti in a composition range of 1.0 to 12.0 mol%.
Let the element be B, and the chemical formula of these complex compounds is
When ABO 3 is expressed, the molar ratio of A/B is 0.9200≦
A high dielectric constant ceramic composition characterized in that A/B is within the range of 1.0000.
JP2644679A 1978-10-30 1979-03-07 High dielectric ceramic composition Granted JPS55121958A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2644679A JPS55121958A (en) 1979-03-07 1979-03-07 High dielectric ceramic composition
GB7937204A GB2035994B (en) 1978-10-30 1979-10-26 High dielectric constant type ceramic composition
CA338,589A CA1108842A (en) 1978-10-30 1979-10-26 High dielectric constant type ceramic composition
FR7926786A FR2440344A1 (en) 1978-10-30 1979-10-29 HIGH DIELECTRIC CONSTANT TYPE CERAMIC COMPOSITION
US06/089,245 US4265668A (en) 1978-10-30 1979-10-29 High dielectric constant type ceramic composition
DE19792943812 DE2943812A1 (en) 1978-10-30 1979-10-30 CERAMIC DIELECTRIC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2644679A JPS55121958A (en) 1979-03-07 1979-03-07 High dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPS55121958A JPS55121958A (en) 1980-09-19
JPS6128620B2 true JPS6128620B2 (en) 1986-07-01

Family

ID=12193723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2644679A Granted JPS55121958A (en) 1978-10-30 1979-03-07 High dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPS55121958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009814A1 (en) * 1989-12-22 1991-07-11 Marcon Electronics Co., Ltd. Ceramic composition and electronic component made therefrom

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615977B2 (en) * 1989-02-23 1997-06-04 松下電器産業株式会社 Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
JPH02283655A (en) * 1989-04-26 1990-11-21 Hitachi Aic Inc Ceramic composition having high permittivity
JP2564676B2 (en) * 1990-02-22 1996-12-18 三菱マテリアル 株式会社 Electro-optical composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009814A1 (en) * 1989-12-22 1991-07-11 Marcon Electronics Co., Ltd. Ceramic composition and electronic component made therefrom

Also Published As

Publication number Publication date
JPS55121958A (en) 1980-09-19

Similar Documents

Publication Publication Date Title
JP2978580B2 (en) High dielectric constant dielectric porcelain composition
JPH05109319A (en) High dielectric constant dielectric porcilain composition
JPS6128619B2 (en)
JPS6128621B2 (en)
JPS597665B2 (en) High dielectric constant porcelain composition
JPS6128620B2 (en)
JPS6217805B2 (en)
JPS6216481B2 (en)
JPS6211444B2 (en)
JPS6134206B2 (en)
JPS6346925B2 (en)
JPS6135144B2 (en)
JPS6211443B2 (en)
JPS6216482B2 (en)
JPS629961B2 (en)
JPS6216483B2 (en)
JPS6217804B2 (en)
JPH0571538B2 (en)
JPS6211442B2 (en)
KR100268702B1 (en) compound of dielectric ceramic
JPS6216484B2 (en)
JPS6138140B2 (en)
JPH0562403B2 (en)
JPH02279561A (en) Dielectric porcelain composition
JPS6223406B2 (en)