JPS6216481B2 - - Google Patents

Info

Publication number
JPS6216481B2
JPS6216481B2 JP54053255A JP5325579A JPS6216481B2 JP S6216481 B2 JPS6216481 B2 JP S6216481B2 JP 54053255 A JP54053255 A JP 54053255A JP 5325579 A JP5325579 A JP 5325579A JP S6216481 B2 JPS6216481 B2 JP S6216481B2
Authority
JP
Japan
Prior art keywords
dielectric constant
temperature
porcelain
pbtio
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54053255A
Other languages
Japanese (ja)
Other versions
JPS55144609A (en
Inventor
Shinobu Fujiwara
Kyoshi Furukawa
Nobuaki Kikuchi
Osamu Iizawa
Hitoshi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP5325579A priority Critical patent/JPS55144609A/en
Publication of JPS55144609A publication Critical patent/JPS55144609A/en
Publication of JPS6216481B2 publication Critical patent/JPS6216481B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高誘電率系磁器組成物に係り、複合酸
化物の固相反応によつて合成されたPb
(Mg1/2W1/2)O3―PbTiO3系酸化物で、低温度
焼結が可能で特に前述組成中のMgO量を化学量
論的計算値より過剰に添加することによつて誘電
率を低下させないで、温度特性が格段に改良され
た高誘電率系磁器組成物に関するものである。従
来、高誘電率磁器組成物として、BaTiO3
BaSnO3、CaTiO3、PbTiO3などを基本として、
その置換固溶体あるいは他の結晶構造を有する化
合物との複合誘電体磁器が、種々の要求特性に対
して、広く実用化されている。これ等の磁器誘電
体は、特性改善の為に常温での誘電率を最大にす
ると誘電率の温度変化が大きくなり、一方誘電率
の温度変化を小さくすれば誘電率の最大値が減少
するなど実用上種々の問題点があり、その改善が
望まれていた。更に、通常1200〜1400℃附近の高
温領域で焼結を必要とするために焼結時、多量の
熱エネルギーを必要とし、更に高温下の焼成炉材
の熱的劣化損失が激しく、従つて焼成装置の保全
費がかさむ等の欠点があつた。また最近急速に普
及しつつある積層磁器コンデンサにあつては、製
造法上、内部電極を磁器誘電体に埋込んだ状態で
焼結する必要があり、焼結温度が1000℃を超える
従来の磁器誘電体では、1300℃以上の高温で安定
ではあるが高価な貴金属・白金、パラジウムもし
くはこれ等の合金を使用しなければならなかつ
た。もし1000℃以下程度の低温度焼結可能な磁器
誘電体を積層磁器コンデンサとして用いることが
可能であれば、埋込み内部電極に銀系、ニツケル
系、アルミ系等の安価な金属材料を内部電極とし
て使用出来ることになり、製造コスト面で極めて
有利である。もちろん低温度焼結で得られた磁器
誘電体は、絶縁抵抗が高く、誘電率が比較的大き
く、誘電体損失が小さく、かつ温度変化率の優れ
たものが必要とされる。従来、これ等の条件を備
えた低温度焼結による安定な磁器誘電体は少な
く、その実現が望まれていた。 本発明者等は、上述の要請に鑑み、鋭意研究の
結果、本発明に到達したものであり、その要旨
は、Pb(Mg1/2W1/2)O3とPbTiO3を主とする
組成物であつて Pb(Mg1/2W1/2)O3 ………20.0〜70.0モル% PbTiO3 ……………30.0〜80.0モル% の範囲の組成物に対してMgO量を化学量論的計
算値より30%まで過剰に添加含有(0を含まず)
したことを特徴とする高誘電率系磁器組成物に関
するものである。 すなわち、Pb(Mg1/2W1/2)O3―PbTiO3
磁器組成物についてはすでにN.N.Krainik andA.
I.Agranovskaya(Fizika Tverdogo TelaVol.2.
No..pp70〜72、Jaruary.1960)によつて提案
されているが、本発明はこの2成分系において特
にMgO量を化学量論的計算値より30%まで過剰
添加することによつて誘電率を低下させないで、
温度特性の改良に著しい効果を有することを見出
したものである。 すなわち、本発明は900〜1100℃附近の低温領
域で焼結することが可能で、かつ温度特性の優れ
た高誘電率系磁器組成物を提供するものである。 以下実施例によつて本発明を詳述する。 出発原料として酸化鉛(PbO)、酸化マグネシ
ウム(MgO)、酸化ニオブ(Nb2O5)、酸化タング
ステン(WO3)、酸化チタン(TiO2)を用い、第
1表に示した配合比となるように秤量した。これ
等の原料配合物を合成樹脂ボールミルで、湿式混
合した後、700〜850℃で2時間仮焼し、化学反応
を行なわせしめた。この反応物を、ふたたびボー
ルミルを用いて、粒子径数μ程度に粉砕混合す
る。 この混合物に粘結剤としてポリビニールアルコ
ール(PVA)を適当量加え、約3トン/cm2の成
形圧力で直径16.5mm、厚さ0.6mmの円板状成形物
を作成した。成形物は高温での鉛成分の蒸発を防
ぐ為、マグネシア磁器製容器に密閉して、約900
〜1100℃で2時間本焼成する。こうして得られた
磁器素体の両端面に銀電極を焼付する。このよう
にして製造した試料を、それぞれ電気特性を測定
した結果を第1表に示す。 ここで誘電率εsおよび誘電体損失(tanδ)
は、周波数1KHzで測定した。 温度特性は、室温20℃を基準として−25℃、+
85℃容量変化率を求めた。
The present invention relates to a high dielectric constant ceramic composition, in which Pb is synthesized by a solid phase reaction of a complex oxide.
(Mg 1/2 W 1/2 ) O 3 - PbTiO 3 -based oxide that can be sintered at low temperatures, especially by adding an excess amount of MgO to the stoichiometric calculation value. The present invention relates to a high dielectric constant ceramic composition that has significantly improved temperature characteristics without lowering the dielectric constant. Conventionally, BaTiO 3 ,
Based on BaSnO 3 , CaTiO 3 , PbTiO 3 etc.
Composite dielectric ceramics made of substituted solid solutions thereof or compounds having other crystal structures have been widely put into practical use to meet various required characteristics. For these porcelain dielectrics, if the dielectric constant at room temperature is maximized to improve the characteristics, the temperature change in the dielectric constant becomes large, while if the temperature change in the dielectric constant is made small, the maximum value of the dielectric constant decreases. There are various problems in practical use, and improvements have been desired. Furthermore, since sintering is normally required in a high temperature range of around 1200 to 1400°C, a large amount of thermal energy is required during sintering, and furthermore, the thermal deterioration loss of the firing furnace material at high temperatures is severe; There were drawbacks such as increased equipment maintenance costs. Furthermore, in the case of multilayer porcelain capacitors, which are rapidly becoming popular these days, the manufacturing method requires that the internal electrodes be sintered while being embedded in a porcelain dielectric, which is different from conventional porcelain capacitors whose sintering temperature exceeds 1000°C. For the dielectric, it was necessary to use precious metals such as platinum, palladium, or alloys of these, which are stable at high temperatures of 1,300°C or higher, but are expensive. If it is possible to use a ceramic dielectric material that can be sintered at a low temperature of about 1000°C or less as a multilayer ceramic capacitor, an inexpensive metal material such as silver, nickel, or aluminum can be used as the embedded internal electrode. This makes it possible to use this method, which is extremely advantageous in terms of manufacturing costs. Of course, the porcelain dielectric obtained by low-temperature sintering is required to have high insulation resistance, relatively large dielectric constant, small dielectric loss, and excellent temperature change rate. Hitherto, there have been few stable porcelain dielectrics produced by low-temperature sintering that meet these conditions, and the realization of such materials has been desired. In view of the above-mentioned request , the present inventors have arrived at the present invention as a result of intensive research. The amount of MgO is chemically determined for a composition in the range of Pb (Mg 1/2 W 1/2 ) O 3 ......20.0 to 70.0 mol% PbTiO 3 ......30.0 to 80.0 mol%. Contains up to 30% more than the stoichiometrically calculated value (not including 0)
The present invention relates to a high dielectric constant ceramic composition characterized by the following. In other words, the Pb(Mg 1/2 W 1/2 ) O 3 -PbTiO 3 based porcelain composition has already been described by NNKrainik and A.
I.Agranovskaya (Fizika Tverdogo TelaVol.2.
No... pp70-72, Jaruary.1960), the present invention lowers the dielectric constant by adding MgO in excess of 30% of the stoichiometrically calculated value in this two-component system. Don't let me,
It has been discovered that this method has a remarkable effect on improving temperature characteristics. That is, the present invention provides a high dielectric constant ceramic composition that can be sintered at a low temperature around 900 to 1100°C and has excellent temperature characteristics. The present invention will be explained in detail below with reference to Examples. Lead oxide (PbO), magnesium oxide (MgO), niobium oxide (Nb 2 O 5 ), tungsten oxide (WO 3 ), and titanium oxide (TiO 2 ) are used as starting materials, and the compounding ratio is as shown in Table 1. It was weighed as follows. These raw material mixtures were wet mixed in a synthetic resin ball mill and then calcined at 700 to 850°C for 2 hours to cause a chemical reaction. This reaction product is pulverized and mixed again using a ball mill to a particle size of about several μm. An appropriate amount of polyvinyl alcohol (PVA) was added as a binder to this mixture, and a disc-shaped molded product with a diameter of 16.5 mm and a thickness of 0.6 mm was produced at a molding pressure of about 3 tons/cm 2 . The molded product is sealed in a magnesia porcelain container to prevent the lead component from evaporating at high temperatures.
Main firing at ~1100℃ for 2 hours. Silver electrodes are baked onto both end faces of the porcelain body thus obtained. Table 1 shows the results of measuring the electrical properties of the samples produced in this way. Here, permittivity εs and dielectric loss (tanδ)
was measured at a frequency of 1KHz. Temperature characteristics are -25℃ and +25℃ based on room temperature 20℃.
The rate of change in capacity at 85°C was determined.

【表】 第1表において、試料No.1、2、4、7、13、
14、18は本発明の範囲外のものであり、比較の為
示した。 第1表より明らかなように、本発明範囲内のも
のは、比誘電率(εs)が約2340〜7090と高い値
を示し、特に試料No.9、10は従来のBaTiO3系磁
器誘電体の特性(T.C±10%以内の場合)に比較
して2倍の誘電率(εs)を有する。。又誘電体
損失(tanδ)は0.3〜2.1%と極めて小さな値を
示している状態でしかも1100℃未満の低温度で焼
結が可能である。すなわち、この組成範囲からは
ずれるものは第1表に示すように望ましい特性を
得ることはできなかつた。 その限定理由を具体的に述べる。 酸化マグネシウム(MgO)量を化学量論的計
算値より30%を越えた場合、誘電率(εs)が低
下し、温度特性が大きくなり、添加効果がない。 なお、実施例においてMgO等は炭酸塩の形で
用いたが他の形の例えば硝酸塩のものでも本発明
の技術思想に包含されることは明らかである。 以上の様に本発明のPb(Mg1/2W1/2)O3
PbTiO3系高誘電率磁器組成物、特にMgO量を化
学量論的計算値より過剰に添加することによつて
高誘電率で温度特性の極めて小さな、1100℃以下
の低温度焼結が可能な、新規な磁器組成物が得ら
れ、また積層磁器コンデンサに使用した場合、埋
込内部電極に銀系・ニツケル系・アルミ系の如き
低融点金属の使用が可能となつた。 したがつて、従来の高温領域焼結材に比較し
て、多量の熱エネルギー、焼成炉材等の保全費に
格段の効果があるので省エネルギーの観点からコ
スト面で極めて有利な高誘電率系磁器組成物を提
供することができるので工業上の利益に大なるも
のがある。
[Table] In Table 1, sample No. 1, 2, 4, 7, 13,
Samples 14 and 18 are outside the scope of the present invention and are shown for comparison. As is clear from Table 1, samples within the scope of the present invention exhibit high relative dielectric constants (εs) of about 2340 to 7090, and in particular, samples Nos. 9 and 10 are conventional BaTiO 3 -based porcelain dielectrics. The dielectric constant (εs) is twice that of the characteristic (within TC±10%). . Furthermore, the dielectric loss (tan δ) is extremely small at 0.3 to 2.1%, and sintering is possible at a low temperature of less than 1100°C. That is, as shown in Table 1, it was not possible to obtain desired properties with compositions that deviated from this range. The reason for this limitation will be explained in detail. When the amount of magnesium oxide (MgO) exceeds 30% of the calculated stoichiometric value, the dielectric constant (εs) decreases, the temperature characteristics increase, and the addition has no effect. Although MgO and the like were used in the form of carbonate in the examples, it is clear that other forms such as nitrate are also included in the technical idea of the present invention. As described above, the Pb (Mg 1/2 W 1/2 ) O 3 -
PbTiO 3 -based high dielectric constant ceramic composition, especially by adding MgO in excess of the calculated stoichiometric value, has a high dielectric constant and extremely small temperature characteristics, and can be sintered at a low temperature of 1100℃ or less. A new ceramic composition was obtained, and when used in a laminated ceramic capacitor, it became possible to use low melting point metals such as silver, nickel, and aluminum for embedded internal electrodes. Therefore, compared to conventional sintered materials in high-temperature ranges, high-permittivity porcelain is extremely effective in terms of cost from the perspective of energy saving, as it is significantly effective in reducing the amount of thermal energy and maintenance costs for firing furnace materials, etc. There are great industrial benefits as a result of the ability to provide compositions.

Claims (1)

【特許請求の範囲】 1 Pb(Mg1/2W1/2)O3とPbTiO3を主とする
組成物であつて Pb(Mg1/2W1/2)O3 ………20.0〜70.0モル% PbTiO3 ………30.0〜80.0モル% の範囲の組成物に対してMgO量を計算値の30%
以下添加含有したことを特徴とする高誘電率系磁
器組成物。
[Claims] 1. A composition mainly containing Pb(Mg 1/2 W 1/2 )O 3 and PbTiO 3 , wherein Pb(Mg 1/2 W 1/2 )O 3 ......20.0~ 70.0 mol% PbTiO 3 ......For compositions in the range of 30.0 to 80.0 mol%, the amount of MgO is 30% of the calculated value.
A high dielectric constant ceramic composition characterized by containing the following additives:
JP5325579A 1979-04-28 1979-04-28 High dielectric series porcelain composition Granted JPS55144609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5325579A JPS55144609A (en) 1979-04-28 1979-04-28 High dielectric series porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5325579A JPS55144609A (en) 1979-04-28 1979-04-28 High dielectric series porcelain composition

Publications (2)

Publication Number Publication Date
JPS55144609A JPS55144609A (en) 1980-11-11
JPS6216481B2 true JPS6216481B2 (en) 1987-04-13

Family

ID=12937669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5325579A Granted JPS55144609A (en) 1979-04-28 1979-04-28 High dielectric series porcelain composition

Country Status (1)

Country Link
JP (1) JPS55144609A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157407A (en) * 1981-03-24 1982-09-29 Nippon Electric Co Porcelain composition
US4450240A (en) * 1982-03-17 1984-05-22 Nippon Electric Co., Ltd. Ceramic compositions having high dielectric constant and high specific resistivity
US4767732A (en) * 1986-08-28 1988-08-30 Kabushiki Kaisha Toshiba High dielectric constant ceramic material and method of manufacturing the same

Also Published As

Publication number Publication date
JPS55144609A (en) 1980-11-11

Similar Documents

Publication Publication Date Title
JPS6128619B2 (en)
JPS6128621B2 (en)
JPH0583508B2 (en)
JPS6216481B2 (en)
JPS6128620B2 (en)
JPS6217805B2 (en)
JPS6211444B2 (en)
JPS6134206B2 (en)
JPS6211443B2 (en)
JPS6346925B2 (en)
JPS629961B2 (en)
JPS6216482B2 (en)
JPS6135144B2 (en)
JPS6211442B2 (en)
JPS6216483B2 (en)
JPS6217804B2 (en)
JPH0571538B2 (en)
JPH02279561A (en) Dielectric porcelain composition
JPS6216484B2 (en)
JPS6138140B2 (en)
JPH0562403B2 (en)
JPS6341866B2 (en)
JPS6223406B2 (en)
JPS5918155A (en) Ceramic composition
JPH0637322B2 (en) Dielectric porcelain composition