JPS6128621B2 - - Google Patents

Info

Publication number
JPS6128621B2
JPS6128621B2 JP54026448A JP2644879A JPS6128621B2 JP S6128621 B2 JPS6128621 B2 JP S6128621B2 JP 54026448 A JP54026448 A JP 54026448A JP 2644879 A JP2644879 A JP 2644879A JP S6128621 B2 JPS6128621 B2 JP S6128621B2
Authority
JP
Japan
Prior art keywords
dielectric constant
present
dielectric
temperature
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54026448A
Other languages
Japanese (ja)
Other versions
JPS55121959A (en
Inventor
Shinobu Fujiwara
Kyoshi Furukawa
Nobuaki Kikuchi
Osamu Iizawa
Hitoshi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2644879A priority Critical patent/JPS55121959A/en
Priority to GB7937204A priority patent/GB2035994B/en
Priority to CA338,589A priority patent/CA1108842A/en
Priority to FR7926786A priority patent/FR2440344A1/en
Priority to US06/089,245 priority patent/US4265668A/en
Priority to DE19792943812 priority patent/DE2943812A1/en
Publication of JPS55121959A publication Critical patent/JPS55121959A/en
Publication of JPS6128621B2 publication Critical patent/JPS6128621B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高誘電率系磁器組成物に係り、複合酸
化物の固相反応によつて合成された Pb(Mg1/3Nb2/3)O3−PbTiO3系酸化物であ
り、鉛原子の1部をBa、Sr、Caの置換によつて
誘電率が格段に向上し、低温度焼結が可能で、か
つ誘電体損失が小さく、温度変化率の優れた高誘
電率系磁器組成物に関するものである。従より高
誘電率磁器組成物として、チタン酸バリウム
BaTiO3系を主成分としてスズ酸バリウム
BaSnO3、チタン酸カルシウムCaTiO3、PbTiO3
などを基本として、その置換固溶体あるいは他の
結晶構造を有する化合物との複合誘電体磁気が、
種々の要求特性に対して、広く実用化されてい
る。この等の磁気誘電体は、特性改善の為に常温
での誘電体を最大にすると誘電率の温度変化が大
きくなり、一方誘電率の温度変化を小さくすれば
誘電率の最大値が減少するなど実用上種々の問題
点があり、その改善が望まれていた。更に、
BaTiO3系を主成分としたものであるために通常
1200〜1400℃附近の高温領域で焼結を必要とする
ために焼結時、多量の熱エネルギーを必要とし、
更に高温下の焼成炉材の熱的劣化損失が激しく、
従つて焼成装置の保全費がかさむ等の欠点があつ
た。また最近急速に普及しつつある積層磁器コン
デンサにあつては、製造法上、内部電極を磁器誘
電体に埋込んだ状態で焼結する必要があり、焼結
温度が1200℃を越える従来の磁器誘電体では、
1300℃以上の高温で安定ではあるが高価な貴金
属・白金、パラジウムもしくはこれ等の合金を使
用しなければならなかつた。もし1000℃程度の低
温度焼結可能な磁気誘電体を積層磁器コンデンサ
として用いることが可能であれば、埋込み内部電
極に銀系、ニツケル系、アルミ系等の安価な金属
材料を内部電極として使用出来ることになり、製
造コスト面で極めて有利である。もちろん低温度
焼結で得られた磁気誘電体は、絶縁抵抗が高く、
誘電率が比較的大きく、誘電体損失が小さく、か
つ音度変化率の優れたものが必要とされる。従
来、これ等の条件を備えた低温度焼結による安定
な磁気誘電体は少なく、その実現が望まれてい
た。 本発明者等は、上述の要請に鑑み、鋭意研究の
結果、本発明に到達したものであり、その要旨
は、Pb(Mg1/3Nb2/3)O3−PbTiO3を主とする
組成物であつて Pb(Mg1/3Nb2/3)O3 ………88.0〜99.0モル% PbTiO3 ……… 1.0〜12.0モル% の範囲内の組成に於いて鉛原子の10%までを
Ba、SrまたはCaのうち少なくとも1種で置換す
ることを特徴とした高誘電率系磁器組成物に関す
るものである。 すなわち、本発明者らはすでに低温度で焼結で
きるPb(Mg1/3Nb2/3)O3−PbTiO3系からなる
二成分系の高誘電率系磁器組成物を提案している
が本発明はこの組成内で鉛原子の10%までを
Ba、SrまたはCaの少なくとも1種で置換するこ
とによつて誘電率が格段に向上することを見出し
たものであり、かつ誘電体損失が極めて良好で焼
結性の優れた高誘電率系磁器組成物に関するもの
である。すなわち、本発明は850〜1050℃附近の
低温領域で極めて安定して焼結することが可能
で、かつ特性の優れた高誘電率系磁器組成物を提
供するものである。 以下実施例によつて本発明を詳述する。 出発原料として酸化鉛(PbO)、酸化ニオブ
(Nb2O5)、酸化マグネシユム(MgO)、酸化チタ
ン(TiO2)、炭酸バリウム(BaCO3)、炭酸スト
ロンチウム(SrCO3)、炭酸カルシウム
(CaCO3)を用い、第1表に示した配合比となる
ように秤量した。これ等の原料配合物を合成樹脂
ボールミルで、湿式混合した後、700〜850℃で2
時間仮焼し、化学反応を行なわせしめた。この反
応物を、ふたたびボールミルを用いて、粒子径数
μ程度に粉砕混合する。 この混合物に粘結剤としてポリビニールアルコ
ール(PVA)を適当量加え、約3トン/cm2の成
形圧力で直径16.5mm、厚さ0.6mmの円板状成形物
を作成した。成形物は高温での鉛成分の蒸発を防
ぐ為、マグネシア磁器製容器に密閉して、約850
〜1050℃で2時間本焼成する。こうして得られた
磁器素体の両端面に銀電極を焼付する。このよう
にして製造した試料を、それぞれ電気特性を測定
した結果を第1表に示す。 ここで誘電率εsおよび誘電体損失(tanδ)
は、周波数1KHzで測定した。 温度特性は、室温20℃を基準として−25℃、+
85℃容量変化率を求めた。
The present invention relates to a high dielectric constant ceramic composition, which is a Pb(Mg1/3Nb2/3) O3 -PbTiO3- based oxide synthesized by a solid-phase reaction of a composite oxide, and a part of lead atoms. This article relates to a high dielectric constant ceramic composition that has a significantly improved dielectric constant by replacing Ba, Sr, and Ca, can be sintered at low temperatures, has low dielectric loss, and has an excellent temperature change rate. be. Barium titanate has traditionally been used as a high dielectric constant porcelain composition.
Barium stannate based on BaTiO 3 system
BaSnO 3 , calcium titanate CaTiO 3 , PbTiO 3
Composite dielectric magnetism with substituted solid solutions or compounds with other crystal structures is based on
It has been widely put into practical use for various required characteristics. For magnetic dielectric materials such as these, if the dielectric constant at room temperature is maximized to improve characteristics, the temperature change in the permittivity becomes large, while if the temperature change in the permittivity is made small, the maximum value of the permittivity decreases. There are various problems in practical use, and improvements have been desired. Furthermore,
Because it is mainly composed of BaTiO 3 , it is usually
Sintering requires a large amount of thermal energy as it requires sintering at a high temperature of around 1200-1400℃.
Furthermore, the thermal deterioration loss of firing furnace materials at high temperatures is severe,
Therefore, there were drawbacks such as increased maintenance costs for the firing equipment. Furthermore, in the case of multilayer porcelain capacitors, which are rapidly becoming popular these days, the manufacturing method requires that the internal electrodes be sintered while being embedded in a porcelain dielectric, which is different from conventional porcelain capacitors whose sintering temperature exceeds 1200°C. In dielectrics,
This required the use of precious metals such as platinum, palladium, or alloys thereof, which are stable at high temperatures of 1,300°C or higher, but are expensive. If it is possible to use a magnetic dielectric material that can be sintered at a low temperature of about 1000℃ as a multilayer ceramic capacitor, use an inexpensive metal material such as silver, nickel, or aluminum for the embedded internal electrode. This is extremely advantageous in terms of manufacturing costs. Of course, magnetic dielectric materials obtained by low-temperature sintering have high insulation resistance.
A material with a relatively high dielectric constant, low dielectric loss, and an excellent rate of change in acoustic intensity is required. Conventionally, there have been few stable magnetic dielectric materials that meet these conditions and are produced by low-temperature sintering, and the realization of such materials has been desired. In view of the above - mentioned demands, the present inventors have arrived at the present invention as a result of intensive research. Pb(Mg1/3Nb2/3)O 3 ......88.0-99.0 mol% PbTiO 3 ...... Up to 10% of lead atoms in the range of 1.0-12.0 mol%
The present invention relates to a high dielectric constant ceramic composition characterized by substitution with at least one of Ba, Sr, and Ca. That is, the present inventors have already proposed a binary high permittivity ceramic composition consisting of Pb(Mg1/3Nb2/3)O 3 -PbTiO 3 system that can be sintered at low temperatures, but the present invention Up to 10% of lead atoms within this composition
It has been discovered that the dielectric constant can be significantly improved by substituting with at least one of Ba, Sr, or Ca, and it is a high-permittivity ceramic with extremely good dielectric loss and excellent sinterability. The present invention relates to a composition. That is, the present invention provides a high dielectric constant ceramic composition that can be sintered extremely stably at a low temperature of around 850 to 1050°C and has excellent properties. The present invention will be explained in detail below with reference to Examples. Lead oxide (PbO), niobium oxide (Nb 2 O 5 ), magnesium oxide (MgO), titanium oxide (TiO 2 ), barium carbonate (BaCO 3 ), strontium carbonate (SrCO 3 ), calcium carbonate (CaCO 3 ) as starting materials. ) were weighed to achieve the blending ratio shown in Table 1. After wet-mixing these raw materials in a synthetic resin ball mill,
It was calcined for a period of time to allow a chemical reaction to occur. This reaction product is pulverized and mixed again using a ball mill to a particle size of about several μm. An appropriate amount of polyvinyl alcohol (PVA) was added as a binder to this mixture, and a disc-shaped molded product with a diameter of 16.5 mm and a thickness of 0.6 mm was produced at a molding pressure of about 3 tons/cm 2 . The molded product is sealed in a magnesia porcelain container to prevent the lead component from evaporating at high temperatures.
Main firing at ~1050°C for 2 hours. Silver electrodes are baked onto both end faces of the porcelain body thus obtained. Table 1 shows the results of measuring the electrical properties of the samples produced in this way. Here, permittivity εs and dielectric loss (tanδ)
was measured at a frequency of 1KHz. Temperature characteristics are -25℃ and +25℃ based on room temperature 20℃.
The rate of change in capacity at 85°C was determined.

【表】 第1表において、試料No1、5、10、12、15は
本発明の範囲外のものであり、比較の為示した。 第1表より明らかなように、本発明範囲内のも
のは、比誘電率(εs)が約12400〜22500の高い
値を示し、誘電体損失(tanδ)は0.2〜2.8%の
極めて小さな値を示している状態でしかも1050℃
未満の低温度で焼結が可能である。すなわち、こ
の組成範囲からはずれるものでは第1表に示すよ
うに望ましい特性を得ることはできなかつた。 その限定理由を具体的に述べる。 鉛原子の置換量が10%以上の添加では誘電率
(εs)の向上効果がない。 なお、実施例においてMgO、BaO、SrO、CaO
は炭酸塩の形で用いたが他の形の例えば硝酸塩の
ものでも本発明の技術思想に包含されることは明
らかである。 以上の様に本発明のPb(Mg1/3Nb2/3)O3
PbTiO3系系高誘電率系磁器組成物、特に鉛原子
の1部をBa、Sr、Caの置換によつて誘電率が格
段に向上し誘電体損失(tanδ)、容量変化率の極
めて良好な新規な磁器組成物が得られ、また積層
磁器コンデンサに使用した場合、埋込内部電極に
銀系・ニツケル系・アルミ系の如き低融点金属の
使用が可能となつた。 したがつて、従来の高温領域焼結材に比較し
て、多量の熱エネルギー、焼成炉材等の保全費に
格段の効果があるので省エネルギーの観点からコ
スト面で極めて有利な高誘電率系磁器組成物を提
供することができるので工業上の利益に大なるも
のがある。
[Table] In Table 1, Samples Nos. 1, 5, 10, 12, and 15 are outside the scope of the present invention and are shown for comparison. As is clear from Table 1, those within the range of the present invention exhibit high relative dielectric constants (εs) of about 12,400 to 22,500, and extremely small dielectric loss (tanδ) of 0.2 to 2.8%. 1050℃ under the conditions shown.
Sintering is possible at low temperatures below. That is, if the composition deviated from this range, it was not possible to obtain the desired properties as shown in Table 1. The reason for this limitation will be explained in detail. If the lead atom substitution amount is 10% or more, there is no effect of improving the dielectric constant (εs). In addition, in the examples, MgO, BaO, SrO, CaO
Although used in the form of carbonate, it is clear that other forms, such as nitrate, are also encompassed by the technical idea of the present invention. As described above, the Pb(Mg1/3Nb2/3)O 3 − of the present invention
PbTiO 3 -based high dielectric constant ceramic composition, especially by substituting some of the lead atoms with Ba, Sr, or Ca, has a markedly improved dielectric constant and extremely good dielectric loss (tanδ) and capacitance change rate. A new ceramic composition has been obtained, and when used in a laminated ceramic capacitor, it has become possible to use low melting point metals such as silver, nickel, and aluminum for embedded internal electrodes. Therefore, compared to conventional sintered materials in high-temperature ranges, high-permittivity porcelain is extremely effective in terms of cost from the perspective of energy saving, as it is significantly effective in reducing the amount of thermal energy and maintenance costs for firing furnace materials, etc. There are great industrial benefits as a result of the ability to provide compositions.

Claims (1)

【特許請求の範囲】 1 Pb(Mg1/3Nb2/3)O3−PbTiO3を主とする
組成物であつて、 Pb(Mg1/3Nb2/3)O3 ………88.0〜99.0モル% PbTiO3 ……… 1.0〜12.0モル% の範囲内の組成に於いて鉛原子の10%までを
Ba、SrまたはCaのうち少なくとも1種で置換す
ることを特徴とする高誘電率系磁器組成物。
[Scope of Claims] 1. A composition mainly containing Pb(Mg1/3Nb2/3)O 3 -PbTiO 3 , wherein Pb(Mg1/3Nb2/3)O 3 ......88.0 to 99.0 mol% PbTiO 3 ...... up to 10% of lead atoms in a composition within the range of 1.0 to 12.0 mol%.
A high dielectric constant ceramic composition characterized in that it is substituted with at least one of Ba, Sr, and Ca.
JP2644879A 1978-10-30 1979-03-07 High dielectric ceramic composition Granted JPS55121959A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2644879A JPS55121959A (en) 1979-03-07 1979-03-07 High dielectric ceramic composition
GB7937204A GB2035994B (en) 1978-10-30 1979-10-26 High dielectric constant type ceramic composition
CA338,589A CA1108842A (en) 1978-10-30 1979-10-26 High dielectric constant type ceramic composition
FR7926786A FR2440344A1 (en) 1978-10-30 1979-10-29 HIGH DIELECTRIC CONSTANT TYPE CERAMIC COMPOSITION
US06/089,245 US4265668A (en) 1978-10-30 1979-10-29 High dielectric constant type ceramic composition
DE19792943812 DE2943812A1 (en) 1978-10-30 1979-10-30 CERAMIC DIELECTRIC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2644879A JPS55121959A (en) 1979-03-07 1979-03-07 High dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPS55121959A JPS55121959A (en) 1980-09-19
JPS6128621B2 true JPS6128621B2 (en) 1986-07-01

Family

ID=12193775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2644879A Granted JPS55121959A (en) 1978-10-30 1979-03-07 High dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPS55121959A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143811U (en) * 1985-02-23 1986-09-05

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2107300B (en) * 1981-07-03 1985-04-24 Standard Telephones Cables Ltd Ceramic capacitors and dielectric compositions
JPS6056307A (en) * 1983-09-06 1985-04-01 松下電器産業株式会社 Ferrodielectric porcelain composition
JPS6226705A (en) * 1985-07-29 1987-02-04 株式会社東芝 High permeability ceramic composition
JPH01100051A (en) * 1987-10-12 1989-04-18 Mitsubishi Mining & Cement Co Ltd Dielectric porcelain composition
JP2564676B2 (en) * 1990-02-22 1996-12-18 三菱マテリアル 株式会社 Electro-optical composition
JPH05262556A (en) * 1992-03-16 1993-10-12 Matsushita Electric Ind Co Ltd Production of dielectric porcelain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143811U (en) * 1985-02-23 1986-09-05

Also Published As

Publication number Publication date
JPS55121959A (en) 1980-09-19

Similar Documents

Publication Publication Date Title
JP2978580B2 (en) High dielectric constant dielectric porcelain composition
JPS6128621B2 (en)
JPH05109319A (en) High dielectric constant dielectric porcilain composition
JPS6128619B2 (en)
US4601989A (en) Dielectric ceramic composition
JPS6128620B2 (en)
JPS5820133B2 (en) Porcelain for semiconductor porcelain capacitors and manufacturing method thereof
JPS6217805B2 (en)
JPS6216481B2 (en)
JPH05148005A (en) Dielectric porcelain composition
JPS6134206B2 (en)
JPS6211444B2 (en)
JPS6135144B2 (en)
JPS6346925B2 (en)
KR100268702B1 (en) compound of dielectric ceramic
JPS6211443B2 (en)
JPH0637322B2 (en) Dielectric porcelain composition
JPH0562403B2 (en)
JPH0571538B2 (en)
JPS6216482B2 (en)
JP2531547B2 (en) Porcelain composition for temperature compensation
JPS6211442B2 (en)
JPS6138140B2 (en)
KR100251137B1 (en) Dielectric ceramic composition having non-reductive property
JP2694975B2 (en) Method for producing high dielectric constant porcelain composition