JPS6135144B2 - - Google Patents

Info

Publication number
JPS6135144B2
JPS6135144B2 JP54024244A JP2424479A JPS6135144B2 JP S6135144 B2 JPS6135144 B2 JP S6135144B2 JP 54024244 A JP54024244 A JP 54024244A JP 2424479 A JP2424479 A JP 2424479A JP S6135144 B2 JPS6135144 B2 JP S6135144B2
Authority
JP
Japan
Prior art keywords
dielectric constant
present
ceramic composition
pbtio
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54024244A
Other languages
Japanese (ja)
Other versions
JPS55116662A (en
Inventor
Shinobu Fujiwara
Kyoshi Furukawa
Nobuaki Kikuchi
Osamu Iizawa
Hitoshi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2424479A priority Critical patent/JPS55116662A/en
Publication of JPS55116662A publication Critical patent/JPS55116662A/en
Publication of JPS6135144B2 publication Critical patent/JPS6135144B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高誘電率系磁器組成物に係り、複合酸
化物の固相反応によつて合成されたPb(Mg1/3
Nb2/3)O3−PbTiO3−Pb(Mg1/2W1/2)O3
MnO系酸化物で、特に低温度焼結が可能で、高
誘電率、かつ誘電体損失が小さく、絶縁抵抗の優
れた高誘電率系磁器組成物に関するものである。
従来より高誘電率磁器組成物として、チタン酸バ
リウムBaTiO3系を主成分としてスズ酸バリウム
BaSnO3、チタン酸カルシウムCaTiO3PbTiO3
どを基本として、その置換固溶体あるいは他の結
晶構造を有する化合物との複合誘電体磁器が、
種々の要求特性に対して、広く実用化されてい
る。これ等の磁器誘電体は、特性改善の為に常温
での誘電率を最大にすると誘電率の温度変化が大
きくなり、一方誘電率の温度変化を小さくすれば
誘電率の最大値が減少するなど実用上種々の問題
点があり、その改善が望まれていた。更に、
BaTiO3系を主成分としたものであるために通常
1200〜1400℃附近の高温領域で焼結を必要とする
ために焼結時、多量の熱エネルギーを必要とし、
更に高温下の焼成炉材の熱的劣化損失が激しく、
従つて焼成装置の保全費がかさむ等の欠点があつ
た。また最近急速に普及しつつある積層磁器コン
デンサにあつては、製造法上、内部電極を磁器誘
電体に埋込んだ状態で焼結する必要があり、焼結
温度が1200℃を超える従来の磁器誘電体では、
1300℃以上の高温で安定ではあるが高価な貴金
属、白金、パラジウムもしくはこれ等の合金を使
用しなければならなかつた。もし1000℃程度の低
温度焼結可能な磁器誘電体を積層磁器コンデンサ
として用いることが可能であれば、埋込み内部電
極に銀系、ニツケル系、アルミ系等の安価な金属
材料を内部電極として使用出来ることになり、製
造コスト面で極めて有利である。もちろん低温度
焼結で得られた磁器誘電体は、絶縁抵抗が高く、
誘電率が比較的大きく、誘電体損失が小さく、か
つ温度変化率の優れたものが必要とされる。従
来、これ等の条件を備えた低温度焼結による安定
な磁器誘電体は少なく、その実現が望まれてい
た。 本発明者等は、上述の要請に鑑み、鋭意研究の
結果、本発明に到達したものであり、その要旨
は、Pb(Mg1/3Nb2/3)O3−PbTiO3−Pb(Mg
1/2W1/2)O3系組成物でPb(Mg1/3Nb2/3)O3
−PbTiO3,PbTiO3−Pb(Mg1/2W1/2)O3,Pb
(Mg1/2W1/2)O3Pb(Mg1/3Nb2/3)O3の各二
成分組成線上にある酸化物組成比を除き、三成分
組成図におけるA・B・C・D・Eに囲まれる組
成範囲内の酸化物で、 PbO 63.98〜73.09重量% Nb2O5 0.02〜26.96重量% MgO 0.45〜5.16重量% WO3 0.04〜23.7重量% TiO2 0.23〜23.52重量% の範囲の酸化物組成100に対してMnOを0.001〜
1.0重量%添加含有したことを特徴とする高誘電
率系磁器組成物に関するものである。 すなわち、本発明者らはすでに低温度で焼結で
きるPb(Mg1/3Nb2/3)O3−PbTiO3−Pb(Mg
1/2W1/2)O3系からなる3成分系高誘電率系磁
器組成物を提案しているが、本発明はこの3成分
系に副成分としてMnOを添加含有せしめるもの
で絶縁抵抗を極めて高くせしめることによつて温
度特性が極めて安定したかつ焼結性の優れた高誘
電率系磁器組成物を提供するものである。すなわ
ち、本発明は850〜1050℃附近の低温領域で極め
て安定して焼結することが可能で、かつ特性の優
れた高誘電率系磁器組成物を提供するものであ
る。 以下実施例によつて本発明を詳述する。 出発原料として酸化鉛(PbO)、酸化ニオブ
(Nb2O5)、酸化マグネシユム(MgO)、酸化タン
グステン(WO3)、酸化チタン(TiO2)、酸化マ
ンガン(MnO)を用い、第1表に示した配合比
となるように秤量した。これ等の原料配合物を合
成樹脂ボールミルで、湿式混合した後、700〜850
℃で2時間仮焼し、化学反応を行なわせしめた。
この反応物を、ふたたびボールミルを用いて、粒
子径数μ程度に粉砕混合する。 この混合物に粘結剤としてポリビニールアルコ
ール(PVA)を適当量加え、約3トン/cm2の成
形圧力で直径16.5mm、厚さ0.6mmの円板状成形物
を作成した。成形物は高温での鉛成分の蒸発を防
ぐ為、マグネシア磁器製容器に密閉して、約850
〜1050℃で2時間本焼成する。こうして得られた
磁器素体の両端面に銀電極を焼付する。このよう
にして製造した試料を、それぞれ電気特性を測定
した結果を第1表に示す。 ここで誘電率εsおよび誘電体損失(tanδ)
は、周波数1KHzで測定した。絶縁抵抗は、直流
500Vを印加して、室温20℃で測定した。
The present invention relates to a high dielectric constant ceramic composition, in which Pb (Mg1/3
Nb2/3)O 3 −PbTiO 3 −Pb(Mg1/2W1/2)O 3
The present invention relates to a high-permittivity ceramic composition made of MnO-based oxides that can be sintered at particularly low temperatures, has a high dielectric constant, has low dielectric loss, and has excellent insulation resistance.
Conventionally, barium stannate has been used as a high dielectric constant ceramic composition, with barium titanate BaTiO 3 as the main component.
Composite dielectric ceramics based on BaSnO 3 , calcium titanate CaTiO 3 PbTiO 3 , etc., and their substituted solid solutions or compounds with other crystal structures,
It has been widely put into practical use for various required characteristics. For these porcelain dielectrics, if the dielectric constant at room temperature is maximized to improve the characteristics, the temperature change in the dielectric constant becomes large, while if the temperature change in the dielectric constant is made small, the maximum value of the dielectric constant decreases. There are various problems in practical use, and improvements have been desired. Furthermore,
Because it is mainly composed of BaTiO 3 , it is usually
Sintering requires a large amount of thermal energy as it requires sintering at a high temperature of around 1200-1400℃.
Furthermore, the thermal deterioration loss of firing furnace materials at high temperatures is severe,
Therefore, there were drawbacks such as increased maintenance costs for the firing equipment. Furthermore, in the case of multilayer porcelain capacitors, which are rapidly becoming popular these days, the manufacturing method requires that the internal electrodes be sintered while being embedded in a porcelain dielectric material, which is different from conventional porcelain capacitors whose sintering temperature exceeds 1200°C. In dielectrics,
Although stable at high temperatures of 1300°C or higher, expensive precious metals such as platinum, palladium, or alloys thereof had to be used. If it is possible to use a ceramic dielectric material that can be sintered at a low temperature of about 1000℃ as a multilayer ceramic capacitor, use an inexpensive metal material such as silver, nickel, or aluminum for the embedded internal electrode. This is extremely advantageous in terms of manufacturing costs. Of course, porcelain dielectrics obtained through low-temperature sintering have high insulation resistance.
A material with a relatively high dielectric constant, low dielectric loss, and excellent temperature change rate is required. Hitherto, there have been few stable porcelain dielectrics produced by low-temperature sintering that meet these conditions, and the realization of such materials has been desired. In view of the above-mentioned demands, the present inventors have arrived at the present invention as a result of intensive research.
Pb(Mg1/3Nb2/ 3 )O3 in 1/2W1/2) O3 system composition
−PbTiO 3 ,PbTiO 3 −Pb(Mg1/2W1/2)O 3 ,Pb
(Mg1/2W1/2)O 3 Pb (Mg1/3Nb2/ 3 ) O PbO 63.98-73.09% by weight Nb 2 O 5 0.02-26.96% MgO 0.45-5.16% WO 3 0.04-23.7% TiO 2 0.23-23.52% by weight MnO from 0.001 to 100
The present invention relates to a high dielectric constant ceramic composition characterized in that it contains 1.0% by weight. That is, the present inventors have already developed Pb(Mg1/3Nb2/3)O 3 −PbTiO 3 −Pb(Mg
A 3- component high dielectric constant ceramic composition consisting of 1/2W1/2)O3 system has been proposed, but the present invention adds MnO as a sub-component to this 3-component system, thereby achieving extremely high insulation resistance. By increasing the temperature, a high dielectric constant ceramic composition with extremely stable temperature characteristics and excellent sinterability is provided. That is, the present invention provides a high dielectric constant ceramic composition that can be sintered extremely stably at a low temperature of around 850 to 1050°C and has excellent properties. The present invention will be explained in detail below with reference to Examples. Lead oxide (PbO), niobium oxide (Nb 2 O 5 ), magnesium oxide (MgO), tungsten oxide (WO 3 ), titanium oxide (TiO 2 ), and manganese oxide (MnO) were used as starting materials. It was weighed to achieve the indicated blending ratio. After wet mixing these raw materials in a synthetic resin ball mill,
The mixture was calcined at ℃ for 2 hours to carry out a chemical reaction.
This reaction product is pulverized and mixed again using a ball mill to a particle size of about several μm. An appropriate amount of polyvinyl alcohol (PVA) was added as a binder to this mixture, and a disc-shaped molded product with a diameter of 16.5 mm and a thickness of 0.6 mm was produced at a molding pressure of about 3 tons/cm 2 . The molded product is sealed in a magnesia porcelain container to prevent the lead component from evaporating at high temperatures.
Main firing at ~1050°C for 2 hours. Silver electrodes are baked onto both end faces of the porcelain body thus obtained. Table 1 shows the results of measuring the electrical properties of the samples produced in this manner. where dielectric constant ε s and dielectric loss (tan δ)
was measured at a frequency of 1KHz. Insulation resistance is DC
500V was applied and measurements were taken at room temperature of 20°C.

【表】 第1表において、試料No.1,5,6,10,11,
15,16,19は本発明の範囲外のものであり、比較
の為示した。 第1表より明らかなように、本発明範囲内のも
のは、比誘電率(εs)が約3000〜9800の高い値
を示し、誘電体損失(tanδ)は0.2〜1.9%の極
めて小さな値を示し、絶縁抵抗(IR)が9×1011
Ωを示している状態でしかも1000℃未満の低温度
で焼結が可能である。すなわち、この組成範囲か
らはずれるものでは第1表に示すように望ましい
特性を得ることはできなかつた。 その限定理由を具体的に述べる。 MnOが0.001重量%以下では誘電体損失(tan
δ)及び絶縁抵抗(IR)の改善効果がなく実用
的でない。又1.0重量%以上では誘電率(εs)が
低下して好ましくなく誘電体損失(tanδ)、絶縁
抵抗(IR)が悪化して実用的でない。 なお、実施例においてMgO等は炭酸塩の形で
用いたが他の形の例えば硝酸塩のものでも本発明
の技術思想に包含されることは明らかである。 以上の様に本発明の Pb(Mg1/3Nb2/3)O3−PbTiO3−Pb(Mg1/2W
1/2)O3−MnO系高誘電率磁器組成物によると、
低温度焼結が可能となり、かつ誘電率(εsが高
く、誘電体損失(tanδ)、絶縁抵抗(IR)の極
めて良好な新規な磁器組成物が得られ、また積層
磁器コンデンサに使用した場合、埋込内部電極に
銀系・ニツケル系・アルミ系の如き低融点金属の
使用が可能となつた。 したがつて、従来の高温領域焼結材に比較し
て、多量の熱エネルギー、焼成炉材等の保全費に
格段の効果があるので省エネルギーの観点からコ
スト面で極めて有利な高誘電率系磁器組成物を提
供することができるので工業上の利益に大なるも
のがある。
[Table] In Table 1, sample No. 1, 5, 6, 10, 11,
Nos. 15, 16, and 19 are outside the scope of the present invention and are shown for comparison. As is clear from Table 1, those within the scope of the present invention exhibit high relative permittivity (ε s ) of about 3000 to 9800, and extremely small dielectric loss (tan δ) of 0.2 to 1.9%. and the insulation resistance (IR) is 9×10 11
It is possible to sinter at a low temperature of less than 1000°C while exhibiting Ω. That is, if the composition deviated from this range, it was not possible to obtain the desired properties as shown in Table 1. The reason for this limitation will be explained in detail. Dielectric loss (tan
δ) and insulation resistance (IR) and is not practical. Moreover, if it exceeds 1.0% by weight, the dielectric constant (ε s ) decreases, which is undesirable, and dielectric loss (tan δ) and insulation resistance (IR) deteriorate, making it impractical. Although MgO and the like were used in the form of carbonate in the examples, it is clear that other forms such as nitrate are also included in the technical idea of the present invention. As described above, Pb(Mg1/3Nb2/3)O 3 −PbTiO 3 −Pb(Mg1/2W
1/2) According to the O 3 -MnO-based high dielectric constant ceramic composition,
A new ceramic composition that can be sintered at low temperatures, has a high dielectric constant (ε s ) , and has extremely good dielectric loss (tan δ) and insulation resistance (IR) can be obtained, and when used in multilayer ceramic capacitors. , it has become possible to use low melting point metals such as silver, nickel, and aluminum for the embedded internal electrodes. Therefore, compared to conventional high-temperature sintered materials, it requires a large amount of thermal energy and a firing furnace. It is possible to provide a high dielectric constant ceramic composition that is extremely cost-effective from the viewpoint of energy saving because it has a significant effect on maintenance costs for materials, etc., and has great industrial benefits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるPb(Mg1/3Nb2/3)O3
−PbTiO3−Pb(Mg1/2W1/2)O3系高誘電率磁
器組成物の三成分組成図を示す。第1図において
点A・B・C・D・Eに囲まれる範囲が本発明の
範囲である。(只しA・B,B・C,C・D,
D・A線上は除く)。
Figure 1 shows Pb(Mg1/3Nb2/3)O 3 according to the present invention.
A three-component composition diagram of a -PbTiO3 - Pb(Mg1/2W1/2) O3 -based high dielectric constant ceramic composition is shown. The range surrounded by points A, B, C, D, and E in FIG. 1 is the range of the present invention. (However, A・B, B・C, C・D,
(Excluding those on line D and A).

Claims (1)

【特許請求の範囲】 1 Pb(Mg1/3Nb2/3)O3−PbTiO3−Pb(Mg
1/2W1/2)O3系組成物でPb(Mg1/3Nb2/3)O3
−PbTiO3,PbTiO3−Pb(Mg1/2W1/2)O3,Pb
(Mg1/2W1/2)O3Pb(Mg1/3Nb2/3)O3の各二
成分組成線上にある酸化物組成比を除き、三成分
組成図におけるA,B,C,D,Eに囲まれる組
成範囲内の酸化物で、 PbO 63.98〜73.09重量% Nb2O5 0.02〜26.96重量% MgO 0.45〜5.16重量% WO3 0.04〜23.7重量% TiO2 0.23〜23.52重量% の範囲の酸化物組成100に対してMnOを0.001〜
1.0重量%添加含有したことを特徴とする高誘電
率系磁器組成物。
[Claims] 1 Pb(Mg1/3Nb2/3)O 3 −PbTiO 3 −Pb(Mg
Pb(Mg1/3Nb2/ 3 )O3 in 1/2W1/2) O3 based composition
−PbTiO 3 ,PbTiO 3 −Pb(Mg1/2W1/2)O 3 ,Pb
(Mg1/2W1/2)O 3 Pb ( Mg1/3Nb2/3) O PbO 63.98-73.09% by weight Nb 2 O 5 0.02-26.96% MgO 0.45-5.16% WO 3 0.04-23.7% TiO 2 0.23-23.52% by weight MnO from 0.001 to 100
A high dielectric constant ceramic composition characterized by containing 1.0% by weight.
JP2424479A 1979-03-02 1979-03-02 High dielectric ceramic composition Granted JPS55116662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2424479A JPS55116662A (en) 1979-03-02 1979-03-02 High dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2424479A JPS55116662A (en) 1979-03-02 1979-03-02 High dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPS55116662A JPS55116662A (en) 1980-09-08
JPS6135144B2 true JPS6135144B2 (en) 1986-08-11

Family

ID=12132827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2424479A Granted JPS55116662A (en) 1979-03-02 1979-03-02 High dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPS55116662A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138360A (en) * 1985-12-10 1987-06-22 三菱鉱業セメント株式会社 Dielectric ceramic composition
US5759432A (en) * 1996-06-14 1998-06-02 Penn State Research Foundation Relaxor ferroelectric compositions for field induced ultrasonic transducers

Also Published As

Publication number Publication date
JPS55116662A (en) 1980-09-08

Similar Documents

Publication Publication Date Title
JP2978580B2 (en) High dielectric constant dielectric porcelain composition
JPS6128619B2 (en)
JPS6128621B2 (en)
JPS597665B2 (en) High dielectric constant porcelain composition
US4601989A (en) Dielectric ceramic composition
JPH0583508B2 (en)
JPS6211444B2 (en)
JPS6135144B2 (en)
JPS6128620B2 (en)
JPS6211443B2 (en)
JPS6217805B2 (en)
JPS6138140B2 (en)
JPS6211442B2 (en)
JPS6216481B2 (en)
JPS6346925B2 (en)
JPS6134206B2 (en)
JPS6223406B2 (en)
JPS6216482B2 (en)
JPS6217806B2 (en)
JPS629961B2 (en)
JP2531547B2 (en) Porcelain composition for temperature compensation
JPH0637322B2 (en) Dielectric porcelain composition
JPH0562403B2 (en)
JPS6216483B2 (en)
JPS6217804B2 (en)